1
|
Morales CF, Osorio FA. Food-Grade Microwave-Assisted Depolymerization of Grape Seed Condensed Tannins: Optimizing the Reaction Using Gallic Acid as a Nucleophile. Polymers (Basel) 2025; 17:682. [PMID: 40076175 PMCID: PMC11902613 DOI: 10.3390/polym17050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Food waste has a significant social impact but can be revalued as a source of bioactive compounds, such as condensed tannins. This abundant biomass, corresponding to a polymeric antioxidant, must be depolymerized to become bioavailable. Previous studies have investigated polymer degradation into oligomers using high temperatures and expensive nucleophiles, often under conditions unsuitable for food applications. In the present investigation, it is proposed that the depolymerization of condensed tannins can occur under food-grade conditions using a Generally Recognized as Safe (GRAS) solvent by optimizing the reaction's heating method with microwave assistance and using gallic acid as a nucleophile. Thermal studies indicate that the degradation of total polyphenols content follows first-order kinetics and occurs above 80 °C in microwave. Depolymerization follows second-order kinetics, yielding epicatechin as the primary product with zero-order formation kinetics. The optimized factors were 80% v/v ethanol, 10 mg/mL polymeric tannins, and 5.88 mg/mL gallic acid. Under these conditions, the reaction efficiency was 99.9%, the mean particle diameter was 5.7 nm, the total polyphenols content was 297.3 ± 15.9 EAG mg/g, and the inhibition of ABTS●+ and DPPH● radicals was 93.5 ± 0.9% and 88.2 ± 1.5%, respectively. These results are promising for future scaling processes.
Collapse
Affiliation(s)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago, Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
2
|
Almeida LC, Zeferino JF, Branco C, Squillaci G, Morana A, Santos R, Ihalainen P, Sobhana L, Correia JP, Viana AS. Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors. Bioelectrochemistry 2025; 161:108826. [PMID: 39321496 DOI: 10.1016/j.bioelechem.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The successful fabrication of biosensors is greatly limited by the immobilization of their bioreceptor, thus we propose a facile and reproducible two-step method to modify graphite electrodes with a bacterial laccase, relying on a fast and controllable potentiostatic process to coat graphite surfaces with biomolecule-compatible thin films of polynorepinephrine (ePNE) and polydopamine (ePDA). Both polymers, synthesized with a similar thickness, were functionalized with bacterial laccase, displaying distinct electrochemical transducing behaviours at pH 5.0 and 7.0. ePNE layer enables adequate electron transfer of anionic and cationic species in acidic and neutral media, whereas transduction across ePDA strongly depends on pH and redox probe charge. ePNE stands out by improving the amperometric responses of the biosensing interface towards a phenolic acid (gallic acid) and a flavonoid (catechin), in respect to ePDA. The optimal graphite/ePNE/laccase interface outperforms biosensing interfaces based on fungal laccases at neutral pH, displaying detection sensitivities of 104 and 14.4 µA cm-2 mM-1for gallic acid and catechin, respectively. The fine synthetic control of the ePNE bio-inspired transduction layer and the use of an alkaliphilic bacterial laccase enabled the construction of an amperometric biosensing interface with extended pH range of polyphenols detection present in food products and agro-industrial waste.
Collapse
Affiliation(s)
- Luís C Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jorge F Zeferino
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Clara Branco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Guiseppe Squillaci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente (MARE), ARNET - Aquatic Research Network, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Liji Sobhana
- MetGen, Rakentajantie 26, 20780 Kaarina, Finland
| | - Jorge P Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Pires F, Tzeli D, Jones NC, Hoffmann SV, Raposo M. Electronic States of Epigallocatechin-3-Gallate in Water and in 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (Sodium Salt) Liposomes. Int J Mol Sci 2025; 26:1084. [PMID: 39940852 PMCID: PMC11817416 DOI: 10.3390/ijms26031084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In this work, the spectroscopy of epigallocatechin-3-gallate (EGCG) and EGCG bonded to 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG) lipid is studied both experimentally by combining high-resolution vacuum ultraviolet (VUV) photo-absorption measurements in the 4.0-9.0 eV energy range and by theoretical calculations using density functional theory (DFT) methodology. There is a good agreement between the experimental and theoretical data, and the inclusion of the solvent both implicitly and explicitly further improves this agreement. For all experimentally measured absorption bands observed in the VUV spectra of EGCG in water, assignments to the calculated electronic transitions are provided. The calculations reveal that the spectrum of DPPG-EGCG has an intense peak around 150 nm, which is in accordance with experimental data, and it is assigned to an electron transfer transition from resorcinol-pyrogallol groups to different smaller groups of the EGCG molecule. Finally, the increase in absorbance observed experimentally in the DPPG-EGCG spectrum can be associated with the interaction between the molecules.
Collapse
Affiliation(s)
- Filipa Pires
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren V. Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
4
|
Li J, Sun M, Pan Y, Cui X, Li C. Enzymatic oxidation increases the antibacterial activity of myricetin against Staphylococcus aureus. Food Chem 2025; 463:141250. [PMID: 39305637 DOI: 10.1016/j.foodchem.2024.141250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
Myricetin (MYR) is a flavonoid with favorable biological activities. In this study, MYR oxidation products (MYRox) were generated through enzymatic oxidation of MYR using horseradish peroxidase. The results showed enzymatic oxidation enhanced the water solubility and antibacterial activity against Staphylococcus aureus (S. aureus) of MYR. Further experiments showed the antibacterial effects of MYRox were conferred by MYR organic phase oxidation products (MYRoo). Both MYR and MYRoo could disrupt the cell membrane integrity, bind to the genomic DNA, affect protein synthesis and degradation, and alter the ROS levels in S. aureus. However, they exerted these effects with different strengths and ways. Finally, MYR or MYRoo can be used as an inhibitor against S. aureus in the cabbage food system, with MYRoo having better effect. This study demonstrated that enzymatic oxidation is an effective approach to improve the water solubility and antibacterial activity of MYR, enhancing its potential application in food preservation.
