1
|
Zhou Q, Fransen A, de Winde H. Lignin-Degrading Enzymes and the Potential of Pseudomonas putida as a Cell Factory for Lignin Degradation and Valorization. Microorganisms 2025; 13:935. [PMID: 40284771 PMCID: PMC12029670 DOI: 10.3390/microorganisms13040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Efficient utilization of lignin, a complex polymer in plant cell walls, is one of the key strategies for developing a green and sustainable bioeconomy. However, bioconversion of lignin poses a significant challenge due to its recalcitrant nature. Microorganisms, particularly fungi and bacteria, play a crucial role in lignin biodegradation, using various enzymatic pathways. Among bacteria, Pseudomonas putida is considered a promising host for lignin degradation and valorization, due to its robust and flexible metabolism and its tolerance to many noxious and toxic compounds. This review explores the various mechanisms of lignin breakdown by microorganisms, with a focus on P. putida's metabolic versatility and genetic engineering potential. By leveraging advanced genetic tools and metabolic pathway optimization, P. putida can be engineered to efficiently convert lignin into valuable bioproducts, offering sustainable solutions for lignin valorization in industrial applications.
Collapse
Affiliation(s)
| | | | - Han de Winde
- Department of Molecular Biotechnology, Institute for Biology, Leiden University, 2333 BE Leiden, The Netherlands; (Q.Z.); (A.F.)
| |
Collapse
|
2
|
Kim D, Kim M, Kim HW, Kim E, Lee H. Kraft lignin decomposition by lignin-derived aromatic compound degrader Rhodococcus sp. DK17. World J Microbiol Biotechnol 2025; 41:127. [PMID: 40189716 DOI: 10.1007/s11274-025-04350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Rhodococcus sp. DK17 has been previously isolated from oil-contaminated soil and studied for its ability to degrade various monocyclic alkylbenzenes. This study investigated the decomposition of kraft lignin (genes, enzymes, and metabolic pathways) by DK17, using whole-genome sequencing data, as a potential biocatalyst for biotechnological lignin valorization. DK17 used kraft lignin and its main degradative metabolites, such as vanillin and vanillic acid, as growth substrates. High-performance liquid chromatography revealed that DK17 converted dehydrodivanillin (a representative lignin model compound). Quantitative polymerase chain reaction of mRNAs from DK17 cells induced in the presence of lignin showed that the putative genes coding for two copies of dye-decolorizing peroxidases (dypB1 and dypB2) were upregulated 1.6- and 2.4-fold after 5 and 24 h of induction, respectively, compared with glucose-induced cells. Vanillic acid induced dypB1 and dypB2 at lower levels than lignin by 1.4- and 1.6-fold after 5 and 24 h of induction, respectively. Computational homology analysis using the DypB1 and DypB2 protein sequences also predicted their initial roles in lignin decomposition. The duplicated dyp genes are believed to allow DK17 to achieve prolonged and continuous initial lignin decomposition, cleaving C-C and C-O-C linkages in the main lignin structure, the arylglycerol-β-aryl ether. Based on the above data, DK17 appears to initiate oxidative lignin decomposition using DyPs, producing smaller metabolites, such as vanillin and vanillic acid, which could be accumulated as value-added bioproducts (in metabolically engineered mutant strains) or further degraded for cell growth (in wild-type strains) via an ortho-ring cleavage pathway.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea.
