1
|
Cheng Y, Zhao C, Bin Y, Liu Y, Cheng L, Xia F, Tian X, Liu X, Liu S, Ying B, Shao Z, Yan W. The pathophysiological functions and therapeutic potential of GPR39: Focus on agonists and antagonists. Int Immunopharmacol 2024; 143:113491. [PMID: 39549543 DOI: 10.1016/j.intimp.2024.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
G protein-coupled receptor 39 (GPR39), a member of the growth hormone-releasing peptide family, exhibits widespread expression across various tissues and demonstrates high constitutive activity, primarily activated by zinc ions. It plays critical roles in cell proliferation, differentiation, survival, apoptosis, and ion transport through the recruitment of Gq/11, Gs, G12/13, and β-arrestin proteins. GPR39 is involved in anti-inflammatory and antioxidant responses, highlighting its diverse pathophysiological functions. Recent discoveries of endogenous ligands have enhanced our understanding of GPR39's physiological roles. Aberrant expression and reactivation of GPR39 have been implicated in a range of diseases, particularly central nervous system disorders, endocrine disruptions, cardiovascular diseases, cancers, and liver conditions. These findings position GPR39 as a promising therapeutic target, with the efficacy of synthetic ligands validated in various in vivo models. Nonetheless, their clinical applicability remains uncertain, necessitating further exploration of novel agonists-especially biased agonists-and antagonists. This review examines the unique residues contributing to the high constitutive activity of GPR39, its endogenous and synthetic ligands, and its pathophysiological implications, aiming to elucidate its pharmacological potential for clinical application in disease treatment.
Collapse
Affiliation(s)
- Yuhui Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000 China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaowen Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinlei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicen Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Binwu Ying
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenhua Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu 610212, Sichuan, China.
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Wang Y, Wang Z, Guo S, Li Q, Kong Y, Sui A, Ma J, Lu L, Zhao J, Li S. SVHRSP Alleviates Age-Related Cognitive Deficiency by Reducing Oxidative Stress and Neuroinflammation. Antioxidants (Basel) 2024; 13:628. [PMID: 38929067 PMCID: PMC11200511 DOI: 10.3390/antiox13060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-β-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- Department of International Medical Services, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Songyu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Qifa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Aoran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Li Lu
- Department of Anatomy, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
4
|
Cao B, Wang J, Feng J. Signaling pathway mechanisms of neurological diseases induced by G protein-coupled receptor 39. CNS Neurosci Ther 2023; 29:1470-1483. [PMID: 36942516 PMCID: PMC10173710 DOI: 10.1111/cns.14174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND G protein-coupled receptor 39 (GPR39) is a transmembrane zinc receptor with two splice variants, which belongs to the G-protein-coupled receptor growth hormone-releasing peptide family. Its expression is induced by zinc, which activates GPR39, and its activation mediates cell proliferation, ion homeostasis, and anti-inflammatory, antioxidant, and other pathophysiological effects via different signaling pathways. AIMS The article reviews the latest literature in this field. In particular, the role of GPR39 in nervous system is discussed. MATERIALS AND METHODS GPR39 can be a promising target in neurological diseases for targeted therapy, which will help doctors overcome the associated problems. DISCUSSION GPR39 is expressed in vivo at several sites. Increasing evidence suggests that GPR39 plays an important role as a neuroprotective agent in vivo and regulates various neurological functions, including neurodegeneration, neuroelectrophysiology, and neurovascular homeostasis. CONCLUSION This review aims to provide an overview of the functions, signal transduction pathways, and pathophysiological role of GPR39 in neurological diseases and summarize the GPR39 agonists that have been identified in the recent years.
Collapse
Affiliation(s)
- Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Gutiérrez-Rojas RA, Aguayo-Cerón KA, Vargas-De-León C, Cabrera-Becerra SE, Almanza-Pérez JC, Huang F, Villafaña S, Romero-Nava R. Glycine Effect on the Expression Profile of Orphan Receptors GPR21, GPR26, GPR39, GPR82 and GPR6 in a Model of Inflammation in 3T3-L1 Cells. Life (Basel) 2022; 12:1687. [PMID: 36362842 PMCID: PMC9696036 DOI: 10.3390/life12111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Cruz Vargas-De-León
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
| | - Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México 06720, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
6
|
He CP, Chen C, Jiang XC, Li H, Zhu LX, Wang PX, Xiao T. The role of AGEs in pathogenesis of cartilage destruction in osteoarthritis. Bone Joint Res 2022; 11:292-300. [PMID: 35549515 PMCID: PMC9130677 DOI: 10.1302/2046-3758.115.bjr-2021-0334.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300.