Collapse
Affiliation(s)
- Jiao Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, Taiyuan 030006, China.
| | - Min Sun
- College of Life Science, Shanxi University, Taiyuan, Shanxi, Taiyuan 030006, China
| | - Yu Pan
- College of Life Science, Shanxi University, Taiyuan, Shanxi, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, Taiyuan 030006, China.
| | - Chen Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, Taiyuan 030006, China.
| |
Collapse
|
5
|
Karunarathna BSW, Gajasinghe GMST, Wanniarachchi JD, Govender KK, Seneweera S. A DFT analysis of the antioxidant capacity of scopolin and scopoletin. J Mol Model 2024; 30:424. [PMID: 39615016 DOI: 10.1007/s00894-024-06192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT Scopolin and scopoletin belong to the class of coumarins and have experimentally proven natural antioxidants. Natural antioxidants are crucial in mitigating the impact of oxidants in the human body through radical scavenging. Even though scopolin and scopoletin are proven antioxidants by experimental results, their antioxidant mechanisms still remained unexplained. In this study, Density functional theory (DFT) calculations were used to study the radical scavenging mechanisms of both scopolin and scopoletin using kinetic and thermodynamics parameters. The global parameters indicated that both scopolin and scopoletin have antioxidant properties. The band gap energy ( Δ E HOMO - LUMO ) revealed that scopoletin (4.18 eV) has strong antioxidant activity compared to scopolin (4.31 eV). These studies found that hydrogen atom transfer (HAT) is the primary mechanism for CH3OO• radical scavenging at the C-H bond in scopolin (91.98 kcal.mol-1) and the O-H bond in scopoletin (77.05 kcal.mol-1) due to their lowest bond dissociation energies. The calculated activation energy ( E a ) for the radical scavenging reaction, reconfirmed scopoletin ( E a =11.19 kcal.mol-1) performed as a better antioxidant compared to scopolin ( E a =20.91 kcal.mol-1). In this study, the results of DFT calculations confirmed that scopoletin exhibits a higher antioxidant capacity, and HAT mechanism is the most effective radical scavenging mechanism. METHODS The antioxidant activity of scopolin and scopoletin was determined by DFT at the B3LYP/6-31G(d) level of theory. Global parameter calculations and frontier molecular orbital analysis were conducted to assess these compounds' capacity for scavenging radicals. Hydrogen atom transfer (HAT), sequential electron transfer proton transfer (SETPT), and sequential proton loss electron transfer (SPLET) mechanisms were the three main mechanisms that were taken into consideration. The potential energy surface (PES) verified the most appropriate processes shown by the enthalpy calculations.
Collapse
Affiliation(s)
| | - G M Supun Tharaka Gajasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Jayamal Damsith Wanniarachchi
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - K K Govender
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Saman Seneweera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia.
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka.
| |
Collapse
|
6
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Honda T, Takemura K, Matsumae S, Morita N, Iwasaki W, Arita R, Ueda S, Liang YW, Fukuda O, Kikunaga K, Ohmagari S. Quantification of caffeine in coffee cans using electrochemical measurements, machine learning, and boron-doped diamond electrodes. PLoS One 2024; 19:e0298331. [PMID: 38530838 DOI: 10.1371/journal.pone.0298331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.
Collapse
Affiliation(s)
- Tatsuya Honda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Susumu Matsumae
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Nobutomo Morita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Wataru Iwasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Ryoji Arita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Suguru Ueda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Yeoh Wen Liang
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Osamu Fukuda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kazuya Kikunaga
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Shinya Ohmagari
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| |
Collapse
|
8
|
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, Mertins O. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles. Pharmaceutics 2024; 16:141. [PMID: 38276511 PMCID: PMC10819309 DOI: 10.3390/pharmaceutics16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
Collapse
Affiliation(s)
- Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
- Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil
| | - Gabriella S. Gama
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Hector M. Megiati
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Rafael R. M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Bianca B. M. Garcia
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Sang W. Han
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| |
Collapse
|
9
|
Naróg D, Sobkowiak A. Electrochemistry of Flavonoids. Molecules 2023; 28:7618. [PMID: 38005343 PMCID: PMC10674230 DOI: 10.3390/molecules28227618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This review presents a description of the available data from the literature on the electrochemical properties of flavonoids. The emphasis has been placed on the mechanism of oxidation processes and an attempt was made to find a general relation between the observed reaction paths and the structure of flavonoids. Regardless of the solvent used, three potential regions related to flavonoid structures are characteristic of the occurrence of their electrochemical oxidation. The potential values depend on the solvent used. In the less positive potential region, flavonoids, which have an ortho dihydroxy moiety, are reversibly oxidized to corresponding o-quinones. The o-quinones, if they possess a C3 hydroxyl group, react with water to form a benzofuranone derivative (II). In the second potential region, (II) is irreversibly oxidized. In this potential region, some flavonoids without an ortho dihydroxy moiety can also be oxidized to the corresponding p-quinone methides. The oxidation of the hydroxyl groups located in ring A, which are not in the ortho position, occurs in the third potential region at the most positive values. Some discrepancies in the reported reaction mechanisms have been indicated, and this is a good starting point for further investigations.
Collapse
Affiliation(s)
- Dorota Naróg
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| |
Collapse
|
10
|
Chiorcea-Paquim AM. Electrochemistry of Flavonoids: A Comprehensive Review. Int J Mol Sci 2023; 24:15667. [PMID: 37958651 PMCID: PMC10648705 DOI: 10.3390/ijms242115667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Flavonoids represent a large group of aromatic amino acids that are extensively disseminated in plants. More than six thousand different flavonoids have been isolated and identified. They are important components of the human diet, presenting a broad spectrum of health benefits, including antibacterial, antiviral, antimicrobial, antineoplastic, anti-mutagenic, anti-inflammatory, anti-allergic, immunomodulatory, vasodilatory and cardioprotective properties. They are now considered indispensable compounds in the healthcare, food, pharmaceutical, cosmetic and biotechnology industries. All flavonoids are electroactive, and a relationship between their electron-transfer properties and radical-scavenging activity has been highlighted. This review seeks to provide a comprehensive overview concerning the electron-transfer reactions in flavonoids, from the point of view of their in-vitro antioxidant mode of action. Flavonoid redox behavior is related to the oxidation of the phenolic hydroxy groups present in their structures. The fundamental principles concerning the redox behavior of flavonoids will be described, and the phenol moiety oxidation pathways and the effect of substituents and experimental conditions on flavonoid electrochemical behavior will be discussed. The final sections will focus on the electroanalysis of flavonoids in natural products and their identification in highly complex matrixes, such as fruits, vegetables, beverages, food supplements, pharmaceutical compounds and human body fluids, relevant for food quality control, nutrition, and healthcare research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal;
