1
|
Yang J, Liu C, Guan J, Wang Y, Su J, Wang Y, Liu S. SPI1 mediates transcriptional activation of TPX2 and RNF2 to regulate the radiosensitivity of lung squamous cell carcinoma. Arch Biochem Biophys 2022; 730:109425. [PMID: 36198346 DOI: 10.1016/j.abb.2022.109425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
Radiotherapy acts by damaging DNA and hindering cancer cell proliferation. H2AX is phosphorylated to produce γH2AX that accumulates in a response to DNA double-strand breaks. Non-coding RNA can influence DNA damage response and enhance DNA repair, which show potential for cancer treatment. The study aimed to observe the influence of SPI1 on the radiosensitivity of lung squamous cell carcinoma (LUSC) and to investigate the mechanisms. SPI1, TPX2, and RNF2 were overexpressed in LUSC tissues and radioresistant cells comspared with adjacent tissues and parental cells, respectively. The binding between SPI1 and TPX2 or RNF2 promoter was investigated using ChIP-qPCR and dual-luciferase assays. SPI1 bound to TPX2 and RNF2 promoters and activated their transcription. SPI1 downregulation increased the radiosensitivity of LUSC cells, which was comprised by TPX2 or RNF2 overexpression. Meanwhile, SPI1 downregulation elevated the protein expression of γH2AX at the late stage of DNA damage response and suppressed DNA damage repair in LUSC cells, which were compromised by TPX2 or RNF2. These results indicate that SPI1 silencing potentiates radiosensitivity in LUSC cells by downregulating the transcription of TPX2 and RNF2, which provides a potential target for the radiotherapy in LUSC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Jingwei Su
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Yuxiang Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China
| | - Sui Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, PR China.
| |
Collapse
|
2
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Lai L, Wang Y, Peng S, Guo W, Li F, Xu S. P53 and taurine upregulated gene 1 promotes the repair of the DeoxyriboNucleic Acid damage induced by bupivacaine in murine primary sensory neurons. Bioengineered 2022; 13:7439-7456. [PMID: 35271399 PMCID: PMC9208530 DOI: 10.1080/21655979.2022.2048985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research aimed to explore the biological role of p53 protein and long non-coding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in bupivacaine (bup)-induced neurotoxicity. Our work treated dorsal root ganglion (DRG) cells with bup, detected cell viability through CCK-8, apoptosis through TUNEL assays, DeoxyriboNucleic Acid (DNA) damage through γ-H2AX protein and comet assay, including p53 mRNA, protein and TUG1 expression through q-PCR and western blot, furthermore, cell viability and DNA damage were determined after the silencing of p53 and TUG1, biological information and TUG1 FISH combined with p53 protein immunofluorescence (IF) was performed to determine the cellular localization of these molecule. In vivo experiments, we explored the impact of intrathecal injection of bup on p53 mRNA and protein, TUG1, γ-H2AX protein expression. The results showed that bup was available to signally decreased cell viability, promoted apoptosis rate and DNA damage, additionally, bup increased p53 mRNA and protein and TUG1 expression. P53 siRNA and TUG1 siRNA significantly increased DNA damage. Furthermore, bioinformatics analysis and colocalization experiments revealed that the p53 protein is a transcription factor of TUG1, in vivo experiment, intrathecal injection of bup increased the p53 mRNA, p53 protein, TUG1 and γ-H2AX protein in the murine DRG. In this study, it was found p53 and TUG1 promote the repair of the DNA damage induced by bup in murine dorsal root ganglion cells, suggesting a new strategy for the amelioration of bup-induced neurotoxicity.
