1
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
2
|
Weeks AT, Bird AJ. Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex. J Biol Chem 2025; 301:108156. [PMID: 39761853 PMCID: PMC11830320 DOI: 10.1016/j.jbc.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/02/2025] Open
Abstract
Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of sod1 mRNA and protein accumulate under low zinc conditions and that this regulation does not require the sod1 promoter or known factors that regulate the transcription of sod1 in response to zinc and other environmental stresses. Further analyses using yeast deletion strains and an inactive allele of Caf1 revealed that the reduced accumulation of sod1 mRNA and protein under low zinc conditions depends on the Caf1 and Ccr4 deadenylases of the CCR4-NOT complex. We also found that Caf1 and Ccr4 are both required for growth under zinc-limiting conditions. To gain additional mechanistic insight we used immunoblot analysis to map the regions required for the regulation of the Sod1 protein by zinc. We found that the sod1 ORF and 3'UTR are both necessary and sufficient for the zinc-dependent changes in Sod1 protein abundance. Our studies reveal a novel mechanism of altering mRNA and protein abundance in response to zinc status, which depends on the CCR4-NOT complex.
Collapse
Affiliation(s)
- Andrew T Weeks
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA; Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Wadhwa V, Jamshidi C, Stachowski K, Bird AJ, Foster MP. Conformational dynamics in specialized C 2H 2 zinc finger domains enable zinc-responsive gene repression in S. pombe. Protein Sci 2025; 34:e70044. [PMID: 39865413 PMCID: PMC11761706 DOI: 10.1002/pro.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem C2H2 zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical C2H2 zinc fingers. Isothermal titration calorimetry and NMR spectroscopy reveal two distinct zinc binding events localized to the zinc fingers. NMR spectra reveal complex dynamic behavior in this zinc-responsive region spanning time scales from fast 10-12-10-10 to slow >100 s. Slow exchange due to cis-trans isomerization of the TGERP linker results in the doubling of many signals in the protein. Conformational exchange on the 10-3 s timescale throughout the first zinc finger distinguishes it from the second and is linked to a weaker affinity for zinc. These findings reveal a mechanism of zinc sensing by Loz1 and illuminate how the protein's rough free-energy landscape enables zinc sensing, DNA binding and regulated gene expression.
Collapse
Affiliation(s)
- Vibhuti Wadhwa
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Cameron Jamshidi
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Kye Stachowski
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda J. Bird
- Department of Human Nutrition and Molecular GeneticsCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Zhao H, Liu D, Sun S, Yu J, Bian X, Cheng X, Yang Q, Yu Y, Xu Z. PIAS3 acts as a zinc sensor under zinc deficiency and plays an important role in myocardial ischemia/reperfusion injury. Free Radic Biol Med 2024; 221:188-202. [PMID: 38750767 DOI: 10.1016/j.freeradbiomed.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Alterations in zinc transporter expression in response to zinc loss protect cardiac cells from ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanisms how cardiac cells sense zinc loss remains unclear. Here, we found that zinc deficiency induced ubiquitination and degradation of the protein inhibitor of activated STAT3 (PIAS3), which can alleviate myocardial I/R injury by activating STAT3 to promote the expression of ZIP family zinc transporter genes. The RING finger domain within PIAS3 is vital for PIAS3 degradation, as PIAS3-dRing (missing the RING domain) and PIAS3-Mut (zinc-binding site mutation) were resistant to degradation in the setting of zinc deficiency. Meanwhile, the RING finger domain within PIAS3 is critical for the inhibition of STAT3 activation. Moreover, PIAS3 knockdown increased cardiac Zn2+ levels and reduced myocardial infarction in mouse hearts subjected to I/R, whereas wild-type PIAS3 overexpression, but not PIAS3-Mut, reduced cardiac Zn2+ levels, and exacerbated myocardial infarction. These findings elucidate a unique mechanism of zinc sensing, showing that fast degradation of the zinc-binding regulatory protein PIAS3 during zinc deficiency can correct zinc dyshomeostasis and alleviate reperfusion injury.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| | - Dan Liu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Sha Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xinxin Cheng
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Zhelong Xu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China; Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China; Department of Anesthesiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
5
|
Chen Z, Chen T, Zhang H, Li Y, Fan J, Yao L, Zeng B, Zhang Z. Functional role of a novel zinc finger protein, AoZFA, in growth and kojic acid synthesis in Aspergillus oryzae. Appl Environ Microbiol 2023; 89:e0090923. [PMID: 37702504 PMCID: PMC10617589 DOI: 10.1128/aem.00909-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.