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
11
|
Geng Y, Liu X, Yu Y, Li W, Mou Y, Chen F, Hu X, Ji J, Ma L. From polyphenol to o-quinone: Occurrence, significance, and intervention strategies in foods and health implications. Compr Rev Food Sci Food Saf 2023; 22:3254-3291. [PMID: 37219415 DOI: 10.1111/1541-4337.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Polyphenol oxidation is a chemical process impairing food freshness and other desirable qualities, which has become a serious problem in fruit and vegetable processing industry. It is crucial to understand the mechanisms involved in these detrimental alterations. o-Quinones are primarily generated by polyphenols with di/tri-phenolic groups through enzymatic oxidation and/or auto-oxidation. They are highly reactive species, which not only readily suffer the attack by nucleophiles but also powerfully oxidize other molecules presenting lower redox potentials via electron transfer reactions. These reactions and subsequent complicated reactions are capable of initiating quality losses in foods, such as browning, aroma loss, and nutritional decline. To attenuate these adverse influences, a variety of technologies have emerged to restrain polyphenol oxidation via governing different factors, especially polyphenol oxidases and oxygen. Despite tremendous efforts devoted, to date, the loss of food quality caused by quinones has remained a great challenge in the food processing industry. Furthermore, o-quinones are responsible for the chemopreventive effects and/or toxicity of the parent catechols on human health, the mechanisms by which are quite complex. Herein, this review focuses on the generation and reactivity of o-quinones, attempting to clarify mechanisms involved in the quality deterioration of foods and health implications for humans. Potential innovative inhibitors and technologies are also presented to intervene in o-quinone formation and subsequent reactions. In future, the feasibility of these inhibitory strategies should be evaluated, and further exploration on biological targets of o-quinones is of great necessity.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xinyu Liu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yiran Yu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Oxidation and degradation of (epi)gallocatechin gallate (EGCG/GCG) and (epi)catechin gallate (ECG/CG) in alkali solution. Food Chem 2023; 408:134815. [PMID: 36549155 DOI: 10.1016/j.foodchem.2022.134815] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
The oxidative decomposition/degradation of two main tea flavanols, EGCG/GCG and ECG/CG, was studied in alkaline solution under ultrasonic-assisted thermal conditions. The study employed HPLC-ESI-ToF-MS to identify the products generated by atmospheric oxygen oxidation and various base-catalyzed reactions. Strong basic condition led to accelerated hydrolysis and oxidation of EGCG/GCG and ECG/CG and yielded gallic acid, de-galloyl flavanols and corresponding o-quinone derivatives. Meanwhile, peroxidation or base-catalyzed cleavage and rearrangement occurred extensively on C- and B-rings of flavanol and generated various simpler aldehydes or acids. Besides, a number of dimers/trimers were produced. This contribution provides empirical proof of oxidative degradation of flavanols under strong alkaline condition. Meanwhile, detailed reaction mechanisms of C-/B-ring degradation and dimerization/polymerization phenomena are proposed to help understand the structural changes of flavanols under strong alkaline conditions.
Collapse
|
13
|
Pradayrol É, Maciuk A, Evanno L. Oxidative Assemblies of Flavonoids Dimers – Synthesis of Dehydrodicatechin A. ChemistrySelect 2023. [DOI: 10.1002/slct.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Lin CK, Chen BY, Ting JU, Rogio KGG, Tsai PW, Liu YC. Deciphering Houttuynia cordata extract as electron shuttles with anti-COVID-19 activity and its performance in microbial fuel cells. J Taiwan Inst Chem Eng 2023; 145:104838. [PMID: 37051508 PMCID: PMC10068517 DOI: 10.1016/j.jtice.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Background Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.
Collapse
Affiliation(s)
- Chia-Kai Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, Philippines
| | - Kristian Gil G Rogio
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Detection behavior of phenolic compounds in a dual-electrode system assembled from track-etched membrane electrodes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kim KJ, Hwang ES, Kim MJ, Rha CS, Song MC, Maeng S, Park JH, Kim DO. Effects of Phenolic-Rich Pinus densiflora Extract on Learning, Memory, and Hippocampal Long-Term Potentiation in Scopolamine-Induced Amnesic Rats. Antioxidants (Basel) 2022; 11:antiox11122497. [PMID: 36552705 PMCID: PMC9774118 DOI: 10.3390/antiox11122497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia with cognitive impairment. Various plant-derived phenolics are known to alleviate cognitive impairment in Alzheimer's disease by radical scavenging and strengthening synaptic plasticity activities. Here, we examined the cognition-improving effect of Pinus densiflora Sieb. et Zucc. bark extract (PBE). We identified and quantified phenolics in the PBE using a UHPLC-Orbitrap mass spectrometer. To evaluate the cognition-enhancing effects of PBE, scopolamine-induced amnesic Sprague-Dawley (SD) rats (5 weeks old) and ion channel antagonist-induced organotypic hippocampal slices of SD rats (7 days old) were used. Twenty-three phenolics were tentatively identified in PBE, 10 of which were quantified. Oral administration of PBE to the scopolamine-induced SD rats improved cognitive impairment in behavioral tests. PBE-fed SD rats showed significantly improved antioxidant indices (superoxide dismutase and catalase activities, and malondialdehyde content) and reduced acetylcholinesterase activity in hippocampal lysate compared with the scopolamine group. PBE increased the long-term potentiation (LTP) induction and rescued LTP from blockades by the muscarinic cholinergic receptor antagonist (scopolamine) and N-methyl-D-aspartate channel antagonist (2-amino-5-phosphonovaleric acid) in the organotypic hippocampal slices. These results suggest that polyphenol-rich PBE is applicable as a cognition-improving agent due to its antioxidant properties and enhancement of LTP induction.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Sang Hwang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Jeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan-Su Rha
- AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| |
Collapse
|
17
|
Gouda A, Masson A, Hoseinizadeh M, Soavi F, Santato C. Biosourced quinones for high-performance environmentally benign electrochemical capacitors via interface engineering. Commun Chem 2022; 5:98. [PMID: 36697677 PMCID: PMC9814668 DOI: 10.1038/s42004-022-00719-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Biosourced and biodegradable organic electrode materials respond to the need for sustainable storage of renewable energy. Here, we report on electrochemical capacitors based on electrodes made up of quinones, such as Sepia melanin and catechin/tannic acid (Ctn/TA), solution-deposited on carbon paper engineered to create high-performance interfaces. Sepia melanin and Ctn/TA on TCP electrodes exhibit a capacitance as high as 1355 mF cm-2 (452 F g-1) and 898 mF cm-2 (300 F g-1), respectively. Sepia melanin and Ctn/TA symmetric electrochemical capacitors operating in aqueous electrolytes exhibit up to 100% capacitance retention and 100% coulombic efficiency over 50,000 and 10,000 cycles at 150 mA cm-2 (10 A g-1), respectively. Maximum power densities as high as 1274 mW cm-2 (46 kW kg-1) and 727 mW cm-2 (26 kW kg-1) with maximum energy densities of 0.56 mWh cm-2 (20 Wh kg-1) and 0.65 mWh cm-2 (23 Wh kg-1) are obtained for Sepia melanin and Ctn/TA.