Collapse
Affiliation(s)
- Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongwei Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenghui Peng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenjing Guo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Cardinale A, Saladini S, Lupacchini L, Ruspantini I, De Dominicis C, Papale M, Silvagno F, Garaci E, Mollinari C, Merlo D. DNA repair protein DNA-PK protects PC12 cells from oxidative stress-induced apoptosis involving AKT phosphorylation. Mol Biol Rep 2021; 49:1089-1101. [PMID: 34797489 PMCID: PMC8825611 DOI: 10.1007/s11033-021-06934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Background Emerging evidence suggest that DNA-PK complex plays a role in the cellular response to oxidative stress, in addition to its function of double strand break (DSB) repair. In this study we evaluated whether DNA-PK participates in oxidative stress response and whether this role is independent of its function in DNA repair. Methods and results We used a model of H2O2-induced DNA damage in PC12 cells (rat pheochromocytoma), a well-known neuronal tumor cell line. We found that H2O2 treatment of PC12 cells induces an increase in DNA-PK protein complex levels, along with an elevation of DNA damage, measured both by the formation of γΗ2ΑX foci, detected by immunofluorescence, and γH2AX levels detected by western blot analysis. After 24 h of cell recovery, γΗ2ΑX foci are repaired both in the absence and presence of DNA-PK kinase inhibitor NU7026, while an increase of apoptotic cells is observed when DNA-PK activity is inhibited, as revealed by counting pycnotic nuclei and confirmed by FACS analysis. Our results suggest a role of DNA-PK as an anti-apoptotic factor in proliferating PC12 cells under oxidative stress conditions. The anti-apoptotic role of DNA-PK is associated with AKT phosphorylation in Ser473. On the contrary, in differentiated PC12 cells, were the main pathway to repair DSBs is DNA-PK-mediated, the inhibition of DNA-PK activity causes an accumulation of DNA damage. Conclusions Taken together, our results show that DNA-PK can protect cells from oxidative stress induced-apoptosis independently from its function of DSB repair enzyme. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alessio Cardinale
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Serena Saladini
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Leonardo Lupacchini
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Irene Ruspantini
- FAST. Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara De Dominicis
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy.,Department of Neuroscience, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy
| | - Marco Papale
- Molecular and Cellular Neurobiology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Francesca Silvagno
- Department of Oncology, University Torino, via Santena 5 bis, 10126, Torino, Italy
| | - Enrico Garaci
- University San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
6
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
7
|
Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, Qi H, Lin T, Lin Z, Wang J, Cao X, Yang J, Ma Q, Cong L, Xi Y, Fang S, Meng X, Gong Z, Ye M, Wang S, Wang C, Gao K. Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res 2021; 49:6788-6803. [PMID: 34133717 PMCID: PMC8266658 DOI: 10.1093/nar/gkab489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Speckle-type Poz protein (SPOP), an E3 ubiquitin ligase adaptor, is the most frequently mutated gene in prostate cancer. The SPOP-mutated subtype of prostate cancer shows high genomic instability, but the underlying mechanisms causing this phenotype are still largely unknown. Here, we report that upon DNA damage, SPOP is phosphorylated at Ser119 by the ATM serine/threonine kinase, which potentiates the binding of SPOP to homeodomain-interacting protein kinase 2 (HIPK2), resulting in a nondegradative ubiquitination of HIPK2. This modification subsequently increases the phosphorylation activity of HIPK2 toward HP1γ, and then promotes the dissociation of HP1γ from trimethylated (Lys9) histone H3 (H3K9me3) to initiate DNA damage repair. Moreover, the effect of SPOP on the HIPK2-HP1γ axis is abrogated by prostate cancer-associated SPOP mutations. Our findings provide new insights into the molecular mechanism of SPOP mutations-driven genomic instability in prostate cancer.
Collapse
Affiliation(s)
- Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shi Qing
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Hui Zhuang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Liliang Shen
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Jinhui Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Honggang Qi
- Department of Urology, the Affiliated Yinzhou Second Hospital of Medical School of Ningbo University, Ningbo 315100, China
| | - Ting Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zihan Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jian Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xinyi Cao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jianye Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City. Ningbo First Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Linghua Cong
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chenji Wang
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
8
|
Zou W, Li G, Jian L, Qian J, Liu Y, Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4871-4887. [PMID: 33909904 DOI: 10.1093/jxb/erab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Reproductive development is a crucial process during plant growth. The structural maintenance of chromosome (SMC) 5/6 complex has been studied in various species. However, there are few studies on the biological function of SMC6 in plant development, especially during reproduction. In this study, knocking out of both AtSMC6A and AtSMC6B led to severe defects in Arabidopsis seed development, and expression of AtSMC6A or AtSMC6B could completely restore seed abortion in the smc6a-/-smc6b-/-double mutant. Knocking down AtSMC6A in the smc6b-/- mutant led to defects in female and male development and decreased fertility. The double mutation also resulted in loss of cell viability, and caused embryo and endosperm cell death through vacuolar cell death and necrosis. Furthermore, the expression of genes involved in embryo patterning, endosperm cellularisation, DNA damage repair, cell cycle regulation, and DNA replication were significantly changed in the albino seeds of the double mutant. Moreover, we found that the SMC5/6 complex may participate in the SOG1 (SUPPRESSOR OF GAMMA RESPONSE1)-dependent DNA damage repair pathway. These findings suggest that both AtSMC6A and AtSMC6B are functionally redundant and play important roles in seed and gametophyte development through maintaining chromosome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Molecular Docking and Molecular Dynamics Simulation Studies of Quinoline-3-Carboxamide Derivatives with DDR Kinases–Selectivity Studies towards ATM Kinase. CHEMISTRY 2021. [DOI: 10.3390/chemistry3020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinoline-3-carboxamides are an essential class of drug-like small molecules that are known to inhibit the phosphatidylinositol 3-kinase-related kinases (PIKK) family kinases. The quinoline nitrogen is shown to bind to the hinge region of the kinases, making them competitive inhibitors of adenosine triphosphate (ATP). We have previously designed and synthesized quinoline-3-carboxamides as potential ataxia telangiectasia mutated (ATM) kinase inhibitors to function as an adjuvant treatment with DNA damaging agents. This article discusses the molecular docking studies performed with these derivatives with the DNA damage and response (DDR) kinases-ATM, ataxia telangiectasia and rad3 related (ATR), and DNA dependent protein kinase catalytic subunit (DNA-PKcs) and highlights their selectivity towards ATM kinase. Docking studies were also performed with mTOR and PI3Kγ, which are close homologs of the DDR kinases. Molecular dynamics simulations were performed for one of the inhibitors against all the enzymes to establish the stability of the interactions involved. Finally, the absorption, distribution, metabolism, and excretion (ADME) properties of the inhibitors were predicted using the QikProp manual in Maestro. In conclusion, the molecules synthesized showed high selectivity towards the ATM kinase in comparison with the other kinases, though the sequence similarity between them was relatively high.