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Han-Woo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| |
Collapse
|
3
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
Kim D, Kim HW, Lee H. Kraft Lignin Decomposition by Forest Soil Bacterium Pseudomonas kribbensis CHA-19. J Microbiol Biotechnol 2024; 34:1867-1875. [PMID: 39155396 PMCID: PMC11485676 DOI: 10.4014/jmb.2406.06021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024]
Abstract
Identification of the biochemical metabolic pathway for lignin decomposition and the responsible degradative enzymes is needed for the effective biotechnological valorization of lignin to renewable chemical products. In this study, we investigated the decomposition of kraft lignin by the soil bacterium Pseudomonas kribbensis CHA-19, a strain that can utilize kraft lignin and its main degradation metabolite, vanillic acid, as growth substrates. Gel permeation chromatography revealed that CHA-19 decomposed polymeric lignin and degraded dehydrodivanillin (a representative lignin model compound); however, the degradative enzyme(s) and mechanism were not identified. Quantitative polymerase chain reaction with mRNAs from CHA-19 cells induced in the presence of lignin showed that the putative genes coding for two laccase-like multicopper oxidases (LMCOs) and three dye-decolorizing peroxidases (DyPs) were upregulated by 2.0- to 7.9-fold compared with glucose-induced cells, which indicates possible cooperation with multiple enzymes for lignin decomposition. Computational homology analysis of the protein sequences of LMCOs and DyPs also predicted their roles in lignin decomposition. Based on the above data, CHA-19 appears to initiate oxidative lignin decomposition using multifunctional LMCOs and DyPs, producing smaller metabolites such as vanillic acid, which is further degraded via ortho- and meta-ring cleavage pathways. This study not only helps to better understand the role of bacteria in lignin decomposition and thus in terrestrial ecosystems, but also expands the biocatalytic toolbox with new bacterial cells and their degradative enzymes for lignin valorization.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Han-Woo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
5
|
Mo X, Huang Q, Chen C, Xia H, Riaz M, Liang X, Li J, Chen Y, Tan Q, Wu S, Hu C. Characteristics of Rhizosphere Microbiome, Soil Chemical Properties, and Plant Biomass and Nutrients in Citrus reticulata cv. Shatangju Exposed to Increasing Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:2344. [PMID: 39273828 PMCID: PMC11397084 DOI: 10.3390/plants13172344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
The prolonged utilization of copper (Cu)-containing fungicides results in Cu accumulation and affects soil ecological health. Thus, a pot experiment was conducted using Citrus reticulata cv. Shatangju with five Cu levels (38, 108, 178, 318, and 388 mg kg-1) to evaluate the impacts of the soil microbial processes, chemistry properties, and citrus growth. These results revealed that, with the soil Cu levels increased, the soil total Cu (TCu), available Cu (ACu), organic matter (SOM), available potassium (AK), and pH increased while the soil available phosphorus (AP) and alkali-hydrolyzable nitrogen (AN) decreased. Moreover, the soil extracellular enzyme activities related to C and P metabolism decreased while the enzymes related to N metabolism increased, and the expression of soil genes involved in C, N, and P cycling was regulated. Moreover, it was observed that tolerant microorganisms (e.g., p_Proteobacteria, p_Actinobacteria, g_Lysobacter, g_Sphingobium, f_Aspergillaceae, and g_Penicillium) were enriched but sensitive taxa (p_Myxococcota) were suppressed in the citrus rhizosphere. The citrus biomass was mainly positively correlated with soil AN and AP; plant N and P were mainly positively correlated with soil AP, AN, and acid phosphatase (ACP); and plant K was mainly negatively related with soil β-glucosidase (βG) and positively related with the soil fungal Shannon index. The dominant bacterial taxa p_Actinobacteriota presented positively correlated with the plant biomass and plant N, P, and K and was negatively correlated with plant Cu. The dominant fungal taxa p_Ascomycota was positively related to plant Cu but negatively with the plant biomass and plant N, P, and K. Notably, arbuscular mycorrhizal fungi (p_Glomeromycota) were positively related with plant P below soil Cu 108 mg kg-1, and pathogenic fungi (p_Mortierellomycota) was negatively correlated with plant K above soil Cu 178 mg kg-1. These findings provided a new perspective on soil microbes and chemistry properties and the healthy development of the citrus industry at increasing soil Cu levels.
Collapse
Affiliation(s)
- Xiaorong Mo
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qichun Huang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hao Xia
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei 230001, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaomin Liang
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinye Li
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilin Chen
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Edith Ayala-Rodríguez A, Valdés-Rodríguez S, Enrique Olalde-Mathieu V, Arias-Padró M, Reyes-Moreno C, Olalde-Portugal V. Extracellular ligninases production and lignin degradation by Paenibacillus polymyxa. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38104982 DOI: 10.2323/jgam.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacteria represent an attractive source for the isolation and identification of potentially useful microorganisms for lignin depolymerization, a process required for the use of agricultural waste. In this work, ten autochthonous bacteria isolated from straw, cow manure, and composts were characterized for potential use in the biodelignification of the waste. A comparison of the ability to degrade lignin and the efficiency of ligninolytic enzymes was performed in bacteria grown in media with lignin as a sole carbon source (LLM, 3.5g/L lignin-alkali) and in complex media supplemented with All-Ban fiber (FLM, 1.5g/L). Bacterial isolates showed different abilities to degrade lignin, they decreased the lignin concentration from 7.6 to 18.6% in LLM and from 11.1 to 44.8% in FLM. They also presented the activity of manganese peroxidase, lignin peroxidases, and laccases with different specific activities. However, strain 26 identified as Paenibacillus polymyxa by sequencing the 16S rRNA showed the highest activity of lignin peroxidase and the ability to degrade efficiently lignocellulose. In addition, P. polymyxa showed the highest potential (desirability ≥ 0.795) related to the best combination of properties to depolymerize lignin from biomass. The results suggest that P. polymyxa has a coordinated lignin degradation system constituted of lignin peroxidase, manganese peroxidase, and laccase enzymes.