Collapse
Affiliation(s)
- Abdelaziz Gouda
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada.
- Now at, Solar Fuels Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| | - Alexandre Masson
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada
| | - Molood Hoseinizadeh
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Clara Santato
- Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
18
|
Munteanu IG, Apetrei C. Assessment of the Antioxidant Activity of Catechin in Nutraceuticals: Comparison between a Newly Developed Electrochemical Method and Spectrophotometric Methods. Int J Mol Sci 2022; 23:ijms23158110. [PMID: 35897695 PMCID: PMC9329966 DOI: 10.3390/ijms23158110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of antioxidants in different foodstuffs has become an active area of research, which has led to many recently developed antioxidant assays. Many antioxidants exhibit inherent electroactivity, and, therefore, the use of electrochemical methods could be a viable approach for evaluating the overall antioxidant activity of a matrix of nutraceuticals without the need for adding reactive species. Green tea is believed to be a healthy beverage due to a number of therapeutic benefits. Catechin, one of its constituents, is an important antioxidant and possesses free radical scavenging abilities. The present paper describes the electrochemical properties of three screen-printed electrodes (SPEs), the first one based on carbon nanotubes (CNTs), the second one based on gold nanoparticles (GNPs) and the third one based on carbon nanotubes and gold nanoparticles (CNTs-GNPs). All three electrodes were modified with the laccase (Lac) enzyme, using glutaraldehyde as a cross-linking agent between the amino groups on the laccase and aldehyde groups of the reticulation agent. As this enzyme is a thermostable catalyst, the performance of the biosensors has been greatly improved. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and these demonstrated that the association of CNTs with GNPs significantly improved the sensitivity and selectivity of the biosensor. The corresponding limit of detection (LOD) was estimated to be 5.6 × 10−8 M catechin at the CNT-Lac/SPE, 1.3 × 10−7 M at the GNP-Lac/SPE and 4.9 × 10−8 M at the CNT-GNP-Lac/SPE. The biosensors were subjected to nutraceutical formulations containing green tea in order to study their catechin content, using CNT-GNP-Lac/SPE, through DPV. Using a paired t-test, the catechin content estimated was in agreement with the manufacturer’s specification. In addition, the relationship between the CNT-GNP-Lac/SPE response at a specific potential and the antioxidant activity of nutraceuticals, as determined by conventional spectrophotometric methods (DPPH, galvinoxyl and ABTS), is discussed in the context of developing a fast biosensor for the relative antioxidant activity quantification.
Collapse
|
19
|
Xia Y, Ni W, Wang X, Wang Y, Huang X. Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect. RSC Adv 2022; 12:21135-21144. [PMID: 35975090 PMCID: PMC9341424 DOI: 10.1039/d2ra03692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The health benefits of drinking tea stem from it being rich in polyphenols and other physiologically-active substances. Thus, exploring the synergistic effect between polyphenols and a variety of physiologically-active substances can contribute to our understanding of how tea benefits health. In this work, we have studied the interactions between catechin and theanine, exploring the synergetic antioxidant mechanism of the two molecules. Electrochemical characterization results showed that the oxidation peak current of catechin decreased gradually with the concentration of theanine, which is due to theanine spontaneously binding to catechin through intermolecular hydrogen bonds and forming molecular clusters via two hydrogen bonds. The binding constant is 4.75 at room temperature. The molecular clusters reduce the diffusion coefficient of catechin in solution, leading to the slow release of its antioxidant capacity (ability to effectively inhibit free radical oxidation reactions). Density functional theory calculations were also performed and verified the binding behavior. In identifying the synergistic effect between catechin and theanine on the antioxidant capacity of tea, this study adds to our understanding of the efficacy of tea polyphenols.
Collapse
Affiliation(s)
- Yirong Xia
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Wei Ni
- Beijing Aerospace Propulsion Institute Beijing 100076 China
| | - Xintong Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Yanyan Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Ximing Huang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|
20
|
Garjonyte R, Budiene J, Labanauskas L, Judzentiene A. In Vitro Antioxidant and Prooxidant Activities of Red Raspberry ( Rubus idaeus L.) Stem Extracts. Molecules 2022; 27:4073. [PMID: 35807315 PMCID: PMC9268408 DOI: 10.3390/molecules27134073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Leaves and stems of red raspberry (Rubus idaeus) are used in Lithuanian folk medicine. Healing properties of raspberry are related to the content of bioactive compounds, mainly polyphenols. Extracts of raspberry leaves contained higher total phenolic content (TPC) (1290 mg/L, expressed in gallic acid equivalent) compared to that in extracts of stems or peeled bark (up to 420 mg/L and 598 mg/L, respectively). To find out whether the collection time of herbal material was critical for the properties of the extracts, the stems were collected at different times of the year. TPC in the extracts depended more on extraction conditions rather than on the sampling time. Antioxidant activity of raspberry stem and bark extracts tested by spectrophotometric (DPPH● scavenging) and electrochemical (cyclic and differential pulse voltammetry) assays correlated with TPC. DPPH radical scavenging activity values for stem, leaf, and bark extracts were as follows: ≤1.18 ± 0.07, 1.63 ± 0.10, and ≤1.90 ± 0.04 (mmol/L, TROLOX equivalent), respectively. Assessed electrochemically, hydrogen peroxide-scavenging activity of extracts was independent on TPC. The latter activity was related to the presence of some protein in the extract as revealed by gel electrophoresis. Prooxidant activity of raspberry stem extracts was dependent on solution pH and temperature.
Collapse
Affiliation(s)
| | | | | | - Asta Judzentiene
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; (R.G.); (J.B.); (L.L.)
| |
Collapse
|
21
|
Lian D, Takano Y, Shigeta Y. Evaluation of an Appropriate Standard Hydrogen Electrode Potential for Computing Redox Potentials of Catechins with Density Functional Theory. CHEM LETT 2022. [DOI: 10.1246/cl.220165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Duan Lian
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3194 Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3194 Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| |
Collapse
|
22
|
Izak‐Nau E, Braun S, Pich A, Göstl R. Mechanically Resistant Poly(N-vinylcaprolactam) Microgels with Sacrificial Supramolecular Catechin Hydrogen Bonds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104004. [PMID: 35187862 PMCID: PMC9036020 DOI: 10.1002/advs.202104004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microgels (μgels) swiftly undergo structural and functional degradation when they are exposed to shear forces, which potentially limit their applicability in, e.g., biomedicine and engineering. Here, poly(N-vinylcaprolactam) μgels that resist mechanical disruption through supramolecular hydrogen bonds provided by (+)-catechin hydrate (+C) are synthesized. When +C is added to the microgel structure, an increased resistance against shear force exerted by ultrasonication is observed compared to μgels crosslinked by covalent bonds. While covalently crosslinked μgels degrade already after a few seconds, it is found that μgels having both supramolecular interchain interactions and covalent crosslinks show the highest mechanical durability. By the incorporation of optical force probes, it is found that the covalent bonds of the μgels are not stressed beyond their scission threshold and mechanical energy is dissipated by the force-induced reversible dissociation of the sacrificial +C bonds for at least 20 min of ultrasonication. Additionally, +C renders the μgels pH-sensitive and introduces multiresponsivity. The μgels are extensively characterized using Fourier-transform infrared, Raman and quantitative nuclear magnetic resonance spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. These results may serve as blueprint for the preparation of many mechanically durable μgels.