Collapse
|
10
|
Pereira CD, Martins F, Santos M, Müeller T, da Cruz e Silva OAB, Rebelo S. Nuclear Accumulation of LAP1:TRF2 Complex during DNA Damage Response Uncovers a Novel Role for LAP1. Cells 2020; 9:E1804. [PMID: 32751253 PMCID: PMC7465990 DOI: 10.3390/cells9081804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is a nuclear envelope (NE) protein whose function remains poorly characterized. In a recent LAP1 protein interactome study, a putative regulatory role in the DNA damage response (DDR) has emerged and telomeric repeat-binding factor 2 (TRF2), a protein intimately associated with this signaling pathway, was among the list of LAP1 interactors. To gain insights into LAP1's physiological properties, the interaction with TRF2 in human cells exposed to DNA-damaging agents was investigated. The direct LAP1:TRF2 binding was validated in vitro by blot overlay and in vivo by co-immunoprecipitation after hydrogen peroxide and bleomycin treatments. The regulation of this protein interaction by LAP1 phosphorylation was demonstrated by co-immunoprecipitation and mass spectrometry following okadaic acid exposure. The involvement of LAP1 and TRF2 in the DDR was confirmed by their increased nuclear protein levels after bleomycin treatment, evaluated by immunoblotting, as well as by their co-localization with DDR factors at the NE and within the nucleoplasm, assessed by immunocytochemistry. Effectively, we showed that the LAP1:TRF2 complex is established during a cellular response against DNA damage. This work proposes a novel functional role for LAP1 in the DDR, revealing a potential biological mechanism that may be disrupted in LAP1-associated pathologies.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Mariana Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Thorsten Müeller
- Cell Signaling in Neurodegeneration (CSIN), Medical Proteome-Center, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| |
Collapse
|
11
|
Li D, Yu Z, Wang T, Li Y, Chen X, Wu L. The role of the novel LincRNA uc002jit.1 in NF-kB-mediated DNA damage repair in acute myeloid leukemia cells. Exp Cell Res 2020; 391:111985. [PMID: 32259522 DOI: 10.1016/j.yexcr.2020.111985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
Abstract
The roles and therapeutic potential of long noncoding RNAs (lncRNAs) in acute myeloid leukemia (AML) have attracted increased attention. However, many lncRNAs have not been annotated in AML, and their predictive value for AML therapy remains unclear. In this study, we identified a novel large intergenic noncoding RNA uc002jit.1 (D43770) from a lncRNA microarray. We first proved uc002jit.1 is a target gene of nuclear factor kappa B/RELA, RELA regulated uc002jit.1 transcription by binding to its promoter. Additionally, uc002jit.1 knockdown impaired the stability of poly (ADP-ribose) polymerase 1 (PARP1) mRNA, and then reduced PARP1 protein content and PARylation level upon DNA damage, thus inhibiting DNA damage repair in AML cells. Moreover, uc002jit.1 knockdown significantly inhibited AML cells proliferation and increased the sensitivity to chemotherapeutic drugs in vitro as well as in a mouse model in vivo. Overall, our study indicated that uc002jit.1 may be associated with the occurrence and prognosis of AML and could be a new diagnostic/prognostic biomarker and therapeutic target for AML.
