1
|
Glogowska E, Jose GP, Dias Araújo AR, Arhatte M, Divita R, Borowczyk C, Barouillet T, Wang B, Brau F, Peyronnet R, Patel A, Mesmin B, Harayama T, Antonny B, Xu A, Yvan-Charvet L, Honoré E. Potentiation of macrophage Piezo1 by atherogenic 7-ketocholesterol. Cell Rep 2025; 44:115542. [PMID: 40215166 DOI: 10.1016/j.celrep.2025.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The mechanosensitive ion channel Piezo1 present in endothelial and smooth muscle cells, as well as in macrophages, is emerging as a novel, important player in the etiology of atherosclerosis. Here, we show that myeloid-specific deficiency of Piezo1 in atherogenic Ldlr-/- mice reduces plaque formation. Moreover, chronic oxLDL, as well as its main oxysterol 7-ketocholesterol (7-KC), promotes Piezo1 opening by pressure stimulation in both mouse macrophages and transfected HEK cells. 7-KC dramatically enhances Piezo1 current amplitude and slows down inactivation and deactivation. This up-modulation involves an increase in Piezo1 expression, as well as a potentiation of mechanical gating that depends on membrane cholesterol depletion and decreased order. By contrast, Piezo1 is inhibited by the athero-protective free docosahexaenoic acid, either without or with 7-KC. Altogether, these findings indicate that macrophage Piezo1 is differentially modulated by pro- and anti-atherogenic lipids, pointing to the role of Piezo1 and its potentiation by oxysterols in atherosclerosis.
Collapse
Affiliation(s)
- Edyta Glogowska
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Gregor P Jose
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Raphael Divita
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Frédéric Brau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amanda Patel
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Bruno Mesmin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Takeshi Harayama
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France; State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Li P, Jiang W. A New Insight on Atherosclerosis Mechanism and Lipid-Lowering Drugs. Rev Cardiovasc Med 2025; 26:25321. [PMID: 40160588 PMCID: PMC11951287 DOI: 10.31083/rcm25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 04/02/2025] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries, involving complex pathological mechanisms such as inflammatory responses, lipid metabolism disorders and vascular plaque formation. In recent years, several emerging research hotspots have appeared in the field of atherosclerosis, including gut microbiota, pyroptosis, ferroptosis, autophagy, cuproptosis, exosomes and non-coding RNA. Traditional lipid-lowering drugs play a crucial role in the treatment of AS but are not able to significantly reverse the pathological changes. This article aims to summarize the latest research progress in the pathogenesis of AS and the diagnosis and treatment of the disease by comprehensively analyzing relevant literature mainly from the past five years. Additionally, the mechanisms of action and research advances of statins, cholesterol absorption inhibitors, fibrates and novel lipid-lowering drugs are reviewed to provide new insights into the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Penghui Li
- Binhai New Area Hospital of TCM, 300000 Tianjin, China
| | - Wei Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300000 Tianjin, China
| |
Collapse
|
3
|
Zhou X, Hu Q, Yu M, Li K. Overexpression of Neural Precursor Cell Expressed Developmentally Downregulated 9 (NEDD9) reduces ox-LDL-induced Anoikis in atherosclerotic vascular endothelial cells. IJC HEART & VASCULATURE 2025; 56:101609. [PMID: 39897415 PMCID: PMC11787488 DOI: 10.1016/j.ijcha.2025.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Objective This study purposes to explore the action of the Anoikis gene in vascular endothelial cell injury, explore diagnostic biomarkers, and provide new insights into potential molecular mechanisms, as well as offer a new perspective for disease detection and treatment. Methods The Anoikis gene set was used for enrichment analysis on the Gene Expression Omnibus (GEO: GSE100927) dataset, to identify the intersection genes related to Atherosclerosis. Further, the expression and pathway enrichment of Anoikis genes in GSE100927 was investigated. The Least Absolute Shrinkage and Selection Operator (LASSO) method for dimensionality reduction modeling was employed to obtain Atherosclerosis-related genes and construct Anoikis score. The NEDD9, FOSB, and ERCC1 expression in ox-LDL-induced the Bend.3 cells was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overexpression or silencing NEDD9 on Anoikis in ox-LDL and detachment-induced the Bend.3 cells was analyzed by using Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Results Based on Anoikis gene analysis, NFIL3, NR4A3, ADAMTS4, NEDD9, STX17-AS1, and CSF3 were found to be under-expressed, while FOSB and ERCC1 were found to be over-expressed in the atherosclerosis group compared to the normal group. LASSO regression analysis yielded an Anoikis score = -9.522e-01 × NFIL3 - 3.410 × NEDD9 + 2.728e-01 × ADAMTS4 + 1.178 × FOSB + 5.896e-15 × ERCC1 + 1.558e+01. Compared with the blank group, NEDD9, FOSB, and ERCC1 were under-expressed in the ox-LDL intervention group. si-NEDD9 promoted an increase in reactive oxygen species (ROS) and apoptosis levels in the Bend.3 cells intervened by ox-LDL. Transfection with oe-NEDD9 increased the viability of Bend.3 cells induced by the ox-LDL and detachment, while decreasing ROS and apoptosis levels. Conclusion This study developed a reliable atherosclerotic Anoikis model for predicting endothelial cell injury. During Anoikis genes, the overexpression of NEDD9 reduces ox-LDL and detachment-induced endothelial cell Anoikis.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qinghua Hu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Meihong Yu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
- Research Center of Digestive Diseases, Central South University, Changsha 410011, Hunan Province, PR China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha 410011, Hunan Province, PR China
| | - Kaixuan Li
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
4
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
5
|
Liu L, Li J, Wang Y, Gong P, Feng J, Xiao S, Xu J, Yin X, Liao F, You Y. Effects of Panax notoginseng saponins on alleviating low shear induced endothelial inflammation and thrombosis via Piezo1 signalling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118639. [PMID: 39084271 DOI: 10.1016/j.jep.2024.118639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS) are the major effective components of Panax notoginseng (burk) F.H.Chen which is one of the classic promoting blood circulation herbs in traditional Chinese medicine. PNS is widely used in China for the treatment of cerebral ischemic stroke. Pathological low shear stress is a causal factor in endothelial inflammation and thrombosis. However, the mechanism of PNS against low shear related endothelial inflammation is still unclear. AIM TO THE STUDY This study aims to investigate the effects of PNS against endothelial inflammation induced by low shear stress and to explore the underlying mechanical and biological mechanisms. MATERIALS AND METHODS Mouse model of carotid partial ligation for inducing low endothelial shear stress was established, the pharmacodynamic effect and mechanism of PNS against endothelial inflammation induced by low shear stress through Piezo1 were explored. Yoda1-evoked Piezo1 activation and expression in human umbilical vein endothelial cells (HUVECs) were determined at static condition. Microfluidic channel systems were used to apply shear stress on HUVECs and Piezo1 siRNA HUVECs to determine PECAM-1, p-YAP and VCAM-1 expression. And platelet rich plasma (PRP) was introduced to low shear treated endothelial cells surface to observe the adhesion and activation by fluorescence imaging and flowcytometry. RESULTS PNS attenuated endothelial inflammation and improved blood flow in a reasonable dose response pattern in carotid partial ligation mouse model by influencing Piezo1 and PECAM-1 expression, while suppressing yes-associated protein (YAP) nuclear translocation. We found Piezo1 sensed abnormal shear stress and transduced these mechanical signals by different pathways in HUVECs, and PNS relieved endothelial inflammation induced by low shear stress through Piezo1. We also found Piezo1 signalling has interaction with PECAM-1 under low shear stress, which were involved in platelets adhesion to endothelial cells. Low shear stress increased YAP nuclear translocation and increased VCAM-1 expression in HUVECs which might activate platelets. PNS inhibited low shear induced Piezo1 and PECAM-1 expression and YAP nuclear translocation in HUVECs, furthermore inhibited platelet adhesion and activation on dysfunctional endothelial cells induced by low shear stress. CONCLUSION PNS ameliorated endothelial inflammation and thrombosis induced by low shear stress through modulation of the Piezo1 channel, PECAM-1 expression, and YAP nuclear translocation. PNS might serve as a potential therapeutic candidate for ameliorating endothelial inflammation induced by abnormal blood shear stress.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Gong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiantao Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
8
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|