Collapse
Affiliation(s)
- Ana Edith Ayala-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Silvia Valdés-Rodríguez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | | | - María Arias-Padró
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| |
Collapse
|
7
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
8
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
9
|
Chacόn M, Percival E, Bugg TDH, Dixon N. Engineered co-culture for consolidated production of phenylpropanoids directly from aromatic-rich biomass. BIORESOURCE TECHNOLOGY 2024; 391:129935. [PMID: 37923228 DOI: 10.1016/j.biortech.2023.129935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Consolidated bioprocesses for the in situ hydrolysis and conversion of biomass feedstocks into value-added products offers great potential for both process and cost reduction. However, to date few consolidated bioprocesses have been developed that target aromatic rich feedstock fractions. Reported here is the development of synthetic co-cultivation for the consolidated hydrolysis and valorisation of corncob hydroxycinnamic acids. Biomass hydrolysis was achieved via a secretion module developed in B. subtilis using a genetically encoded biosensor-actuator to secrete hydrolytic enzymes. Conversion was achieved via a biotransformation module developed in E. coli using a suite of plug-and-play encoded enzymes to convert the released hydroxycinnamic acids into high-value phenylpropanoid target compounds. Finally, employing cellulolytic pre-treatment, extractive fermentation and in situ product recovery multiple aromatic products, coniferol and chavicol, were isolated from the same process in high purity.
Collapse
Affiliation(s)
- Micaela Chacόn
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Ellen Percival
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AK, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
10
|
García-Laviña CX, Morel MA, García-Gabarrot G, Castro-Sowinski S. Phenotypic and resistome analysis of antibiotic and heavy metal resistance in the Antarctic bacterium Pseudomonas sp. AU10. Braz J Microbiol 2023; 54:2903-2913. [PMID: 37783937 PMCID: PMC10689667 DOI: 10.1007/s42770-023-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Resistance to antibiotics and heavy metals in Antarctic bacteria has been investigated due to anthropogenic impact on the continent. However, there is still much to learn about the genetic determinants of resistance in native bacteria. In this study, we investigated antibiotic, heavy metal, and metalloid resistance in Pseudomonas sp. AU10, isolated from King George Island (Antarctica), and analyzed its genome to look for all the associated genetic determinants (resistome). We found that AU10 displayed resistance to Cr(VI), Cu(II), Mn(II), Fe(II), and As(V), and produced an exopolysaccharide with high Cr(VI)-biosorption capacity. Additionaly, the strain showed resistance to aminopenicillins, cefotaxime, aztreonam, azithromycin, and intermediate resistance to chloramphenicol. Regarding the resistome, we did not find resistance genes in AU10's natural plasmid or in a prophage context. Only a copper resistance cluster indicated possible horizontal acquisition. The mechanisms of resistance found were mostly efflux systems, several sequestering proteins, and a few enzymes, such as an AmpC β-lactamase or a chromate reductase, which would account for the observed phenotypic profile. In contrast, the presence of a few gene clusters, including the terZABCDE operon for tellurite resistance, did not correlate with the expected phenotype. Despite the observed resistance to multiple antibiotics and heavy metals, the lack of resistance genes within evident mobile genetic elements is suggestive of the preserved nature of AU10's Antarctic habitat. As Pseudomonas species are good bioindicators of human impact in Antarctic environments, we consider that our results could help refine surveillance studies based on monitoring resistances and associated resistomes in these populations.