Collapse
Affiliation(s)
- Ding Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, PR China; Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Zelei Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Tingting Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Yi Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, Fuzhou, 350001, PR China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; Institute of Materia Medicine, Fuzhou, 350108, PR China; Fuijan Key Laboratory of Natural Medicine Pharmacology, Fuzhou, 350108, PR China.
| |
Collapse
|
12
|
Fanelli M, Tavanti E, Patrizio MP, Vella S, Fernandez-Ramos A, Magagnoli F, Luppi S, Hattinger CM, Serra M. Cisplatin Resistance in Osteosarcoma: In vitro Validation of Candidate DNA Repair-Related Therapeutic Targets and Drugs for Tailored Treatments. Front Oncol 2020; 10:331. [PMID: 32211337 PMCID: PMC7077033 DOI: 10.3389/fonc.2020.00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of high-grade osteosarcoma, the most common malignant tumor of bone, is largely based on administration of cisplatin and other DNA damaging drugs. Altered DNA repair mechanisms may thus significantly impact on either response or resistance to chemotherapy. In this study, by using a panel of human osteosarcoma cell lines, either sensitive or resistant to cisplatin, we assessed the value as candidate therapeutic targets of DNA repair-related factors belonging to the nucleotide excision repair (NER) or base excision repair (BER) pathways, as well as of a group of 18 kinases, which expression was higher in cisplatin-resistant variants compared to their parental cell lines and may be indirectly involved in DNA repair. The causal involvement of these factors in cisplatin resistance of human osteosarcoma cells was validated through gene silencing approaches and in vitro reversal of CDDP resistance. This approach highlighted a subgroup of genes, which value as promising candidate therapeutic targets was further confirmed by protein expression analyses. The in vitro activity of 15 inhibitor drugs against either these genes or their pathways was then analyzed, in order to identify the most active ones in terms of inherent activity and ability to overcome cisplatin resistance. NSC130813 (NERI02; F06) and triptolide, both targeting NER factors, proved to be the two most active agents, without evidence of cross-resistance with cisplatin. Combined in vitro treatments showed that NSC130813 and triptolide, when administered together with cisplatin, were able to improve its efficacy in both drug-sensitive and resistant osteosarcoma cells. This evidence may indicate an interesting therapeutic future option for treatment of osteosarcoma patients who present reduced responsiveness to cisplatin, even if possible effects of additive collateral toxicities must be carefully considered. Moreover, our study also showed that targeting protein kinases belonging to the mitogen-activated protein kinase (MAPK) or fibroblast growth factor receptor (FGFR) pathways might indicate new promising therapeutic perspectives in osteosarcoma, demanding for additional investigation.
Collapse
Affiliation(s)
- Marilù Fanelli
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Elisa Tavanti
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Maria Pia Patrizio
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Serena Vella
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Amira Fernandez-Ramos
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Federica Magagnoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Silvia Luppi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| |
Collapse
|
13
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
14
|
Okabe A, Kiriyama Y, Suzuki S, Sakurai K, Teramoto A, Kato H, Naiki-Ito A, Tahara S, Takahashi S, Kuroda M, Sugioka A, Tsukamoto T. Short-term detection of gastric genotoxicity using the DNA double-strand break marker γ-H2AX. J Toxicol Pathol 2019; 32:91-99. [PMID: 31092975 PMCID: PMC6511543 DOI: 10.1293/tox.2019-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 01/25/2023] Open
Abstract
DNA damage caused by Helicobacter pylori infection and chronic inflammation or exposure to genotoxic agents is considered an important risk factor of gastric carcinogenesis. In this study, we have evaluated a short-term technique to detect DNA damage response to various chemical carcinogens; it involves visualization of Ser 139-phosphorylated histone H2AX (γ-H2AX) foci by immunohistochemistry and expression analysis of other genes by quantitative RT-PCR. Six-week-old male rats were intragastrically administered N-methyl-N-nitrosourea (MNU), 3,2'-dimethyl-4-aminobiphenyl (DMAB), dimethylnitrosamine (DMN), and 1,2- dimethylhydrazine (DMH) for 5 days/week for 4 weeks, using corn oil as a vehicle. Animals were sacrificed at day 28, and their stomachs were excised. γ-H2AX foci formation, indicating DNA double-strand breaks, was observed in the proliferative zone of both fundic and pyloric glands. The number of positive cells per gland was significantly high in pyloric glands in the MNU group and in fundic glands in the MNU and DMAB groups. A significant increase in p21waf1 mRNA level was observed in the DMN group compared with the control, which was in contrast to the decreasing tendency of the h2afx mRNA level in the MNU and DMN groups. Apoptotic cells positive for γ-H2AX pan or peripheral nuclear staining were observed on the surface layer of the fundic mucosa in the MNU group. The fundic pepsinogen a5 (pga5) mRNA level showed a significant decrease, indicating gland damage. The pyloric pepsinogen c mRNA level showed no change. In conclusion, γ-H2AX in combination with other gene expression analyses could be a useful biomarker in a short-term experiment on gastric chemical genotoxicity.