Collapse
Affiliation(s)
- Emilia Izak‐Nau
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Susanne Braun
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Andrij Pich
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht UniversityBrightlands Chemelot CampusGeleen6167 RDThe Netherlands
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| |
Collapse
|
23
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
24
|
Removal of Recalcitrant Compounds from Winery Wastewater by Electrochemical Oxidation. WATER 2022. [DOI: 10.3390/w14050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electro-oxidation of recalcitrant compounds, phthalic acid, tyrosol, and catechin was studied in simulated and real winery wastewater samples using a boron-doped diamond (BDD) anode. In the simulated samples, catechin, although presenting a higher removal rate than that of phthalic acid and tyrosol, attained lower combustion efficiency, indicating that this compound is readily converted into other products rather than being completely oxidized. On the other hand, phthalic acid was easily mineralized. Regarding the electro-oxidation assays performed with the spiked winery wastewater, recalcitrant compounds and overall organic load removal rates increased with applied current density (j), but the removal efficiency of recalcitrant compounds decreased with the increase in j, and the specific energy consumption was significantly raised. The increase in treatment time showed to be a feasible solution for the WW treatment at lower j. After 14 h treatment at 300 A m−2, phthalic acid, tyrosol, and catechin removals above 99.9% were achieved, with a chemical oxygen demand removal of 98.3%. Moreover, the biodegradability index was increased to 0.99, and toxicity towards Daphnia magna was reduced 1.3-fold, showing that the electro-oxidation process using a BDD anode is a feasible solution for the treatment of winery wastewaters, including phthalic acid, tyrosol, and catechin degradation.
Collapse
|
25
|
George SA, Rajeev R, Thadathil DA, Varghese A. A Comprehensive Review on the Electrochemical Sensing of Flavonoids. Crit Rev Anal Chem 2022; 53:1133-1173. [PMID: 35001755 DOI: 10.1080/10408347.2021.2008863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Flavonoids are bioactive polyphenolic compounds, widespread in the plant kingdom. Flavonoids possess broad-spectrum pharmacological effects due to their antioxidant, anti-tumor, anti-neoplastic, anti-mutagenic, anti-microbial, anti-inflammatory, anti-allergic, immunomodulatory, and vasodilatory properties. Care must be taken, since excessive consumption of flavonoids may have adverse effects. Therefore, proper identification, quantification and quality evaluations of flavonoids in edible samples are necessary. Electroanalytical approaches have gained much interest for the analysis of redox behavior and quantification of different flavonoids. Compared to various conventional methods, electrochemical techniques for the analysis of flavonoids offer advantages of high sensitivity, selectivity, low cost, simplicity, biocompatibility, easy on-site evaluation, high accuracy, reproducibility, wide linearity of detection, and low detection limits. This review article focuses on the developments in electrochemical sensing of different flavonoids with emphasis on electrode modification strategies to boost the electrocatalytic activity and analytical efficiency.
Collapse
Affiliation(s)
| | - Rijo Rajeev
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
26
|
Xia Y, Wang X, Sun H, Huang X. Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity. RSC Adv 2021; 11:39985-39993. [PMID: 35494161 PMCID: PMC9044537 DOI: 10.1039/d1ra07769d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Tea wine is a Chinese traditional alcoholic drink made by cereal and tea leaves. It is rich in tea polyphenols, caffeine, amino acids, and protons and possesses various healthcare functions. In this work, electrochemical methods, as well as density functional theory (DFT) calculations, were adopted to reveal the proton-coupled electron-transfer process of catechin in tea wine. The electrochemical results showed that the catechin preferred hydrogen-bonding with ethanol and formed molecular clusters. Thus, the direct electron-transfer process of catechin changed to proton-coupled electron transfer. This procedure reduced the energy barrier of the redox reaction and enhanced the anti-oxidative capacity. Subsequently, DFT calculations were employed to explore the bond length, bond energy, and HOMO-LUMO energy gap of catechin, which confirmed the above-mentioned mechanism. Our work offers some positive value for the scientific promotion of traditional food and a greater understanding of the health mechanisms in terms of chemistry.
Collapse
Affiliation(s)
- Yirong Xia
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Xintong Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Hechen Sun
- Shanxian Central Hospital Heze 274300 China
| | - Ximing Huang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|
27
|
Density Functional Theory Calculations of Pinus brutia Derivatives and Its Response to Light in a Au/n-Si Device. ENERGIES 2021. [DOI: 10.3390/en14237983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the performance of an organic dye obtained from the bark of the red pine (Pinus brutia) tree growing in Muğla/Turkey as an interface layer in the Au/n-Si Schottky diode (SD) structure was evaluated. For this purpose, at first, the optimized molecular structure, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) simulations of the organic dye were calculated by the Gauss program and it was theoretically proven that the dye exhibits semiconducting properties. Then, the electrical and photodiode variables such as ideality factor, effective barrier height, series resistance, interface states density distribution, photosensitivity, and photo responsivity were evaluated employing current-voltage measurements under dark and different illumination densities. Additionally, C-V measurements were used to demonstrate that the fabricated device has capacitive features and this capability varies as a function of the frequency. Under these measurements, the possible conduction mechanism for the organic dye-based Au/n-Si device was investigated and the results showed that Au/Pinus brutia/n-Si may be a good candidate for optoelectronic applications.