Collapse
Affiliation(s)
- Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junxia Fan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lihua Yao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
6
|
Sun A, Wang WX. Insights into the kinetic regulation of Zn bioaccumulation at trace levels: Lighting up Saccharomycescerevisiae. CHEMOSPHERE 2022; 308:136318. [PMID: 36075365 DOI: 10.1016/j.chemosphere.2022.136318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Zn displays a double-edged effect by acting both as a micronutrient and a toxic metal, and quantitative analysis of its kinetic flux under low environmental concentrations is critical to understand its intracellular regulation. In the present study, we employed a Zn sensitive model eukaryote, the yeast Saccharomyces cerevisiae, which responded to intracellular Zn levels by increasing its autofluorescence, to quantify Zn influx, transportation between labile and storage pools, and efflux under different Zn exposure levels (<1 μM). We demonstrated that the yeast regulated Zn uptake from the extracellular source by a gradually decreased accumulation following an initial high accumulation rate. The subsequent reduced accumulation rate resulted in a steady-state Zn accumulation at 0.061 and 0.073 μg Zn/μg P as the threshold values for the control yeast and Zn-depleted yeast, respectively, independently of the extracellular Zn concentration. Compared with the control yeast, the Zn-depleted yeast possessed a higher accumulation rate, but the difference of bioaccumulation was maintained at approximately 0.01 μg Zn/μg P under different concentrations of extracellular Zn. In contrast, transportation between labile Zn and storage Zn pools or Zn efflux to the extracellular environment was not obvious after Zn exposure, indicating that the Zn dose was below a basal requirement. Such stabilized Zn accumulation was only induced by controlling the Zn influx at the bio-interface. With the novel monitoring of the kinetic changes of autofluorescence, our study demonstrated a remarkably tight Zn regulation system in yeast, providing enlightenment for Zn homeostasis in eukaryotes under low Zn exposure in aqueous environments.
Collapse
Affiliation(s)
- Anqi Sun
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Chen HQ, Xing Q, Cheng C, Zhang MM, Liu CG, Champreda V, Zhao XQ. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance. Front Bioeng Biotechnol 2022; 10:837813. [PMID: 35402407 PMCID: PMC8992792 DOI: 10.3389/fbioe.2022.837813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
Collapse
Affiliation(s)
- Hong-Qi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Haidara N, Giannini M, Porrua O. Modulated termination of non-coding transcription partakes in the regulation of gene expression. Nucleic Acids Res 2022; 50:1430-1448. [PMID: 35037029 PMCID: PMC8860598 DOI: 10.1093/nar/gkab1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pervasive transcription is a universal phenomenon leading to the production of a plethora of non-coding RNAs. If left uncontrolled, pervasive transcription can be harmful for genome expression and stability. However, non-coding transcription can also play important regulatory roles, for instance by promoting the repression of specific genes by a mechanism of transcriptional interference. The efficiency of transcription termination can strongly influence the regulatory capacity of non-coding transcription events, yet very little is known about the mechanisms modulating the termination of non-coding transcription in response to environmental cues. Here, we address this question by investigating the mechanisms that regulate the activity of the main actor in termination of non-coding transcription in budding yeast, the helicase Sen1. We identify a phosphorylation at a conserved threonine of the catalytic domain of Sen1 and we provide evidence that phosphorylation at this site reduces the efficiency of Sen1-mediated termination. Interestingly, we find that this phosphorylation impairs termination at an unannotated non-coding gene, thus repressing the expression of a downstream gene encoding the master regulator of Zn homeostasis, Zap1. Consequently, many additional genes exhibit an expression pattern mimicking conditions of Zn excess, where ZAP1 is naturally repressed. Our findings provide a novel paradigm of gene regulatory mechanism relying on the direct modulation of non-coding transcription termination.
Collapse
Affiliation(s)
- Nouhou Haidara
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France.,Université Paris-Saclay, Gif sur Yvette, France
| | - Marta Giannini
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Odil Porrua
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
9
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
10
|
Brawley HN, Lindahl PA. Low-molecular-mass labile metal pools in Escherichia coli: advances using chromatography and mass spectrometry. J Biol Inorg Chem 2021; 26:479-494. [PMID: 33963934 PMCID: PMC8205893 DOI: 10.1007/s00775-021-01864-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Labile low-molecular-mass (LMM) transition metal complexes play essential roles in metal ion trafficking, regulation, and signalling in biological systems, yet their chemical identities remain largely unknown due to their rapid ligand-exchange rates and weak M-L bonds. Here, an Escherichia coli cytosol isolation procedure was developed that was devoid of detergents, strongly coordinating buffers, and EDTA. The interaction of the metal ions from these complexes with a SEC column was minimized by pre-loading the column with 67ZnSO4 and then monitoring 66Zn and other metals by inductively coupled plasma mass spectrometry (ICP-MS) when investigating cytosolic ultrafiltration flow-through-solutions (FTSs). Endogenous cytosolic salts suppressed ESI-MS signals, making the detection of metal complexes difficult. FTSs contained ca. 80 µM Fe, 15 µM Ni, 13 µM Zn, 10 µM Cu, and 1.4 µM Mn (after correcting for dilution during cytosol isolation). FTSs exhibited 2-5 Fe, at least 2 Ni, 2-5 Zn, 2-4 Cu, and at least 2 Mn species with apparent masses between 300 and 5000 Da. Fe(ATP), Fe(GSH), and Zn(GSH) standards were passed through the column to assess their presence in FTS. Major LMM sulfur- and phosphorus-containing species were identified. These included reduced and oxidized glutathione, methionine, cysteine, orthophosphate, and common mono- and di-nucleotides such as ATP, ADP, AMP, and NADH. FTSs from cells grown in media supplemented with one of these metal salts exhibited increased peak intensity for the supplemented metal indicating that the size of the labile metal pools in E. coli is sensitive to the concentration of nutrient metals.