Collapse
Affiliation(s)
- Chao-Peng He
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Chen
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin-Chen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Xin Zhu
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Zhou Y, Li J, Wang C, Pan Z. Fumitremorgin C alleviates advanced glycation end products (AGE)-induced chondrocyte inflammation and collagen II and aggrecan degradation through sirtuin-1 (SIRT1)/nuclear factor (NF)-κB/ mitogen-activated protein kinase (MAPK). Bioengineered 2022; 13:3867-3876. [PMID: 35109750 PMCID: PMC8974073 DOI: 10.1080/21655979.2021.2024387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fumitremorgin C is a potent and selective inhibitor of the breast cancer resistance protein. This study aimed to explore the role of fumitremorgin C in osteoarthritis (OA) and disclose the underlying mechanism. The cell viability of AGE-treated SW1353 cells in the presence of fumitremorgin C was detected by Cell Counting Kit-8 (CCK-8) assay. The inflammation and extracellular matrix (ECM) deposition of AGE-induced SW1353 cells was respectively measured by enzyme linked immunosorbent assay (ELISA), immunofluorescence, and Western blot. The expression of SIRT1 and NF-KB/MAPK signal was examined by Western blot. After that, SIRT1 inhibitor EX527 was added to observe the mechanism of action of fumitremorgin C. Fumitremorgin C restored the cell viability of SW1353 cells injured by AGE. Furthermore, it alleviated inflammation and ECM degradation in AGE-induced SW1353 cell. The SIRT1 expression decreased by AGE was recovered upon fumitremorgin C to SW1353 cells. The ratio of phosphorylated p65 (p-p65) and p65, phosphorylated JNK (p-JNK) and JNK, and phosphorylated 38 (p-38) and 38 were increased by AGE treatment, which was recovered by fumitremorgin C addition. SIRT1 inhibitor EX527 reverts the repressive effects of fumitremorgin C on inflammation and ECM degradation in AGE-induced SW1353 cell. In conclusion, fumitremorgin C alleviates AGE-induced inflammation and the degradation of collagen II and aggrecan through SIRT1/NF-κB/MAPK, which reveals the underlying mechanism by which fumitremorgin C alleviates OA.
Collapse
Affiliation(s)
- Yeli Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Li
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglong Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheer Pan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Henze LA, Estepa M, Pieske B, Lang F, Eckardt KU, Alesutan I, Voelkl J. Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells 2021; 10:cells10113083. [PMID: 34831306 PMCID: PMC8623153 DOI: 10.3390/cells10113083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- Correspondence: ; Tel.: +43-732-2468-8990
| | - Jakob Voelkl
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| |
Collapse
|
9
|
Wen ZQ, Liu D, Zhang Y, Cai ZJ, Xiao WF, Li YS. G Protein-Coupled Receptors in Osteoarthritis: A Novel Perspective on Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:758220. [PMID: 34746150 PMCID: PMC8564363 DOI: 10.3389/fcell.2021.758220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
Collapse
Affiliation(s)
- Ze-qin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-jun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Xie S, Jiang X, Doycheva DM, Shi H, Jin P, Gao L, Liu R, Xiao J, Hu X, Tang J, Zhang L, Zhang JH. Activation of GPR39 with TC-G 1008 attenuates neuroinflammation via SIRT1/PGC-1α/Nrf2 pathway post-neonatal hypoxic-ischemic injury in rats. J Neuroinflammation 2021; 18:226. [PMID: 34645465 PMCID: PMC8513331 DOI: 10.1186/s12974-021-02289-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxic–ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic–ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. Methods A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. Results The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post-HIE.
Conclusions TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02289-7.
Collapse
Affiliation(s)
- Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Chongqing Medical University, Yongchuan Hospital, Yongchuan, Chongqing, 402160, China
| | - Peng Jin
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Lina Zhang
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| |
Collapse
|
11
|
Laitakari A, Liu L, Frimurer TM, Holst B. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. Int J Mol Sci 2021; 22:ijms22083872. [PMID: 33918078 PMCID: PMC8070507 DOI: 10.3390/ijms22083872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.
Collapse
Affiliation(s)
- Anna Laitakari
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Lingzhi Liu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
12
|
Suzuki A, Yabu A, Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods 2020; 203:179-186. [PMID: 32987130 DOI: 10.1016/j.ymeth.2020.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients' quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.
Collapse
Affiliation(s)
- Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan.
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| |
Collapse
|
13
|
A G-protein coupled receptor 39 agonist stimulates proliferation of keratinocytes via an ERK-dependent pathway. Biomed Pharmacother 2020; 127:110160. [PMID: 32371316 DOI: 10.1016/j.biopha.2020.110160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Keratinocyte proliferation serves as a crucial process in skin wound healing. The zinc-sensing G-protein coupled receptor 39 (GPR39), which is highly expressed in keratinocytes, has been shown to promote skin wound healing. The aim of this study was to investigate the effect of GPR39 activation on proliferation of keratinocytes and its underlying mechanism using immortalized human keratinocytes (HaCaT) as an in vitro model. GPR39 was functionally expressed in HaCaT cells. BrdU proliferation assays showed that treatment with GPR39 agonist TC-G 1008 (100 nM and 1 μM) increased cell proliferation. TC-G 1008 also enhanced ERK phosphorylation in time- and concentration-dependent manners. This effect was suppressed by co-treatment with wortmannin (PI3K inhibitor) and U0126 (MKK inhibitor). Of note, neither inhibition of Gαq-phospholipase C (PLC)-[Ca2+]i nor Gαs-PKA pathway affected GPR39 stimulation-induced ERK phosphorylation. Similarly, barbadin, an inhibitor of G-protein-independent β-arrestin pathway, did not suppress ERK phosphorylation induced by GPR39 activation. Of particular importance, wortmannin, U0126, and FR180204 (ERK inhibitor) abrogated the effect of TC-G 1008-induced cell proliferation. Taken together, this study reveals novel insights into the role of GPR39 in regulating keratinocyte proliferation via a PI3K-MKK-ERK-dependent mechanism. GPR39 agonists may be used in enhancing keratinocyte proliferation, which may be beneficial for the cutaneous wound treatment.
Collapse
|