Collapse
|
28
|
Phimphilai S, Koonyosying P, Hutachok N, Kampoun T, Daw R, Chaiyasut C, Prasartthong-osoth V, Srichairatanakool S. Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals. Molecules 2021; 26:molecules26226887. [PMID: 34833982 PMCID: PMC8621899 DOI: 10.3390/molecules26226887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Rice grass has been reported to contain bioactive compounds that possess antioxidant and free-radical scavenging activities. We aimed to assess rice grass extract (RGE) drink by determining catechin content, free-radical scavenging and iron-binding properties, as well as toxicity in cells and animals. Young rice grass (Sukhothai-1 strain) was dried, extracted with hot water and lyophilized in a vacuum chamber. The resulting extract was reconstituted with deionized water (260 mg/40 mL) and served as Sukhothai-1 rice grass extract drink (ST1-RGE). HPLC results revealed at least eight phenolic compounds, for which the major catechins were catechin, epicatechin and epigallocatechin-3-gallate (EGCG) (2.71-3.57, 0.98-1.85 and 25.47-27.55 mg/40 mL serving, respectively). Elements (As, Cu, Pb, Sn and Zn) and aflatoxin (B1, B2, G1 and G2) contents did not exceed the relevant limits when compared with WHO guideline values. Importantly, ST1-RGE drink exerted radical-scavenging, iron-chelating and anti-lipid peroxidation properties in aqueous and biological environments in a concentration-dependent manner. The drink was not toxic to cells and animals. Thus, Sukhothai-1 rice grass product is an edible drink that is rich in catechins, particularly EGCG, and exhibited antioxidant, free radical scavenging and iron-binding/chelating properties. The product represents a functional drink that is capable of alleviating conditions of oxidative stress and iron overload.
Collapse
Affiliation(s)
- Suthaya Phimphilai
- Division of Science and Food Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand;
| | - Pimpisid Koonyosying
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Nuntouchaporn Hutachok
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Tanyaluk Kampoun
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Rufus Daw
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Somdet Srichairatanakool
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
- Correspondence: ; Tel.: +66-5393-5322
| |
Collapse
|
29
|
Wang L, Huang X, Jing H, Ma C, Wang H. Bilosomes as effective delivery systems to improve the gastrointestinal stability and bioavailability of epigallocatechin gallate (EGCG). Food Res Int 2021; 149:110631. [PMID: 34600647 DOI: 10.1016/j.foodres.2021.110631] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
Epigallocatechin gallate (EGCG) has a variety of biological activities, but exhibits poor stability and low bioavailability. In this study, EGCG bilosome was prepared and characterized, and its stability during different storage conditions (pH, NaCl concentration, and temperature) and in gastrointestinal fluid was evaluated and compared with liposomes and niosomes. Among them, EGCG niosomes had the highest pH stability, and the existence of sodium cholate reduced the stability of bilosomes in acidic medium. EGCG stability was significantly increased in the presence of salt ions (0-100 mM NaCl) and under different temperatures (25 °C, 37 °C) when delivered as niosomes and bilosomes. Retention rate of EGCG in bilosomes was 71.64 ± 4.05% after incubation in simulated intestinal fluid for 2 h, which was significantly higher than retention rate of EGCG liposomes (24.02 ± 3.95%) and niosomes (55.74 ± 6.85%), thus indicating greater gastrointestinal stability of EGCG bilosomes. Furthermore, bioavailability of EGCG encapsulated in bilosomes was improved by 1.98 times. Overall, these findings indicate that EGCG bilosomes, as a new delivery system, had great potential application as a means to improve stability and bioavailability of EGCG.
Collapse
Affiliation(s)
- Li Wang
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Huang
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huijuan Jing
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
30
|
Unnikrishnan B, Gultom IS, Tseng YT, Chang HT, Huang CC. Controlling morphology evolution of titanium oxide-gold nanourchin for photocatalytic degradation of dyes and photoinactivation of bacteria in the infected wound. J Colloid Interface Sci 2021; 598:260-273. [PMID: 33901851 DOI: 10.1016/j.jcis.2021.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
We report a one-pot, room-temperature, morphology-controlled synthesis of titanium oxide (TiOx)-gold nanocomposites (TiOx-Au NCs) using HAuCl4 and TiCl3 as precursors, and catechin as reducing agent. TiOx-Au NCs have a range of morphologies from star-like to urchin-like shape depending on the concentration of TiCl3 in the reaction mixture. The urchin-shaped TiOx-Au NCs exhibited excellent photocatalytic activity toward dye degradation due to strong light absorption, plasmon-induced excitation, high conductivity of the gold, and reduced hole-electron pair recombination. TiOx-Au NCs have the advantage of a wide range of light absorption and surface plasmon absorption-mediated excitation due to their abundant gold spikes, which enabled the degradation of dyes over 97% in 60 min, using a xenon lamp as a light source. In addition, TiOx-Au NCs are highly efficient for the photoinactivation of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans through the photodynamic generation of reactive oxygen species (ROS) and damage to the bacterial membrane. The catechin derivatives on the NCs effectively promoted curing MRSA infected wounds in rats through inducing collagen synthesis, migration of keratinocytes, and neovascularization.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Irma Suryani Gultom
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
31
|
Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of Catechin: A review. Mini Rev Med Chem 2021; 22:821-833. [PMID: 34477517 DOI: 10.2174/1389557521666210902162120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Catechin is a phytochemical and is a major component of our daily use beverages, which has shown great potential in improving general health and fighting against several medical conditions. Clinical studies have confirmed its effectiveness in conditions ranging from acute upper respiratory tract infection, neuroprotection, to cardio-protection effects. Though most studies relate their potential to anti-oxidative action and radical scavenging action, still the mechanism of action is not clearly understood. OBJECTIVE The present review article is focused on addressing various pharmacological actions and underlying mechanisms of catechin. Additionally, we will try to figure out the major adverse effect and success in trials with catechin and lead to a conclusion for its effectiveness. METHODS This review article is based on the recent/ most cited papers of PubMed and Scopus databases. DESCRIPTION Catechin can regulate Nrf2 and NFkB pathways in ways that impact oxidative stress and inflammation by influencing gene expression. Other pathways like MAPKs and COMT and receptor tyrosine kinase are also affected by catechin and EGCG that alter their action and barge the cellular activity. This review article explored the structural aspect of catechin and its different isomers and analogs. It also evaluated its various therapeutic and pharmacological arrays . CONCLUSION Catechin and its stereo-isomers have shown their effectiveness as anti-inflammatory, anti-diabetic, anti-cancer, anti-neuroprotective, bactericidal, memory enhancer, anti-arthritis, and hepato-protective mainly through its activity to alter the pathway by NF-κB, Nrf-2, TLR4/NF-κB, COMT, and MAPKs.