Collapse
Affiliation(s)
- Hayley N Brawley
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Zrg1, a cryptococcal protein associated with regulation of growth in nutrient deprivation conditions. Genomics 2021; 113:805-814. [PMID: 33529779 DOI: 10.1016/j.ygeno.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Cryptococcus gattii is one of the causes of cryptococcosis, a life-threatening disease generally characterized by pneumonia and/or meningitis. Zinc is an essential element for life, being required for the activity of many proteins with catalytic and structural roles. Here, we characterize ZRG1 (zinc-related gene 1), which codes a product involved in zinc metabolism. Transcriptional profiling revealed that zinc availability regulated the expression of ZRG1, and its null mutants demonstrated impaired growth in zinc- and nitrogen-limiting conditions. Moreover, zrg1 strains displayed alterations in the expression of the zinc homeostasis-related genes ZAP1 and ZIP1. Notably, cryptococcal cells lacking Zrg1 displayed upregulation of autophagy-like phenotypes. Despite no differences were detected in the classical virulence-associated traits; cryptococcal cells lacking ZRG1 displayed decreased capacity for survival inside macrophages and attenuated virulence in an invertebrate model. Together, these results indicate that ZRG1 plays an important role in proper zinc metabolism, and is necessary for cryptococcal fitness and virulence.
Collapse
|
12
|
Assunção LDP, Moraes D, Soares LW, Silva-Bailão MG, de Siqueira JG, Baeza LC, Báo SN, Soares CMDA, Bailão AM. Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Front Cell Infect Microbiol 2020; 10:573097. [PMID: 33330123 PMCID: PMC7734293 DOI: 10.3389/fcimb.2020.573097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.
Collapse
Affiliation(s)
- Leandro do Prado Assunção
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Dayane Moraes
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lucas Weba Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Mirelle Garcia Silva-Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Janaina Gomes de Siqueira
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lilian Cristiane Baeza
- Laboratory of Experimental Microbiology, State University of Western Paraná (Unioeste), Cascavel, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Institute of Biological Sciences, Brasília University (UnB), Brasilia, Brazil
| | - Célia Maria de Almeida Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Alexandre Melo Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| |
Collapse
|
13
|
Wessels I, Fischer HJ, Rink L. Update on the multi-layered levels of zinc-mediated immune regulation. Semin Cell Dev Biol 2020; 115:62-69. [PMID: 33323322 DOI: 10.1016/j.semcdb.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022]
Abstract
The significance of zinc for an efficient immune response is well accepted. During zinc deficiency, an increase in the myeloid to lymphoid immune cells ratio was observed. This results in a disturbed balance of pro- and anti-inflammatory processes as well as defects in tolerance during infections. Consequently, instead of efficiently defending the body against invading pathogens, damage of host cells is frequently observed. This explains the increased susceptibility to infections and their severe progression observed for zinc deficient individuals as well as the association of autoimmune diseases with low serum zinc levels. Together with the advances in techniques for investigating cellular development, communication and intracellular metabolism, our understanding of the mechanisms underlying the benefits of zinc for human health and the detriments of zinc deficiency has much improved. As analyses of the zinc status and effects of zinc supplementation were more frequently included into clinical studies, our knowledge of the association of zinc deficiency to a variety of diseases was strongly improved. Still there are several areas in zinc biology that require further in-depth investigation such as the interaction with other nutritional elements, the direct association between zinc transportation, membrane-structure, receptors, and signaling as well as its role in cell degeneration. This article will describe our current understanding of the role of zinc during the immune response focusing on the most recent findings and underlying mechanisms. Research questions that need to be addressed in the future will be discussed as well.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Henrike J Fischer
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
15
|
García‐Béjar B, Owens RA, Briones A, Arévalo‐Villena M. Differential distribution and proteomic response of
Saccharomyces cerevisiae
and non‐model yeast species to zinc. Environ Microbiol 2020; 22:4633-4646. [DOI: 10.1111/1462-2920.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Beatriz García‐Béjar
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - Rebecca A. Owens
- Department of Biology Maynooth University Maynooth Co. Kildare Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - María Arévalo‐Villena
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| |
Collapse
|
16
|
Glycerol transporter 1 (Gt1) and zinc-regulated transporter 1 (Zrt1) function in different modes for zinc homeostasis in Komagataella phaffii (Pichia pastoris). Biotechnol Lett 2020; 42:2413-2423. [PMID: 32661657 DOI: 10.1007/s10529-020-02964-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To identify the zinc transport function of the membrane proteins Gt1 and Zrt1 in Komagataella phaffii (Pichia pastoris) and study their regulatory mode. RESULTS Two membrane proteins that might have zinc transport function were found in K. phaffii. GT1 was known to encode a glycerol transporter belonging to the Major Facilitator Superfamily. ZRT1 was predicted to resemble the zinc transporter gene in Saccharomyces cerevisiae. Consistent with the prediction, protein plasma-membrane localizations were confirmed by ultracentrifugation and confocal microscopy. Their zinc binding abilities were identified by ITC in vitro, and the impaired zinc uptake activity caused by their deficiencies was confirmed by zinc fluorescence quantification in vivo. Furthermore, zinc excess could turn the two channels off, while zinc deficiency induced their expressions. Gt1 could only function to maintain zinc homeostasis in glycerol, while the block of Gt1 function might lead to Zrt1 upregulation in glucose. CONCLUSIONS The zinc transport capabilities of Gt1 and Zrt1 were identified in vivo and in vitro. Their regulatory mode to maintain zinc homeostasis in K. phaffii is a new inspiration.