Collapse
Affiliation(s)
- César X García-Laviña
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - María A Morel
- Laboratorio de Microbiología de Suelos, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Gabriela García-Gabarrot
- Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
11
|
Mamtimin T, Han H, Khan A, Feng P, Zhang Q, Ma X, Fang Y, Liu P, Kulshrestha S, Shigaki T, Li X. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. MICROBIOME 2023; 11:98. [PMID: 37147715 PMCID: PMC10161430 DOI: 10.1186/s40168-023-01550-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Toshiro Shigaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
12
|
Ambika, Kumar V, Chandra D, Thakur V, Sharma U, Singh D. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: A sustainable approach for lignin valorization. Int J Biol Macromol 2023; 234:123601. [PMID: 36775222 DOI: 10.1016/j.ijbiomac.2023.123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin is the most abundant aromatic polymer in nature, and its depolymerization offers excellent opportunities to develop renewable aromatic chemicals. In the present study, Bacillus sp. PCH94 was investigated for laccase production and lignin depolymerization. Maximum production of laccase enzyme was achieved within 6.0 h at 50 °C on a natural lignocellulosic substrate. Furthermore, Bacillus sp. PCH94 was used to bioconvert lignin dimeric and polymeric substrates, validated using FT-IR, NMR (1H, 13C), and LCMS. Genome mining of Bacillus sp. PCH94 revealed laccase gene (lacBl) as multicopper oxidase (spore coat CotA). Further, lacBl from Bacillus sp. PCH94 was cloned, expressed, and kinetically characterized. LacBl enzyme showed activity for substrates ABTS (40.64 IU/mg), guaiacol (5.43 IU/mg), and DMP (11.93 IU/mg). The LacBl was active in higher temperatures (10 to 100 °C) and showed a half-life of 36 and 27 h at 50 and 60 °C, respectively. The purified LacBl was able to depolymerize kraft lignin into valuable products (ferulic acid and acetovanillone), which have applications in the pharmaceutical and food industries. Overall, the current study demonstrated the role of bacterial laccase in the depolymerization of lignin and opened a promising prospect for the green production of valuable compounds from recalcitrant lignin.
Collapse
Affiliation(s)
- Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India.
| | - Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
13
|
Besaury L, Bocquart M, Rémond C. Isolation of Saccharibacillus WB17 strain from wheat bran phyllosphere and genomic insight into the cellulolytic and hemicellulolytic complex of the Saccharibacillus genus. Braz J Microbiol 2022; 53:1829-1842. [PMID: 36040685 PMCID: PMC9679120 DOI: 10.1007/s42770-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023] Open
Abstract
The microorganisms living on the phyllosphere (the aerial part of the plants) are in contact with the lignocellulosic plant cell wall and might have a lignocellulolytic potential. We isolated a Saccharibacillus strain (Saccharibacillus WB17) from wheat bran phyllosphere and its cellulolytic and hemicellulolytic potential was investigated during growth onto wheat bran. Five other type strains from that genus selected from databases were also cultivated onto wheat bran and glucose. Studying the chemical composition of wheat bran residues by FTIR after growth of the six strains showed an important attack of the stretching C-O vibrations assigned to polysaccharides for all the strains, whereas the C = O bond/esterified carboxyl groups were not impacted. The genomic content of the strains showed that they harbored several CAZymes (comprised between 196 and 276) and possessed four of the fifth modules reflecting the presence of a high diversity of enzymes families. Xylanase and amylase activities were the most active enzymes with values reaching more than 4746 ± 1400 mIU/mg protein for the xylanase activity in case of Saccharibacillus deserti KCTC 33693 T and 452 ± 110 mIU/mg protein for the amylase activity of Saccharibacillus WB17. The total enzymatic activities obtained was not correlated to the total abundance of CAZyme along that genus. The Saccharibacillus strains harbor also some promising proteins in the GH30 and GH109 modules with potential arabinofuranosidase and oxidoreductase activities. Overall, the genus Saccharibacillus and more specifically the Saccharibacillus WB17 strain represent biological tools of interest for further biotechnological applications.
Collapse
Affiliation(s)
- Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Mathilde Bocquart
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| |
Collapse
|
14
|
Xu Z, Peng B, Kitata RB, Nicora CD, Weitz KK, Pu Y, Shi T, Cort JR, Ragauskas AJ, Yang B. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:117. [PMID: 36316752 PMCID: PMC9620641 DOI: 10.1186/s13068-022-02214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (β-β, β-5, and β-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (β-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.