Collapse
Affiliation(s)
- Aadrika Baranwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnakata, India
| | - Punita Aggarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| | - Amita Rai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnakata, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| |
Collapse
|
32
|
Truong VL, Jeong WS. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int J Mol Sci 2021; 22:ijms22179109. [PMID: 34502017 PMCID: PMC8430757 DOI: 10.3390/ijms22179109] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Tea is particularly rich in polyphenols, including catechins and theaflavins, thearubigins, flavonols, and phenolic acids, which are believed to contribute to the health benefits of tea. The health-promoting effects of tea polyphenols are believed to be related to their cellular defensive properties. This review is intended to briefly summarize the relationship between the chemical structures of tea polyphenols and their biological activities. Tea polyphenols appear as direct antioxidants by scavenging reactive oxygen/nitrogen species; chelating transition metals; and inhibiting lipid, protein, and DNA oxidations. They also act directly by suppressing “pro-oxidant” enzymes, inducing endogenous antioxidants, and cooperating with vitamins. Moreover, tea polyphenols regulate cellular signaling transduction pathways, importantly contributing to the prevention of chronic diseases and the promotion of physiological functions. Apparently, the features in the chemical structures of tea polyphenols are closely associated with their antioxidant potentials.
Collapse
|
33
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
34
|
Wang L, Malpass-Evans R, Carta M, McKeown NB, Reeksting SB, Marken F. Catechin or quercetin guests in an intrinsically microporous polyamine (PIM-EA-TB) host: accumulation, reactivity, and release. RSC Adv 2021; 11:27432-27442. [PMID: 35480644 PMCID: PMC9037788 DOI: 10.1039/d1ra04543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Microporous polymer materials based on molecularly "stiff" structures provide intrinsic microporosity, typical micropore sizes of 0.5 nm to 1.5 nm, and the ability to bind guest species. The polyamine PIM-EA-TB contains abundant tertiary amine sites to interact via hydrogen bonding to guest species in micropores. Here, quercetin and catechin are demonstrated to bind and accumulate into PIM-EA-TB. Voltammetric data suggest apparent Langmuirian binding constants for catechin of 550 (±50) × 103 M-1 in acidic solution at pH 2 (PIM-EA-TB is protonated) and 130 (±13) × 103 M-1 in neutral solution at pH 6 (PIM-EA-TB is not protonated). The binding capacity is typically 1 : 1 (guest : host polymer repeat unit), but higher loadings are readily achieved by host/guest co-deposition from tetrahydrofuran solution. In the rigid polymer environment, bound ortho-quinol guest species exhibit 2-electron 2-proton redox transformation to the corresponding quinones, but only in a thin mono-layer film close to the electrode surface. Release of guest molecules occurs depending on the level of loading and on the type of guest either spontaneously or with electrochemical stimuli.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Richard Malpass-Evans
- EaStCHEM, School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Mariolino Carta
- Department of Chemistry, Swansea University, College of Science Grove Building, Singleton Park Swansea SA2 8PP UK
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Shaun B Reeksting
- University of Bath, Materials & Chemical Characterisation Facility, MC2 Bath BA2 7AY UK
| | - Frank Marken
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
35
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
36
|
Borda‐Yepes VH, Chejne F, Granados DA, Largo E, Rojano B, Raghavan GSV. Microwave‐assisted forced convection drying effect on bioactive compounds of the Canadian blueberry leaves (
Vaccinium corymbosum
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Farid Chejne
- Facultad de Minas Universidad Nacional de Colombia – Medellín Medellín Colombia
| | - David Alejandro Granados
- Facultad de Minas Universidad Nacional de Colombia – Medellín Medellín Colombia
- Facultad de Ingenierias Universidad Católica de Oriente Rionegro Colombia
| | - Esteban Largo
- Facultad de Minas Universidad Nacional de Colombia – Medellín Medellín Colombia
- Dirección de Regionalización sede Caicedonia Universidad del Valle Caicedonia Colombia
| | - Benjamin Rojano
- Facultad de Ciencias Universidad Nacional de Colombia – Medellín Medellín Colombia
| | - G. S. Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
| |
Collapse
|
37
|
Wang Y, Zhang Y, Guan L, Wang S, Zhang J, Tan L, Kong L, Zhang H. Lipophilization and amylose inclusion complexation enhance the stability and release of catechin. Carbohydr Polym 2021; 269:118251. [PMID: 34294288 DOI: 10.1016/j.carbpol.2021.118251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Catechin is a natural phenolic compound with various bioactivities. However, it is unstable under light and heat environments. Amylose can form a single helical hydrophobic cavity to encapsulate and protect bioactive compounds. In this work, we applied amylose inclusion complexes (IC) to encapsulate a lipophilized catechin, i.e., hexadecyl catechin (HC), to improve its photostability and thermal stability. The formation of amylose-HC IC was characterized using differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy. The photostability and thermal stability studies showed that the retention of guest molecules in IC was 86.1% ± 5.1% and 87.4% ± 0.6%, respectively, which was significantly higher than that of the catechin, HC, and amylose-HC physical mixture groups. Moreover, the in vitro release profile of IC demonstrated a steady and complete release of catechin. The findings show the amylose encapsulation of catechin is a promising technique to preserve bioactive compounds in food.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, Alabama, 35487, USA.
| | - Lei Guan
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Siqi Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Jing Zhang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, Alabama, 35487, USA.
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, Alabama, 35487, USA.
| | - Hao Zhang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Shinaian West Road, Xinghua, Jiangsu 225700, China.
| |
Collapse
|
38
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
39
|
Abstract
Antioxidants are compounds that prevent or delay the oxidation process, acting at a much smaller concentration, in comparison to that of the preserved substrate. Primary antioxidants act as scavenging or chain breaking antioxidants, delaying initiation or interrupting propagation step. Secondary antioxidants quench singlet oxygen, decompose peroxides in non-radical species, chelate prooxidative metal ions, inhibit oxidative enzymes. Based on antioxidants’ reactivity, four lines of defense have been described: Preventative antioxidants, radical scavengers, repair antioxidants, and antioxidants relying on adaptation mechanisms. Carbon-based electrodes are largely employed in electroanalysis given their special features, that encompass large surface area, high electroconductivity, chemical stability, nanostructuring possibilities, facility of manufacturing at low cost, and easiness of surface modification. Largely employed methods encompass voltammetry, amperometry, biamperometry and potentiometry. Determination of key endogenous and exogenous individual antioxidants, as well as of antioxidant activity and its main contributors relied on unmodified or modified carbon electrodes, whose analytical parameters are detailed. Recent advances based on modifications with carbon-nanotubes or the use of hybrid nanocomposite materials are described. Large effective surface area, increased mass transport, electrocatalytical effects, improved sensitivity, and low detection limits in the nanomolar range were reported, with applications validated in complex media such as foodstuffs and biological samples.