Collapse
|
17
|
Ruytinx J, Kafle A, Usman M, Coninx L, Zimmermann SD, Garcia K. Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:479-488. [PMID: 31836620 PMCID: PMC7003084 DOI: 10.1534/g3.119.400933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zinc is essential for almost all living organisms, since it serves as a crucial cofactor for transcription factors and enzymes. However, it is toxic to cell growth when present in excess. The present work aims to investigate the toxicity mechanisms induced by zinc stress in yeast cells. To this end, 108 yeast single-gene deletion mutants were identified sensitive to 6 mM ZnCl2 through a genome-wide screen. These genes were predominantly related to the biological processes of vacuolar acidification and transport, polyphosphate metabolic process, cytosolic transport, the process utilizing autophagic mechanism. A result from the measurement of intracellular zinc content showed that 64 mutants accumulated higher intracellular zinc under zinc stress than the wild-type cells. We further measured the intracellular ROS (reactive oxygen species) levels of 108 zinc-sensitive mutants treated with 3 mM ZnCl2. We showed that the intracellular ROS levels in 51 mutants were increased by high zinc stress, suggesting their possible involvement in regulating ROS homeostasis in response to high zinc. The results also revealed that excess zinc could generate oxidative damage and then activate the expression of several antioxidant defenses genes. Taken together, the data obtained indicated that excess zinc toxicity might be mainly due to the high intracellular zinc levels and ROS levels induced by zinc stress in yeast cells. Our current findings would provide a basis to understand the molecular mechanisms of zinc toxicity in yeast cells.
Collapse
|
19
|
López‐Berges MS. ZafA-mediated regulation of zinc homeostasis is required for virulence in the plant pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2020; 21:244-249. [PMID: 31750619 PMCID: PMC6988419 DOI: 10.1111/mpp.12891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During infection, soilborne fungal pathogens face limiting conditions of different metal ions, including zinc. The role of zinc homeostasis in fungal pathogenicity on plants remains poorly understood. Here it is shown that the transcription factor ZafA, orthologous to Saccharomyces cerevisiae Zap1, functions as a key regulator of zinc homeostasis and virulence in Fusarium oxysporum, a cross-kingdom pathogen that causes vascular wilt on more than 100 plant species and opportunistic infections in humans. Expression of zafA is induced under zinc-limiting conditions and repressed by zinc. Interestingly, zafA is markedly up-regulated during early stages of plant infection, suggesting that F. oxysporum must cope with limited availability of zinc. Deletion of zafA results in deactivation of high-affinity zinc transporters, leading to impaired growth under zinc deficiency. Fusarium oxysporum strains lacking ZafA are reduced in their capability to invade and kill tomato plants and the non-vertebrate animal model Galleria mellonella. Collectively, the results indicate that ZafA-mediated adaptation to zinc deficiency is required for full virulence of F. oxysporum on plant and animal hosts.
Collapse
Affiliation(s)
- Manuel S. López‐Berges
- Departamento de GenéticaCampus de Excelencia Internacional Agroalimentario (ceiA3)Universidad de Córdoba14071CórdobaSpain
| |
Collapse
|
20
|
Jiang Z, Chen J, Li J, Cao B, Chen Y, Liu D, Wang X, Zhang Y. Exogenous Zn 2+ enhance the biodegradation of atrazine by regulating the chlorohydrolase gene trzN transcription and membrane permeability of the degrader Arthrobacter sp. DNS10. CHEMOSPHERE 2020; 238:124594. [PMID: 31445334 DOI: 10.1016/j.chemosphere.2019.124594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Enhancing the biodegradation efficiency of atrazine, a kind of commonly applied herbicide, has been attracted much more concern. Here, Zn2+ which has long been considered essential in adjusting cell physiological status was selected to investigate its role on the biodegradation of atrazine by Arthrobacter sp. DNS10 as well as the transmembrane transport of atrazine during the biodegradation period. The results of gas chromatography showed that the atrazine removal percentages (initial concentration was 100 mg L-1) in 0.05 mM Zn2+ and 1.0 mM Zn2+ treatments were 94.42% and 86.02% respectively at 48 h, while there was also 66.43% of atrazine left in the treatment without exogenous Zn2+ existence. The expression of atrazine chlorohydrolase gene trzN in the strain DNS10 cultured with 0.05 mM and 1.0 mM Zn2+ was 7.30- and 4.67- times respectively compared with that of the non-zinc treatment. In addition, the flow cytometry test suggests that 0.05 mM of Zn2+ could better adjust the membrane permeability of strain DNS10, meanwhile, the amount of atrazine accumulation in the strain DNS10 co-cultured with this level Zn2+ was 2.21 times of that of the strain without Zn2+. This study may facilitate a better understanding of the mechanisms that exogenous Zn2+ enhances the biodegradation of atrazine by Arthrobacter sp. DNS10.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianing Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaojiao Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yukun Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Di Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xinxin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
21
|
Wilson S, Liu YH, Cardona-Soto C, Wadhwa V, Foster MP, Bird AJ. The Loz1 transcription factor from Schizosaccharomyces pombe binds to Loz1 response elements and represses gene expression when zinc is in excess. Mol Microbiol 2019; 112:1701-1717. [PMID: 31515876 PMCID: PMC6904500 DOI: 10.1111/mmi.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2019] [Indexed: 12/14/2022]
Abstract
In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.