Collapse
Affiliation(s)
- Asako Okabe
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuka Kiriyama
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.,Department of Diagnostic Pathology, Narita Memorial Hospital, 134 Haneihonmachi, Toyohashi, Aichi 441-8029, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Kouhei Sakurai
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teramoto
- Faculty of Radiological Technology, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Sayumi Tahara
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Makoto Kuroda
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Sugioka
- Department of Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
15
|
Azenha D, Lopes MC, Martins TC. Claspin: From replication stress and DNA damage responses to cancer therapy. DNA Repair (Amst) 2019; 115:203-246. [DOI: 10.1016/bs.apcsb.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Krishnaraj J, Baba AB, Viswanathan P, Veeravarmal V, Balasubramanian V, Nagini S. Impact of stainless-steel welding fumes on proteins and non-coding RNAs regulating DNA damage response in the respiratory tract of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1231-1245. [PMID: 30507362 DOI: 10.1080/15287394.2018.1550027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial evidence has established the negative impact of inhalation exposure to welding fumes on respiratory functions. The aim of the present study was to investigate the effect of welding fume inhalation on expression of molecules that function as sensors, transducers and effectors of DNA damage response (DDR) in the respiratory tract of male Sprague-Dawley rats. Animals were exposed to 50 mg/m3 stainless steel welding fumes for 1 h/d for 4, 8, and 12 weeks, respectively. Histological examination demonstrated preneoplastic changes in trachea and bronchi with focal atelectasis and accumulation of chromium (Cr) in the lungs. This was associated with elevated levels of DNA damage markers (8-oxodG, γH2AX), ATM phosphorylation, cell cycle arrest, apoptosis induction, activation of homologous recombination (HR), non-homologous end joining (NHEJ), and Nrf2 signaling, as well as altered expression of noncoding RNAs (ncRNAs). However, after 12 weeks of exposure, DDR was compromised as reflected by resumption of the cell cycle, repair inhibition, and failure of apoptosis. Data demonstrate that exposure to welding fumes influences two crucial layers of DDR regulation, phosphorylation of key proteins in NHEJ and HR, as well as the ncRNAs that epigenetically modulate DDR. Evidence indicates that marked DNA damage coupled with non-productive DNA repair and apoptosis avoidance may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Abdul Basit Baba
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Periasamy Viswanathan
- b Division of Pathology, Rajah Muthiah Medical College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Veeran Veeravarmal
- c Division of Oral Pathology, Rajah Muthiah Dental College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Viswalingam Balasubramanian
- d Department of Manufacturing Engineering, Faculty of Engineering and Technology , Annamalai University , Annamalainagar , TN , India
| | - Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| |
Collapse
|
18
|
Hu LB, Chen Y, Meng XD, Yu P, He X, Li J. Nucleotide Excision Repair Factor XPC Ameliorates Prognosis by Increasing the Susceptibility of Human Colorectal Cancer to Chemotherapy and Ionizing Radiation. Front Oncol 2018; 8:290. [PMID: 30109214 PMCID: PMC6079218 DOI: 10.3389/fonc.2018.00290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023] Open
Abstract
Nucleotide excision repair (NER) is a DNA damage repair mechanism in mammals, but the relationship between NER and human colorectal cancer (HRC) progression has not been clarified yet. In this study, the expression of the NER genes XPA, XPC, XPF, XPG, ERCC1, and XPD was measured in normal and cancerous human colorectal tissue. Among them, only the XPC gene expression was significantly increased in colorectal cancer tissue. To establish the role of XPC in colorectal cancer, small interference RNA (siRNA) targeting XPC was used to knockdown the expression of XPC in HRC cell lines. In addition, an expression vector plasmid containing the XPC cDNA was constructed and stably transfected into HRC cell lines to overexpress the XPC gene. Interestingly, MTT and apoptosis assay demonstrated that XPC gene overexpression significantly increased the susceptibility of HRC cell lines to cisplatin and X-ray radiation. In order to study the relationship between XPC expression and the progression of HRC, XPC expression was measured in 167 patients with colorectal cancer. The results showed that patients with high XPC expression had longer survival time. Cox regression analysis showed that high XPC expression might be a potential predictive factor for colorectal cancer. In conclusion, XPC plays a key role in the susceptibility of colorectal cancer to chemotherapy and ionizing radiation and is associated with a good patients' prognosis.
Collapse
Affiliation(s)
- Liang-Bo Hu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Chen
- Department of General Surgery, The People's Liberation Army 324 Hospital, Chongqing, China
| | - Xiao-Dong Meng
- Department of Urology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, Nanjing, China
| | - Xu He
- Department of General Surgery, The People's Liberation Army 324 Hospital, Chongqing, China
| | - Jie Li
- Department of Nephrology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2389523. [PMID: 29770165 PMCID: PMC5892224 DOI: 10.1155/2018/2389523] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR) is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.