Collapse
Affiliation(s)
- Zhangyang Xu
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Bo Peng
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA
| | - Reta Birhanu Kitata
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Carrie D. Nicora
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Karl K. Weitz
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Yunqiao Pu
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tujin Shi
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - John R. Cort
- grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| | - Arthur J. Ragauskas
- grid.135519.a0000 0004 0446 2659Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ,grid.411461.70000 0001 2315 1184Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA ,grid.411461.70000 0001 2315 1184Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Bin Yang
- grid.451303.00000 0001 2218 3491Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA 99354 USA ,grid.451303.00000 0001 2218 3491Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 USA
| |
Collapse
|
15
|
Unuofin JO, Moloantoa KM, Khetsha ZP. The biobleaching potential of a laccase produced from mandarin peelings: impetus for a circular bio-based economy in textile biofinishing. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
17
|
Öztürk Y, Blaby-Haas CE, Daum N, Andrei A, Rauch J, Daldal F, Koch HG. Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Front Microbiol 2021; 12:720644. [PMID: 34566924 PMCID: PMC8456105 DOI: 10.3389/fmicb.2021.720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.
Collapse
Affiliation(s)
- Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Crysten E. Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Peng W, Yang X, Yan K, Chen H, Yuan F, Bei W. CopA Protects Actinobacillus pleuropneumoniae against Copper Toxicity. Vet Microbiol 2021; 258:109122. [PMID: 34052743 DOI: 10.1016/j.vetmic.2021.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Actinobacillus pleuropneumoniae is a Gram-negative bacterium causing porcine pleuropneumonia and severe economic losses in the global swine industry. The toxic trace element copper is required for many physiological and pathological processes in organisms. However, CopA, one of the most well-characterized P-type ATPases contributing to copper resistance, has not been characterized in A. pleuropneumoniae. We used quantitative PCR analysis to examine expression of the copA gene in A. pleuropneumoniae and investigated sequence conservation among serotypes and other Gram-negative bacteria. Growth characteristics were determined using growth curve analyses and spot dilution assays of the wild-type strain and a △copA mutant. We also used flame atomic absorption spectrophotometry to determine intracellular copper content and examined the virulence of the △copA mutant in a mouse model. The copA expression was induced by copper, and its nucleotide sequence was highly conserved among different serotypes of A. pleuropneumoniae. The amino acid sequence of CopA shared high identity with CopA sequences reported from several Gram-negative bacteria. Furthermore, the △copA mutant exhibited impaired growth and had higher intracellular copper content compared with the wild-type strain when supplemented with copper. The mouse model revealed that CopA had no influence on the virulence of A. pleuropneumoniae. In conclusion, these results demonstrated that CopA is required for resistance of A. pleuropneumoniae to copper and protects A. pleuropneumoniae against copper toxicity via copper efflux.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
19
|
Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. THE ISME JOURNAL 2021; 15:879-893. [PMID: 33139871 PMCID: PMC8027834 DOI: 10.1038/s41396-020-00820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023]
Abstract
Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol. Thermotolerant Burkholderiales, including Rubrivivax ssp., were implicated in diverse biogeochemical and aromatic transformations, highlighting their broad metabolic capacity. Lignin catabolism was further investigated using metatranscriptomics of sediment incubated with milled or Kraft lignin at 45 °C. Aromatic compounds were depleted from lignin-amended sediment over 148 h. The metatranscriptomic data revealed upregulation of des/lig genes predicted to specify the catabolism of syringate, vanillate, and phenolic oligomers in the sphingomonads Altererythrobacter ssp. and Novosphingobium ssp., as well as in the Burkholderiales genus, Rubrivivax. This study demonstrates how temperature structures biogeochemical cycling populations in a unique ecosystem, and combines community-level metagenomics with targeted metatranscriptomics to identify pathways with potential for bio-refinement of lignin-derived aromatic compounds. In addition, the diverse aromatic catabolic pathways of Altererythrobacter ssp. may serve as a source of thermotolerant enzymes for lignin valorization.
