1
|
Selimovic D, Wahl RU, Ruiz E, Aslam R, Flanagan TW, Hassan SY, Santourlidis S, Haikel Y, Friedlander P, Megahed M, Kandil E, Hassan M. Tumor necrosis factor-α triggers opposing signals in head and neck squamous cell carcinoma and induces apoptosis via mitochondrial- and non-mitochondrial-dependent pathways. Int J Oncol 2019; 55:1324-1338. [PMID: 31638203 DOI: 10.3892/ijo.2019.4900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains one of the most common malignancies worldwide. Although the treatment outcomes of HNSCC have improved in recent years, the prognosis of patients with advanced-stage disease remains poor. Current treatment strategies for HNSCC include surgery as a primary therapy, while radio-, chemo-, and biotherapeutics can be applied as second-line therapy. Although tumor necrosis factor-α (TNF-α) is a potent tumor suppressor cytokine, the stimulation of opposing signals impairs its clinical utility as an anticancer agent. The aim of this study was to elucidate the mechanisms regulating TNF-α‑induced opposing signals and their biological consequences in HNSCC cell lines. We determined the molecular mechanisms of TNF-α-induced opposing signals in HNSCC cells. Our in vitro analysis indicated that one of these signals triggers apoptosis, while the other induces both apoptosis and cell survival. The TNF-α-induced survival of HNSCC cells is mediated by the TNF receptor-associated factor 2 (TRAF2)/nuclear factor (NF)-κB-dependent pathway, while TNF-α-induced apoptosis is mediated by mitochondrial and non-mitochondrial-dependent mechanisms through FADD-caspase-8-caspase-3 and ASK-JNK-p53-Noxa pathways. The localization of Noxa protein to both the mitochondria and endoplasmic reticulum (ER) was found to cause mitochondrial dysregulation and ER stress, respectively. Using inhibitory experiments, we demonstrated that the FADD‑caspase-8‑caspase-3 pathway, together with mitochondrial dysregulation and ER stress-dependent pathways, are essential for the modulation of apoptosis, and the NF-κB pathway is essential for the modulation of anti-apoptotic effects/cell survival during the exposure of HNSCC cells to TNF-α. Our data provide insight into the mechanisms of TNF-α-induced opposing signals in HNSCC cells and may further help in the development of novel therapeutic approaches with which to minimize the systemic toxicity of TNF-α.
Collapse
Affiliation(s)
- Denis Selimovic
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Renate U Wahl
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emmanuelle Ruiz
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rizwan Aslam
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Düsseldorf, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Youssef Haikel
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Paul Friedlander
- Department of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital οf Aachen, 52074 Aachen, Germany
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Hassan
- INSERM UMR 1121, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
CRISPR/Cas9 Knockout of Bak Mediates Bax Translocation to Mitochondria in response to TNF α/CHX-induced Apoptosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9071297. [PMID: 31637258 PMCID: PMC6766168 DOI: 10.1155/2019/9071297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/07/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
TNFα/CHX-induced apoptosis is dependent on caspase-8 activation and regulated by Bcl-2. However, the specific participants and precise mechanisms underlying this apoptotic pathway are poorly understood. The proapoptotic proteins Bak and Bax—members of the Bcl-2 family—are essential for the functioning of the mitochondrial apoptotic pathway. In this study, we used the CRISPR/Cas9 system to knockout Bak in the human SH-SY5Y cell line and determined the effects of this knockout on TNFα/CHX-induced apoptosis. Our data showed that overexpression of Bcl-2 dramatically prevented TNFα/CHX-induced apoptosis, and then pro-apoptotic protein Bak was downregulated and became more resistant to TNFα/CHX-induced apoptosis, because both TNFα/CHX-induced PARP cleavage and caspase activation were blocked in BAK−/− cells or using specific siRNA, whereas Bax was dispensable in TNFα/CHX-induced apoptosis, as evidenced using specific siRNA. Bax translocated from the cytosol into the mitochondria in response to TNFα/CHX, and CRISPR/Cas9 knockout of Bak significantly decreased this translocation. These results indicate that TNFα/CHX-induced apoptosis does not occur in Bak−/− cells, suggesting that TNFα/CHX-induced apoptosis is Bak-dependent but Bax-independent.