Collapse
|
20
|
Park JS, Jeon HJ, Pyo JH, Kim YS, Yoo MA. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila. Aging (Albany NY) 2018; 10:322-338. [PMID: 29514136 PMCID: PMC5892683 DOI: 10.18632/aging.101390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/23/2018] [Indexed: 09/29/2023]
Abstract
Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11, Rad50, Nbs1, ATM, ATR, Chk1, and Chk2, which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.
Collapse
Affiliation(s)
- Joung-Sun Park
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
- Equal contribution
| | - Ho-Jun Jeon
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
- Equal contribution
| | - Jung-Hoon Pyo
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Zhang L, Hao W, Xu L, Gao Y, Wang X, Zhu D, Chen Z, Zhang X, Chen H, Mei L. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells. Acta Biomater 2017; 62:246-256. [PMID: 28822844 DOI: 10.1016/j.actbio.2017.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/23/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO3. Methenamine mandelate/NaHCO3-coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO3 reacts with proton and produce CO2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Consequently, methenamine mandelate/NaHCO3-coloaded nanoparticles caused cell cycle arrest, cell growth inhibition and apoptosis of cancer cells. Moreover, methenamine mandelate/NaHCO3-coloaded nanoparticles also show intensive inhibitory effect on the growth of MCF-7 xenograft tumor in vivo. Therefore, methenamine mandelate/NaHCO3-coloaded nanoparticle is a promising type of formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical. STATEMENT OF SIGNIFICANCE Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO3. Methenamine mandelate/NaHCO3-coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO3 reacts with proton and produce CO2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Methenamine mandelate/NaHCO3-coloaded nanoparticle is a promising type formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical.
Collapse
|
22
|
Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int J Mol Sci 2017; 18:ijms18091887. [PMID: 28858232 PMCID: PMC5618536 DOI: 10.3390/ijms18091887] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| |
Collapse
|
23
|
Bobermin LD, Souza DO, Gonçalves CA, Quincozes-Santos A. Resveratrol prevents ammonia-induced mitochondrial dysfunction and cellular redox imbalance in C6 astroglial cells. Nutr Neurosci 2017; 21:276-285. [PMID: 28165879 DOI: 10.1080/1028415x.2017.1284375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Resveratrol is a polyphenolic compound that presents several protective effects in the central nervous system, including gliotoxicity associated to hyperammonemia, a key element for the development of hepatic encephalopathy. In this condition, mitochondrial dysfunction leads to a reactive oxygen species (ROS) overproduction, which, in turn, exacerbates mitochondrial failure and causes cellular damage. OBJECTIVE This study sought to determine whether prevention of mitochondrial dysfunction and the maintenance of cellular redox status by resveratrol contribute to its protective action toward ammonia toxicity. METHODS C6 astrocyte cell line was pre-incubated in the presence or absence of resveratrol (100 μM) for 1 hour. After pre-incubation, resveratrol was maintained and 5 mM ammonia was added for 24 hours, followed by the evaluation of ROS production, mitochondrial functionality, antioxidant enzymatic and non-enzymatic defenses, energy metabolic parameters, and genotoxicity. RESULTS We showed that resveratrol prevented the increase in ROS production, the decrease of mitochondrial membrane potential (ΔΨm), and bioenergetics deficit caused by ammonia in C6 astroglial cells. In addition, resveratrol avoided the ammonia-induced upregulation of NOX activity and impairment in enzymatic and non-enzymatic antioxidant defenses. Ammonia also induced DNA damage that was prevented by resveratrol, indicating its genoprotective effect. CONCLUSIONS In summary, our study demonstrates that resveratrol prevents ammonia-induced cytotoxicity, as well as supports the role of resveratrol on mitochondrial/cellular redox functionality.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- a Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- a Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- a Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- a Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Danza K, De Summa S, Pinto R, Pilato B, Palumbo O, Carella M, Popescu O, Digennaro M, Lacalamita R, Tommasi S. TGFbeta and miRNA regulation in familial and sporadic breast cancer. Oncotarget 2017; 8:50715-50723. [PMID: 28881597 PMCID: PMC5584195 DOI: 10.18632/oncotarget.14899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 01/20/2023] Open
Abstract
The term ‘BRCAness’ was introduced to identify sporadic malignant tumors sharing characteristics similar to those germline BRCA-related. Among all mechanisms attributable to BRCA1 expression silencing, a major role has been assigned to microRNAs. MicroRNAs role in familial and sporadic breast cancer has been explored but few data are available about microRNAs involvement in homologous recombination repair control in these breast cancer subgroups. Our aim was to seek microRNAs associated to pathways underlying DNA repair dysfunction in breast cancer according to a family history of the disease. Affymetrix GeneChip microRNA Arrays were used to perform microRNA expression analysis in familial and sporadic breast cancer. Pathway enrichment analysis and microRNA target prediction was carried out using DIANA miRPath v.3 web-based computational tool and miRWalk v.2 database. We analyzed an external gene expression dataset (E-GEOD-49481), including both familial and sporadic breast cancers. For microRNA validation, an independent set of 19 familial and 10 sporadic breast cancers was used. Microarray analysis identified a signature of 28 deregulated miRNAs. For our validation analyses by real time PCR, we focused on miR-92a-1*, miR-1184 and miR-943 because associated to TGF-β signalling pathway, ATM and BRCA1 genes expression. Our results highlighted alterations in miR-92a-1*, miR-1184 and miR-943 expression levels suggesting their involvement in repair of DNA double-strand breaks through TGF-beta pathway control.