Collapse
Affiliation(s)
- Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
| | - Yi-Hsuan Liu
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Carlos Cardona-Soto
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Vibhuti Wadhwa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Amanda J. Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
22
|
Coninx L, Smisdom N, Kohler A, Arnauts N, Ameloot M, Rineau F, Colpaert JV, Ruytinx J. SlZRT2 Encodes a ZIP Family Zn Transporter With Dual Localization in the Ectomycorrhizal Fungus Suillus luteus. Front Microbiol 2019; 10:2251. [PMID: 31681189 PMCID: PMC6797856 DOI: 10.3389/fmicb.2019.02251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are important root symbionts of trees, as they can have significant effects on the nutrient status of plants. In polluted environments, particular ECM fungi can protect their host tree from Zn toxicity by restricting the transfer of Zn while securing supply of essential nutrients. However, mechanisms and regulation of cellular Zn homeostasis in ECM fungi are largely unknown, and it remains unclear how ECM fungi affect the Zn status of their host plants. This study focuses on the characterization of a ZIP (Zrt/IrtT-like protein) transporter, SlZRT2, in the ECM fungus Suillus luteus, a common root symbiont of young pine trees. SlZRT2 is predicted to encode a plasma membrane-located Zn importer. Heterologous expression of SlZRT2 in yeast mutants with impaired Zn uptake resulted in a minor impact on cellular Zn accumulation and growth. The SlZRT2 gene product showed a dual localization and was detected at the plasma membrane and perinuclear region. S. luteus ZIP-family Zn uptake transporters did not show the potential to induce trehalase activity in yeast and to function as Zn sensors. In response to excess environmental Zn, gene expression analysis demonstrated a rapid but minor and transient decrease in SlZRT2 transcript level. In ECM root tips, the gene is upregulated. Whether this regulation is due to limited Zn availability at the fungal-plant interface or to developmental processes is unclear. Altogether, our results suggest a function for SlZRT2 in cellular Zn redistribution from the ER next to a putative role in Zn uptake in S. luteus.
Collapse
Affiliation(s)
- Laura Coninx
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Nick Smisdom
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Annegret Kohler
- Laboratoire d’Excellence ARBRE, Institut National de la Recherche Agronomique, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, France
| | - Natascha Arnauts
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - François Rineau
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Jan V. Colpaert
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
23
|
Hu YM, Boehm DM, Chung H, Wilson S, Bird AJ. Zinc-dependent activation of the Pho8 alkaline phosphatase in Schizosaccharomyces pombe. J Biol Chem 2019; 294:12392-12404. [PMID: 31239353 PMCID: PMC6699849 DOI: 10.1074/jbc.ra119.007371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Genome-wide analyses have revealed that during metal ion starvation, many cells undergo programmed changes in their transcriptome or proteome that lower the levels of abundant metalloproteins, conserving metal ions for more critical functions. Here we investigated how changes in cellular zinc status affect the expression and activity of the zinc-requiring Pho8 alkaline phosphatase from fission yeast (Schizosaccharomyces pombe). In S. pombe, Pho8 is a membrane-tethered and processed glycoprotein that resides in the vacuole. Using alkaline phosphatase activity assays along with various biochemical analyses, we found that Pho8 is active when zinc is plentiful and inactive when zinc is limited. Although Pho8 activity depended on zinc, we also found that higher levels of pho8 mRNAs and Pho8 protein accumulate in zinc-deficient cells. To gain a better understanding of the inverse relationship between pho8 mRNA levels and Pho8 activity, we examined the effects of zinc on the stability and processing of the Pho8 protein. We show that Pho8 is processed regardless of zinc status and that mature Pho8 accumulates under all conditions. We also noted that alkaline phosphatase activity is rapidly restored when zinc is resupplied to cells, even in the presence of the protein synthesis inhibitor cycloheximide. Our results suggest that S. pombe cells maintain inactive pools of Pho8 proteins under low-zinc conditions and that these pools facilitate rapid restoration of Pho8 activity when zinc ions become available.