Collapse
|
3
|
Gowda Saralamma VV, Lee HJ, Raha S, Lee WS, Kim EH, Lee SJ, Heo JD, Won C, Kang CK, Kim GS. Inhibition of IAP's and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein. Oncotarget 2017; 9:5993-6006. [PMID: 29464049 PMCID: PMC5814189 DOI: 10.18632/oncotarget.23202] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. South Korea is in first place with 9,180 death alone attributed to gastric cancer in 2013. Plenty of literature suggests the evasion of apoptosis is implicated in neurodegeneration, autoimmune diseases, and tumors development due to dysregulation in the apoptotic mechanism. Reduced apoptosis or its resistance in cancer cells plays a significant role in carcinogenesis. It’s imperative to understand apoptosis, which provides the basis for novel targeted therapies that can induce cancer cell death or sensitize them to cytotoxic agents by regulating key factors like IAPs, MDM2, p53, caspases and much more. Studies have demonstrated that Scutellarein have the ability to inhibit several cancer cells by inducing apoptosis with both: Scutellarein monomers as well as scutellarein containing flavonoids. MTT results revealed that scutellarein inhibited cell viability in both dose and time dependent manner. Flow cytometry and western blot analysis showed that scutellarein induces apoptosis in both AGS and SNU-484 human gastric cancer cells and G2/M phase cell cycle arrest in SNU-484 cells. This study demonstrated that the Scutellarein on AGS and SNU-484 cells significantly inhibits cell proliferation and induces apoptotic cell death via down regulating MDM2 and activated the tumor suppresser protein p53, subsequently down regulating the IAP family proteins (cIAP1, cIAP2, and XIAP) leading to caspase-dependent apoptosis in AGS and SNU-484 cells.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| |
Collapse
|
4
|
Zhang BF, Wang PF, Cong YX, Lei JL, Wang H, Huang H, Han S, Zhuang Y. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway. J Orthop Surg Res 2017; 12:110. [PMID: 28701229 PMCID: PMC5508710 DOI: 10.1186/s13018-017-0614-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation plays a crucial role in kidney damage after crush syndrome (CS). Several researchers report that high mobility group box-1 protein (HMGB1) may be the vital trigger in kidney damage, and tumor necrosis factor-α (TNF-α) and c-Jun N-terminal kinase (JNK) are involve in this pathophysiological process, but their biological roles are unclear. This study aimed to explore the relationship between HMGB1, JNK, and TNF-α in kidney damage. Methods The crush injury model was established using weight compression. The reliability of the crush injury model was determined by hematoxylin-eosin (HE) staining. Western blot was used to detect the expression of HMGB1, JNK, and TNF-α, and TUNEL was used to mark apoptotic cells in the renal cortex. Results The results showed that the highest expression of HMGB1 in muscle was 12 h after CS. JNK and TNF-α increased and peaked at 1 day after CS in kidneys. Western blot analysis revealed that anti-HMGB1 antibody could downregulate the expression of JNK and TNF-α. Anti-TNF-α could downregulate activation of JNK, and SP600125 could downregulate expression of TNF-α in the kidneys. In addition, anti-HMGB1 antibody, anti-TNF-α antibody, and SP600125 could reduce cellular apoptosis in the renal cortex. Conclusions It is possible that JNK and TNF-α commonly contribute to kidney damage by assembling a positive feedback cycle after CS, leading to increased apoptosis in the renal cortex. HMGB1 from the muscle may be the trigger.
Collapse
Affiliation(s)
- Bin-Fei Zhang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Peng-Fei Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yu-Xuan Cong
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Lai Lei
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hu Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hai Huang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Han
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yan Zhuang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
5
|
Hikami S, Shiozaki A, Kitagawa-Juge M, Ichikawa D, Kosuga T, Konishi H, Komatsu S, Fujiwara H, Okamoto K, Otsuji E. The Role of cIAP1 and XIAP in Apoptosis Induced by Tumor Necrosis Factor Alpha in Esophageal Squamous Cell Carcinoma Cells. Dig Dis Sci 2017; 62:652-659. [PMID: 28050781 DOI: 10.1007/s10620-016-4430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND The inhibitor of apoptosis protein (IAP) family are reported to play important roles in cancer cells evading apoptosis. However, the significance of their expression in human esophageal squamous cell carcinoma (ESCC) cells remains uncertain. AIMS The present study aimed to investigate the role of the IAP family members in tumor necrosis factor-α (TNF-α)-induced apoptosis of human ESCC cells. METHODS Five human ESCC cell lines were pretreated with TNF-α, cycloheximide (CHX, protein synthesis inhibitor), epoxomicin (proteasome inhibitor). Apoptosis assay and protein study with Western blot testing were conducted. Knockdown experiments with IAP siRNA were conducted, and the effect on cell apoptosis was analyzed. RESULTS Significant apoptosis was induced in five ESCC cell lines by TNF-α plus CHX stimulation, but not when treated with TNF-α or CHX alone. The protein expression levels of cIAP1 and XIAP were decreased by treatment with TNF-α in the presence of CHX, and the degree of cIAP1 and XIAP expression decrease was correlated with sensitivity to TNF-α plus CHX-induced apoptosis. Epoxomicin suppressed TNF-α plus CHX-induced degradation of survivin, cIAP1, and XIAP, in addition to apoptosis. A caspase inhibitor (z-VAD-fmk) suppressed TNF-α plus CHX-induced apoptosis, but did not suppress degradation of survivin, cIAP1, and XIAP. Furthermore, cIAP1 or XIAP siRNA transfected cells underwent apoptosis in response to treatment with TNF-α alone. Double knockdown of both genes resulted in further increased apoptosis. CONCLUSION cIAP1 and XIAP play an essential role in the resistance of ESCC cells against apoptosis.
Collapse
Affiliation(s)
- Shoichiro Hikami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Maki Kitagawa-Juge
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|