Collapse
|
20
|
Park HJ, Lee YM, Do H, Lee JH, Kim E, Lee H, Kim D. Involvement of laccase-like enzymes in humic substance degradation by diverse polar soil bacteria. Folia Microbiol (Praha) 2021; 66:331-340. [PMID: 33471293 DOI: 10.1007/s12223-020-00847-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Humic substances (HS) in soil are widely distributed in cold environments and account for a significant fraction of soil's organic carbon. Bacterial strains (n = 281) were isolated at 15 °C using medium containing humic acids (HA), a principal component of HS, from a variety of polar soil samples: 217 from the Antarctic and 64 from the Arctic. We identified 73 potential HA-degrading bacteria based on 16S rRNA sequence similarity, and these sequences were affiliated with phyla Proteobacteria (73.9%), Actinobacteria (20.5%), and Bacteroidetes (5.5%). HA-degrading strains were further classified into the genera Pseudomonas (51 strains), Rhodococcus (10 strains), or others (12 strains). Most strains degraded HA between 10 and 25 °C, but not above 30 °C, indicating cold-adapted degradation. Thirty unique laccase-like multicopper oxidase (LMCO) gene fragments were PCR-amplified from 71% of the 73 HA-degrading bacterial strains, all of which included conserved copper-binding regions (CBR) I and II, both essential for laccase activity. Bacterial LMCO sequences differed from known fungal laccases; for example, a cysteine residue between CBR I and CBR II in fungal laccases was not detected in bacterial LMCOs. This suggests a bacterial biomarker role for LMCO to predict changes in HS-degradation rates in tundra regions as global climate changes. Computer-aided molecular modeling showed these LMCOs contain a highly-conserved copper-dependent active site formed by three histidine residues between CBR I and CBR II. Phylogenetic- and modeling-based methods confirmed the wide occurrence of LMCO genes in HA-degrading polar soil bacteria and linked their putative gene functions with initial HS-degradation processes.
Collapse
Affiliation(s)
- Ha Ju Park
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Hackwon Do
- Department of Polar Sciences, Korea University of Science and Technology, 21990, Incheon, Republic of Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Jun Hyuck Lee
- Department of Polar Sciences, Korea University of Science and Technology, 21990, Incheon, Republic of Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea.
| |
Collapse
|
21
|
Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DCW. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. BIORESOURCE TECHNOLOGY 2021; 320:124412. [PMID: 33249259 DOI: 10.1016/j.biortech.2020.124412] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The most prominent aromatic feedstock on Earth is lignin, however, lignin valorization is still an underrated subject. The principal preparatory strategies for lignin valorization are fragmentation and depolymerization which help in the production of fuels and chemicals. Owing to lignin's structural heterogeneity, these strategies result in product generation which requires tedious separation and purification to extract target products. The bacterial genus Pseudomonas has been dominant for its lignin valorization potency, owing to a robust enzymatic machinery that is used to funnel variable lignin derivatives into certain target products such as polyhydroxyalkanotes (PHAs) and cis, cis-muconic acid (MA). In this review, the potential of genus Pseudomonas in lignin valorization is critically reviewed along with the advanced genetic techniques and tools to ease the use of lignin/lignin-model compounds for the synthesis of bioproducts. This review also highlights the research gaps in lignin biovalorization and discuss the challenges and possibilities for future research.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Siming You
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8 QQ, United Kingdom
| | - Jingzi Beiyuan
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunil Kumar
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Lal Singh
- CSIR - National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Rashid GMM, Bugg TDH. Enhanced biocatalytic degradation of lignin using combinations of lignin-degrading enzymes and accessory enzymes. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00431j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinations of lignin-oxidizing enzymes and accessory enzymes show enhanced activity for product formation from polymeric lignin.