Collapse
Affiliation(s)
- Katia Danza
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Simona De Summa
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Rosamaria Pinto
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Brunella Pilato
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Orazio Palumbo
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Ondina Popescu
- IRCCS 'Giovanni Paolo II', Anatomopathology Unit, Bari 70124, Italy
| | - Maria Digennaro
- IRCCS 'Giovanni Paolo II', Experimental Medical Oncology Unit, Bari 70124, Italy
| | - Rosanna Lacalamita
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Stefania Tommasi
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| |
Collapse
|
25
|
Kumar A, Purohit S, Sharma NK. Aberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival. J Cancer Prev 2016; 21:227-234. [PMID: 28053956 PMCID: PMC5207606 DOI: 10.15430/jcp.2016.21.4.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/15/2022] Open
Abstract
Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner. The DNA double-strand damage repair machinery is manipulated by breast carcinoma to selectively repair the damage or insults inflicted by the genotoxic effects of chemotherapy or radiation therapy. The two DNA double-strand break repair pathways employed by breast carcinoma are homologous recombination and non-homologous end joining. In recent decades, therapeutic interventions targeting one or more factors involved in repairing DNA double-strand breaks inflicted by chemo/radiation therapy have been widely studied. Herein, this review paper summarizes the recent evidence and ongoing clinical trials citing potential therapeutic combinatorial interventions targeting DNA double-strand break repair pathways in breast carcinoma.
Collapse
Affiliation(s)
- Azad Kumar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shruti Purohit
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
26
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
27
|
Luukkonen J, Höytö A, Sokka M, Liimatainen A, Syväoja J, Juutilainen J, Naarala J. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Int J Radiat Biol 2016; 93:240-248. [DOI: 10.1080/09553002.2017.1235298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jukka Luukkonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Anne Höytö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Miiko Sokka
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Anu Liimatainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Juhani Syväoja
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jukka Juutilainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Jonne Naarala
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| |
Collapse
|
28
|
Kuwano Y, Nishida K, Akaike Y, Kurokawa K, Nishikawa T, Masuda K, Rokutan K. Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome. Int J Mol Sci 2016; 17:ijms17101638. [PMID: 27689990 PMCID: PMC5085671 DOI: 10.3390/ijms17101638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator.
Collapse
Affiliation(s)
- Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Yoko Akaike
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Ken Kurokawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kiyoshi Masuda
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
29
|
Xu S, Huang H, Chen YN, Deng YT, Zhang B, Xiong XD, Yuan Y, Zhu Y, Huang H, Xie L, Liu X. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21 WAF1/CIP1. Cell Cycle 2016; 15:2920-2930. [PMID: 27559850 DOI: 10.1080/15384101.2016.1224043] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.
Collapse
Affiliation(s)
- Shun Xu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Haijiao Huang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yu-Ning Chen
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yun-Ting Deng
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Bing Zhang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Xing-Dong Xiong
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yuan Yuan
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yanmei Zhu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Haiyong Huang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Luoyijun Xie
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Xinguang Liu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| |
Collapse
|
30
|
Identification and Mechanistic Studies of a Cell Cycle Regulator JP18 from a Library of Synthetic Indole Terpenoid Mimics. Chem Asian J 2016; 11:2715-2718. [DOI: 10.1002/asia.201600714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/21/2016] [Indexed: 11/07/2022]
|
31
|
Skarpengland T, Dahl TB, Skjelland M, Scheffler K, de Sousa MML, Gregersen I, Kuśnierczyk A, Sharma A, Slupphaug G, Eide L, Segers FM, Skagen KR, Dahl CP, Russell D, Folkersen L, Krohg-Sørensen K, Holm S, Bjørås M, Aukrust P, Halvorsen B. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA. Free Radic Biol Med 2016; 97:386-397. [PMID: 27381496 DOI: 10.1016/j.freeradbiomed.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. METHODS BER gene expression levels were analyzed in 162 carotid plaques, 8 disease-free carotid specimens from patients with carotid plaques and 10 non-atherosclerotic control arteries. Genomic integrity, mitochondrial (mt) DNA copy number, oxidative DNA damage and BER proteins were evaluated in a subgroup of plaques and controls. RESULTS Our major findings were: (i) The BER pathway showed a global increased transcriptional response in plaques as compared to control arteries, accompanied by increased expression of several BER proteins. (ii) Whereas nuclear DNA stability was maintained within carotid plaques, mtDNA integrity and copy number were decreased. (iii) Within carotid plaques, mRNA levels of several BER genes correlated with macrophage markers. (iv) In vitro, some of the BER genes were highly expressed in the anti-inflammatory and pro-resolving M2 macrophages, showing increased expression upon exposure to modified lipids. CONCLUSIONS The increased transcriptional response of BER genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion.