Collapse
Affiliation(s)
- Ya-Mei Hu
- Department of Human Nutrition, Ohio State University, Columbus, Ohio 43210
| | - Derek M Boehm
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Hak Chung
- Ohio State University Interdisciplinary Nutrition Program, Ohio State University, Columbus, Ohio 43210
| | - Stevin Wilson
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio 43210; Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210; Center for RNA Biology, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
24
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
25
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
26
|
Ohtsuka H, Aiba H. Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Res 2018; 17:4085637. [PMID: 28934413 DOI: 10.1093/femsyr/fox066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Ecl1 family genes are conserved among yeast, in which their overexpression extends chronological lifespan. Ecl1 family genes were first identified in the fission yeast Schizosaccharomyces pombe; at the time, they were considered noncoding RNA owing to their short coding sequence of fewer than 300 base pairs. Schizosaccharomyces pombe carries three Ecl1 family genes, ecl1+, ecl2+ and ecl3+, whereas Saccharomyces cerevisiae has one, ECL1. Their overexpression extends chronological lifespan, increases oxidative stress resistance and induces sexual development in fission yeast. A recent study indicated that Ecl1 family genes play a significant role in responding to environmental zinc or sulfur depletion. In this review, we focus on Ecl1 family genes in fission yeast and describe the relationship between nutritional depletion and cellular output, as the latter depends on Ecl1 family genes. Furthermore, we present the roles and functions of Ecl1 family genes characterized to date.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Novel Zinc-Attenuating Compounds as Potent Broad-Spectrum Antifungal Agents with In Vitro and In Vivo Efficacy. Antimicrob Agents Chemother 2018; 62:AAC.02024-17. [PMID: 29439980 PMCID: PMC5923171 DOI: 10.1128/aac.02024-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/04/2018] [Indexed: 12/23/2022] Open
Abstract
An increase in the incidence of rare but hard-to-treat invasive fungal pathogens as well as resistance to the currently available antifungal drugs calls for new broad-spectrum antifungals with a novel mechanism of action. Here we report the identification and characterization of two novel zinc-attenuating compounds, ZAC307 and ZAC989, which exhibit broad-spectrum in vitro antifungal activity and in vivo efficacy in a fungal kidney burden candidiasis model. The compounds were identified serendipitously as part of a drug discovery process aimed at finding novel inhibitors of the fungal plasma membrane proton ATPase Pma1. Based on their structure, we hypothesized that they might act as zinc chelators. Indeed, both fluorescence-based affinity determination and potentiometric assays revealed these compounds, subsequently termed zinc-attenuating compounds (ZACs), to have strong affinity for zinc, and their growth inhibitory effects on Candida albicans and Aspergillus fumigatus could be inactivated by the addition of exogenous zinc to fungal growth media. We determined the ZACs to be fungistatic, with a low propensity for resistance development. Gene expression analysis suggested that the ZACs interfere negatively with the expression of genes encoding the major components of the A. fumigatus zinc uptake system, thus supporting perturbance of zinc homeostasis as the likely mode of action. With demonstrated in vitro and in vivo antifungal activity, low propensity for resistance development, and a novel mode of action, the ZACs represent a promising new class of antifungal compounds, and their advancement in a drug development program is therefore warranted.
Collapse
|
28
|
Kjellerup L, Winther AML, Wilson D, Fuglsang AT. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans. Front Microbiol 2018; 9:502. [PMID: 29619016 PMCID: PMC5871664 DOI: 10.3389/fmicb.2018.00502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/05/2018] [Indexed: 11/15/2022] Open
Abstract
Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen.