Collapse
|
23
|
Galezowski L, Recham N, Larcher D, Miot J, Skouri-Panet F, Guyot F. Microbially Induced Mineralization of Layered Mn Oxides Electroactive in Li Batteries. Front Microbiol 2020; 11:2031. [PMID: 33013746 PMCID: PMC7511517 DOI: 10.3389/fmicb.2020.02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles produced by bacteria, fungi, or plants generally have physicochemical properties such as size, shape, crystalline structure, magnetic properties, and stability which are difficult to obtain by chemical synthesis. For instance, Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures under ambient conditions. Controlling their crystallinity and texture may offer environmentally relevant routes of Mn oxide synthesis with potential technological applications, e.g., for energy storage. However, whereas the electrochemical activity of synthetic (abiotic) Mn oxides has been extensively studied, the electroactivity of Mn biominerals has been seldom investigated yet. Here we evaluated the electroactivity of biologically induced biominerals produced by the Mn(II)-oxidizer bacteria Pseudomonas putida strain MnB1. For this purpose, we explored the mechanisms of Mn biomineralization, including the kinetics of Mn(II) oxidation, under different conditions. Manganese speciation, biomineral structure, and texture as well as organic matter content were determined by a combination of X-ray diffraction, electron and X-ray microscopies, and thermogravimetric analyses coupled to mass spectrometry. Our results evidence the formation of an organic–inorganic composite material and a competition between the enzymatic (biotic) oxidation of Mn(II) to Mn(IV) yielding MnO2 birnessite and the abiotic formation of Mn(III), of which the ratio depends on oxygenation levels and activity of the bacteria. We reveal that a subtle control over the conditions of the microbial environment orients the birnessite to Mn(III)-phases ratio and the porosity of the assembly, which both strongly impact the bulk electroactivity of the composite biomineral. The electrochemical properties were tested in lithium battery configuration and exhibit very appealing performances (voltage, capacity, reversibility, and power capability), thanks to the specific texture resulting from the microbially driven synthesis route. Given that such electroactive Mn biominerals are widespread in the environment, our study opens an alternative route for the synthesis of performing electrode materials under environment-friendly conditions.
Collapse
Affiliation(s)
- Laura Galezowski
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - Nadir Recham
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, Amiens, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens, France
| | - Dominique Larcher
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, Amiens, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens, France
| | - Jennyfer Miot
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - François Guyot
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
24
|
Purification, Biochemical Characterization, and Facile Immobilization of Laccase from Sphingobacterium ksn-11 and its Application in Transformation of Diclofenac. Appl Biochem Biotechnol 2020; 192:831-844. [PMID: 32601857 DOI: 10.1007/s12010-020-03371-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
An extracellular laccase enzyme secreted from Sphingobacterium ksn-11 was purified to electrophoretic homogeneity, showing a molecular weight of 90 kDa. The purified enzyme was monomeric in nature confirmed by sodium dodecyl gel electrophoresis. The optimum temperature and pH were found to be 40 °C and 4.5 respectively. The enzyme showed highest substrate specificity for 2,2 azino-bis (ethylthiozoline-6-sulfonate) (ABTS), followed by syringaldazine. The Km value for ABTS was 2.12 mM with a Vmax value of 33.33 U/mg which was higher when compared with syringaldazine and guaiacol substrates. Sodium azide and EDTA inhibited the activity by 30%, whereas presence of Ca2+ and iron increased activity by 50%. The purified enzyme was immobilized in sodium alginate-silicon dioxide-polyvinyl alcohol beads and evaluated for diclofenac transformation studies. LC-MS analysis confirmed that immobilized laccase transformed diclofenac to 4-OH diclofenac after 4 h of incubation. 45 % of diclofenac was able to transform even at 3rd cycle of immobilized laccase use. Therefore, immobilized laccase can be used to transform or degrade several recalcitrant compounds from industrial effluents.
Collapse
|
25
|
Gonçalves CC, Bruce T, Silva CDOG, Fillho EXF, Noronha EF, Carlquist M, Parachin NS. Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods. Front Microbiol 2020; 11:1081. [PMID: 32582068 PMCID: PMC7295907 DOI: 10.3389/fmicb.2020.01081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Carolyne Caetano Gonçalves
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | - Thiago Bruce
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| | | | | | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nádia Skorupa Parachin
- Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil
| |
Collapse
|
26
|
Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 2020; 117:9302-9310. [PMID: 32245809 DOI: 10.1073/pnas.1921073117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Collapse
|
27
|
Granja-Travez RS, Persinoti GF, Squina FM, Bugg TDH. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl Microbiol Biotechnol 2020; 104:3305-3320. [PMID: 32088760 DOI: 10.1007/s00253-019-10318-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central β-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the β-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.
Collapse
Affiliation(s)
- Rommel Santiago Granja-Travez
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| | | | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
28
|
Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 2020; 55:26-33. [PMID: 31918394 DOI: 10.1016/j.cbpa.2019.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.
Collapse
|
29
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
30
|
Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. Catalysts 2019. [DOI: 10.3390/catal9070629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.
Collapse
|