Collapse
Affiliation(s)
- Tonje Skarpengland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Skjelland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta Mittelsted Leal de Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Animesh Sharma
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Filip M Segers
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway
| | | | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Norway; Center of Heart Failure Research, University of Oslo, Oslo, Norway
| | - David Russell
- Department of Neurology, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lasse Folkersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| | - Kirsten Krohg-Sørensen
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Lillehammer Hospital for Rheumatic Diseases, Lillehammer, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
33
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother 2016; 83:22-32. [PMID: 27470546 DOI: 10.1016/j.biopha.2016.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 01/24/2023] Open
Abstract
The effec.t of BIIB021, a novel heat shock protein 90 (hsp90) inhibitor, on survival of thyroid carcinoma cells has not been evaluated. In this study, the impact of BIIB021 alone or in combination with the histone acetyltransferase inhibitor triptolide on survival of thyroid carcinoma cells was identified. In 8505C and TPC-1 thyroid carcinoma cells, BIIB021 caused cell death in conjunction with alterations in expression of hsp90 client proteins. Cotreatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, decreased cell viability, and increased the percentage of dead cells and cytotoxic activity. All of the combination index values were lower than 1.0, suggesting synergistic activity of BIIB021 with triptolide in induction of cytotoxicity. In treatment of both BIIB021 and triptolide, compared with treatment of BIIB021 alone, the protein levels of total and phospho-p53, and cleaved caspase-3 were elevated, while those of total Akt, phospho-mTOR, phospho-4EBP1, phospho-S6K, phospho-NF-κB, survivin, X-linked inhibitor of apoptosis protein (xIAP), cellular inhibitor of apoptosis protein (cIAP) and acetyl. histone H4 were reduced. These results suggest that BIIB021 has a cytotoxic activity accompanied by regulation of hsp90 client proteins in thyroid carcinoma cells. Moreover, the synergism between BIIB021 and triptolide in induction of cytotoxicity is associated with the inhibition of PI3K/Akt/mTOR and NF-κB signal pathways, the underexpression of survivin and the activation of DNA damage response in thyroid carcinoma cells.
Collapse
Affiliation(s)
- Si Hyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Gi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyung Joon Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
34
|
Lee J, Kim MR, Kim HJ, An YS, Yi JY. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling. Biochem Biophys Res Commun 2016; 476:420-425. [PMID: 27237972 DOI: 10.1016/j.bbrc.2016.05.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.
Collapse
Affiliation(s)
- Jeeyong Lee
- Division of Basic Radiation Bioscience, Korea Institute of Radiation and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Mi-Ra Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiation and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Hyun-Ji Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiation and Medical Sciences, Seoul, 01812, Republic of Korea
| | - You Sun An
- Division of Basic Radiation Bioscience, Korea Institute of Radiation and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Jae Youn Yi
- Division of Basic Radiation Bioscience, Korea Institute of Radiation and Medical Sciences, Seoul, 01812, Republic of Korea.
| |
Collapse
|
35
|
MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicol In Vitro 2016; 34:26-34. [PMID: 27033315 DOI: 10.1016/j.tiv.2016.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/20/2023]
Abstract
Anthracyclines, such as doxorubicin, are well-established, highly efficient anti-neoplastic drugs used for treatment of a variety of cancers, including solid tumors, leukemia, lymphomas, and breast cancer. The successful use of doxorubicin has, however, been hampered by severe cardiotoxic side-effects. In order to prevent or reverse negative side-effects of doxorubicin, it is important to find early biomarkers of heart injury and drug-induced cardiotoxicity. The high stability under extreme conditions, presence in various body fluids, and tissue-specificity, makes microRNAs very suitable as clinical biomarkers. The present study aimed towards evaluating the early and late effects of doxorubicin on the microRNA expression in cardiomyocytes derived from human pluripotent stem cells. We report on several microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, that are differentially expressed upon, and after, treatment with doxorubicin. Investigation of the biological relevance of the identified microRNAs revealed connections to cardiomyocyte function and cardiotoxicity, thus supporting the findings of these microRNAs as potential biomarkers for drug-induced cardiotoxicity.
Collapse
|