Collapse
Affiliation(s)
- Lasse Kjellerup
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Pcovery ApS, Copenhagen, Denmark
| | | | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom
| | - Anja T Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
29
|
Choi S, Hu YM, Corkins ME, Palmer AE, Bird AJ. Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS Genet 2018. [PMID: 29529046 PMCID: PMC5864093 DOI: 10.1371/journal.pgen.1007262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have well characterized roles in transporting zinc into the lumens of intracellular compartments, relatively little is known about the mechanisms that maintain organelle zinc homeostasis. The fission yeast Schizosaccharomyces pombe is a useful model system to study organelle zinc homeostasis as it expresses three CDF family members that transport zinc out of the cytosol into intracellular compartments: Zhf1, Cis4, and Zrg17. Zhf1 transports zinc into the endoplasmic reticulum, and Cis4 and Zrg17 form a heterodimeric complex that transports zinc into the cis-Golgi. Here we have used the high and low affinity ZapCY zinc-responsive FRET sensors to examine cytosolic zinc levels in yeast mutants that lack each of these CDF proteins. We find that deletion of cis4 or zrg17 leads to higher levels of zinc accumulating in the cytosol under conditions of zinc deficiency, whereas deletion of zhf1 results in zinc accumulating in the cytosol when zinc is not limiting. We also show that the expression of cis4, zrg17, and zhf1 is independent of cellular zinc status. Taken together our results suggest that the Cis4/Zrg17 complex is necessary for zinc transport out of the cytosol under conditions of zinc-deficiency, while Zhf1 plays the dominant role in removing zinc from the cytosol when labile zinc is present. We propose that the properties and/or activities of individual CDF family members are fine-tuned to enable cells to control the flux of zinc out of the cytosol over a broad range of environmental zinc stress.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Ya-Mei Hu
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E Corkins
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Amanda J Bird
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
30
|
Engel SR, Skrzypek MS, Hellerstedt ST, Wong ED, Nash RS, Weng S, Binkley G, Sheppard TK, Karra K, Cherry JM. Updated regulation curation model at the Saccharomyces Genome Database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4913686. [PMID: 29688362 PMCID: PMC5829562 DOI: 10.1093/database/bay007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
The Saccharomyces Genome Database (SGD) provides comprehensive, integrated biological information for the budding yeast Saccharomyces cerevisiae, along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms. We have recently expanded our data model for regulation curation to address regulation at the protein level in addition to transcription, and are presenting the expanded data on the ‘Regulation’ pages at SGD. These pages include a summary describing the context under which the regulator acts, manually curated and high-throughput annotations showing the regulatory relationships for that gene and a graphical visualization of its regulatory network and connected networks. For genes whose products regulate other genes or proteins, the Regulation page includes Gene Ontology enrichment analysis of the biological processes in which those targets participate. For DNA-binding transcription factors, we also provide other information relevant to their regulatory function, such as DNA binding site motifs and protein domains. As with other data types at SGD, all regulatory relationships and accompanying data are available through YeastMine, SGD’s data warehouse based on InterMine. Database URL: http://www.yeastgenome.org
Collapse
Affiliation(s)
- Stacia R Engel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Marek S Skrzypek
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Edith D Wong
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gail Binkley
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Travis K Sheppard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kalpana Karra
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Bird AJ, Labbé S. The Zap1 transcriptional activator negatively regulates translation of the RTC4 mRNA through the use of alternative 5' transcript leaders. Mol Microbiol 2017; 106:673-677. [PMID: 28971534 PMCID: PMC5705029 DOI: 10.1111/mmi.13856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
The zinc-responsive transcription activator Zap1 plays a central role in zinc homeostasis in the budding yeast Saccharomyces cerevisiae. In zinc-deficient cells, Zap1 binds to zinc responsive elements in target gene promoters and activates gene expression. In most cases, Zap1-dependent gene activation results in increased levels of mRNAs and proteins. However, Zap1-dependent activation of RTC4 results in increased levels of the RTC4 mRNA and decreased levels of the Rtc4 protein. This atypical regulation results from Zap1-mediated changes in the transcriptional start site for RTC4 and the production of a RTC4 transcript with a longer 5' leader. This long RTC4 transcript contains small upstream open reading frames that prevent translation of the downstream RTC4 ORF. The new studies with Zap1 highlight how a transcriptional activator can facilitate decreased protein expression.
Collapse
Affiliation(s)
- Amanda J. Bird
- Departments of Human Nutrition and Molecular Genetics, The Ohio State University, 1787 Neil Avenue, Columbus, OH, 43210, United States
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Pavillon Z-8, 3201, Jean Mignault, Sherbrooke (QC) J1E 4K8 Canada
| |
Collapse
|
32
|
Malavia D, Lehtovirta-Morley LE, Alamir O, Weiß E, Gow NAR, Hube B, Wilson D. Zinc Limitation Induces a Hyper-Adherent Goliath Phenotype in Candida albicans. Front Microbiol 2017; 8:2238. [PMID: 29184547 PMCID: PMC5694484 DOI: 10.3389/fmicb.2017.02238] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
Pathogenic microorganisms often face acute micronutrient limitation during infection due to the action of host-mediated nutritional immunity. The human fungal pathogen Candida albicans is polymorphic and its morphological plasticity is one of its most widely recognized pathogenicity attributes. Here we investigated the effect of zinc, iron, manganese, and copper limitation on C. albicans morphology. Restriction of zinc specifically resulted in the formation of enlarged, spherical yeasts, a phenotype which we term Goliath cells. This cellular response to zinc restriction was conserved in C. albicans, C. dubliniensis and C. tropicalis, but not in C. parapsilosis, C. lusitaniae or Debaryomyces hansenii, suggesting that it may have emerged in the last common ancestor of these related pathogenic species. Cell wall analysis revealed proportionally more chitin exposure on the Goliath cell surface. Importantly, these cells were hyper-adherent, suggesting a possible role in pathogenicity. Interestingly, the zincophore-encoding gene PRA1 was expressed by Goliath cells in zinc limited media and lack of Pra1 inhibited both cellular enlargement and adhesion. Goliath cells represent a further layer of Candida phenotypic plasticity.
Collapse
Affiliation(s)
- Dhara Malavia
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom
| | - Laura E Lehtovirta-Morley
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Omran Alamir
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom
| | - Elisabeth Weiß
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital, Jena, Germany.,Institute of Microbiology, Microbial Pathogenicity, Friedrich Schiller University, Jena, Germany
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Aberdeen, United Kingdom
| |
Collapse
|
33
|
Corkins ME, Wilson S, Cocuron JC, Alonso AP, Bird AJ. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast. J Biol Chem 2017; 292:13823-13832. [PMID: 28667014 DOI: 10.1074/jbc.m117.798488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Glycolysis and the pentose phosphate pathway both play a central role in the degradation of glucose in all domains of life. Another metabolic route that can facilitate glucose breakdown is the gluconate shunt. In this shunt glucose dehydrogenase and gluconate kinase catalyze the two-step conversion of glucose into the pentose phosphate pathway intermediate 6-phosphogluconate. Despite the presence of these enzymes in many organisms, their only established role is in the production of 6-phosphogluconate for the Entner-Doudoroff pathway. In this report we performed metabolic profiling on a strain of Schizosaccharomyces pombe lacking the zinc-responsive transcriptional repressor Loz1 with the goal of identifying metabolic pathways that were altered by cellular zinc status. This profiling revealed that loz1Δ cells accumulate higher levels of gluconate. We show that the altered gluconate levels in loz1Δ cells result from increased expression of gcd1 By analyzing the activity of recombinant Gcd1 in vitro and by measuring gluconate levels in strains lacking enzymes of the gluconate shunt we demonstrate that Gcd1 encodes a novel NADP+-dependent glucose dehydrogenase that acts in a pathway with the Idn1 gluconate kinase. We also find that cells lacking gcd1 and zwf1, which encode the first enzyme in the pentose phosphate pathway, have a more severe growth phenotype than cells lacking zwf1 We propose that in S. pombe Gcd1 and Idn1 act together to shunt glucose into the pentose phosphate pathway, creating an alternative route for directing glucose into the pentose phosphate pathway that bypasses hexokinase and the rate-limiting enzyme glucose-6-phosphate dehydrogenase.
Collapse
Affiliation(s)
| | | | | | - Ana P Alonso
- From the Department of Molecular Genetics.,Center for Applied Plant Sciences
| | - Amanda J Bird
- From the Department of Molecular Genetics, .,Department of Human Nutrition, and.,the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Schothorst J, Zeebroeck GV, Thevelein JM. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:74-89. [PMID: 28357393 PMCID: PMC5349193 DOI: 10.15698/mic2017.03.561] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple types of nutrient transceptors, membrane proteins that combine a
transporter and receptor function, have now been established in a variety of
organisms. However, so far all established transceptors utilize one of the
macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate,
as substrate. This is also true for the Saccharomyces
cerevisiae transceptors mediating activation of the PKA pathway
upon re-addition of a macronutrient to glucose-repressed cells starved for that
nutrient, re-establishing a fermentable growth medium. We now show that the
yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter
Zrt1 function as transceptors for the micronutrients iron and zinc.
We show that replenishment of iron to iron-starved cells or zinc to
zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase
activity, a well-established PKA target. The activation with iron is dependent
on Ftr1 and with zinc on Zrt1, and we show that it is independent of
intracellular iron and zinc levels. Similar to the transceptors for
macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc
starvation, respectively, and they are rapidly downregulated by
substrate-induced endocytosis. Our results suggest that transceptor-mediated
signaling to the PKA pathway may occur in all cases where glucose-repressed
yeast cells have been starved first for an essential nutrient, causing arrest of
growth and low activity of the PKA pathway, and subsequently replenished with
the lacking nutrient to re-establish a fermentable growth medium. The broadness
of the phenomenon also makes it likely that nutrient transceptors use a common
mechanism for signaling to the PKA pathway.
Collapse
Affiliation(s)
- Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet V Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
35
|
|
36
|
The roles of zinc and copper sensing in fungal pathogenesis. Curr Opin Microbiol 2016; 32:128-134. [PMID: 27327380 PMCID: PMC4992176 DOI: 10.1016/j.mib.2016.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Zinc and copper are essential trace elements required for cell function. Nutrient Immunity restricts zinc and copper access and mediates toxicity. Divergent fungi integrate zinc and copper responsive regulons for pathogenesis.
All organisms must secure essential trace nutrients, including iron, zinc, manganese and copper for survival and proliferation. However, these very nutrients are also highly toxic if present at elevated levels. Mammalian immunity has harnessed both the essentiality and toxicity of micronutrients to defend against microbial invasion — processes known collectively as ‘nutritional immunity’. Therefore, pathogenic microbes must possess highly effective micronutrient assimilation and detoxification mechanisms to survive and proliferate within the infected host. In this review we compare and contrast the micronutrient homeostatic mechanisms of Cryptococcus and Candida — yeasts which, despite ancient evolutionary divergence, account for over a million life-threatening infections per year. We focus on two emerging arenas within the host–pathogen battle for essential trace metals: adaptive responses to zinc limitation and copper availability.
Collapse
|