Collapse
|
40
|
Abstract
Catechin exhibits numerous physiological characteristics. In this study, we determined the photosensitivity of catechin to various lights under alkaline conditions, and the mechanisms by which catechin generates free radical species and polymerizes via a photoreaction. In addition to this, the application of catechin photolysis was investigated. A solution of catechin is transparent, but turns yellowish under blue light illumination (BLI) in neutral or weak alkaline solutions. When catechin is subjected to BLI, a dimeric catechin (proanthocyanidin) and a superoxide anion radical (O2•−) are generated in a photolytic reaction. When ascorbic acid or gallic acid is added to catechin and the mixture is subjected to BLI at alkaline pH, fewer catechin dimers and less O2•− are produced, because both acids inhibit the photosensitive oxidation of catechin. When AlCl3 is added to catechin and the mixture is subjected to BLI at pH 8, a photolytic reaction is suppressed by AlCl3, and AlCl3 acts as a catalyst for the disconnection of proanthocyanidin during photolysis. Under alkaline conditions, catechin generates O2•− via photosensitive oxidation, which suppresses the growth of Acinetobacter baumannii (A. baumannii) by at least 4 logs, and deactivates its multi-drug-resistant strain. This study shows that catechin photolysis is a process of oxidation, and that it can be safely applied as a tool for environmental applications.
Collapse
|
41
|
Catechin Photolysis Suppression by Aluminum Chloride under Alkaline Conditions and Assessment with Liquid Chromatography-Mass Spectrometry. Molecules 2020; 25:molecules25245985. [PMID: 33348758 PMCID: PMC7766431 DOI: 10.3390/molecules25245985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Tea is rich in catechins and aluminum. In this study, the process of catechin photolysis was applied as a model for examining the effects of aluminum chloride (AlCl3) on the structural changes of catechin and the alteration of aluminum complexes under blue light irradiation (BLI) at pH 8 using liquid chromatography and mass spectrometry techniques. Additionally, the effects of anions on catechin upon the addition of AlCl3 and treatment with BLI were also studied. In this study, when 1 mM catechin was treated with BLI, a superoxide anion radical (O2•-) was generated in an air-saturated aqueous solution, in addition to forming a dimeric catechin (proanthocyanidin) via a photon-induced redox reaction. The relative percentage of catechin was found to be 59.0 and 95.7 for catechin treated with BLI and catechin upon the addition of 1 mM AlCl3 treated with BLI, respectively. It suggested that catechin treated with BLI could be suppressed by AlCl3, while AlCl3 did not form a complex with catechin in the photolytic system. However, under the same conditions, it was also found that the addition of AlCl3 inhibited the photolytic formation of O2•-, and reduced the generation of proanthocyanidin, suggesting that the disconnection of proanthocyanidin was achieved by AlCl3 acting as a catalyst under treatment with BLI. The influence of 1 mM fluoride (F-) and 1 mM oxalate (C2O42-) ions on the photolysis of 1 mM catechin upon the addition of 1 mM AlCl3 and treatment with BLI was found to be insignificant, implying that, during the photolysis of catechin, the Al species were either neutral or negatively charged and the aluminum species did not form a complex with anions in the photolytic system. Therefore, aluminum, which is an amphoteric species, has an inherent potential to stabilize the photolysis of catechin in an alkaline conditions, while suppressing the O2•- and proanthocyanidin generation via aluminum ion catalysis in the catechin/Al system under treatment with BLI.
Collapse
|
42
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
43
|
Zhang C, Ping J, Ye Z, Ying Y. Two-dimensional nanocomposite-based electrochemical sensor for rapid determination of trans-resveratrol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140351. [PMID: 32629245 DOI: 10.1016/j.scitotenv.2020.140351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
A two-dimensional nanocomposite-based disposable electrochemical sensor was fabricated for the rapid analysis of trans-resveratrol (TRA) in red wine. The sensor was prepared by modifying graphene-molybdenum disulfide (Gr-MoS2) nanocomposite on the surface of screen-printed electrode (SPE). Results show that the Gr-MoS2 nanocomposite with sheet-on-sheet structure can accelerate the oxidation reaction kinetics of TRA due to its large effective electrochemical surface area and high electron transfer rate. As a result, the Gr-MoS2 nanocomposite appears the synergistic effects, making the highly sensitive detection of TRA come true. The prepared sensor showed a linear response in TRA concentration from 1.0 to 200 μmol L-1 (with a limit of detection of 0.45 μmol L-1). After validating the accuracy with high performance liquid chromatography (HPLC), this nanocomposite-based electrochemical sensor can be applied for the detection of TRA in real red wine samples.
Collapse
Affiliation(s)
- Chao Zhang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Zunzhong Ye
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Zhejiang A&F University, Hangzhou 311300, PR China
| |
Collapse
|
44
|
Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Electrochemical and QSPR studies of several hydroxy- and amino-polysubstituted benzenes constituents of useful compounds. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Gevaerd A, Silva BMD, Oliveira PRD, Marcolino Júnior LH, Bergamini MF. A carbon fiber ultramicroelectrode as a simple tool to direct antioxidant estimation based on caffeic acid oxidation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3608-3616. [PMID: 32701089 DOI: 10.1039/d0ay01050b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes the construction and evaluation of carbon fiber ultramicroelectrodes (CF-UMEs) in the voltammetric estimation of the antioxidant capacity of wine and grape samples based on caffeic acid (HCAF) oxidation. For this, lab-made CF-UMEs were constructed using an arrangement of six carbon fibers (7 μm diameters individual) assembled in a glass capillary, and caffeic acid (HCAF) was used as a standard solution. By using the most straightforward 2-electrode cell arrangement (the CF-UME as a working electrode and Ag/AgCl as a reference/auxiliary electrode), voltammetric measurements of a 1.0 mmol L-1 HCAF solution were done in the absence of a supporting electrolyte. A sigmoidal voltammetric profile was observed in CF-UMEs caused by a more effective mass transport by radial diffusion, which leads to a rapid formation of the diffusion layer. Reproducibility studies for different 6-fiber electrodes manually constructed in different batches showed an RSD of less than 5%. For the same electrode surface, a variation of 2.7% was observed. Under optimized conditions, a linear relationship between anodic peak current and HCAF concentration from 3.0 to 500 μmol L-1 with a sensitivity of 12 μA L mol-1 was reached. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.41 and 1.26 μmol L-1, respectively. The proposed electrochemical method was applied in the estimation of the antioxidant capacity in three different wine samples as well as in green and red grapes. Concordant and satisfactory results by comparison with a proper method were obtained, which suggests that the proposed sensor can be successfully applied for direct analysis of wine and grape samples by estimation of HCAF content.
Collapse
Affiliation(s)
- Ava Gevaerd
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81.531-980, Curitiba, PR, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Chiorcea-Paquim AM, Enache TA, De Souza Gil E, Oliveira-Brett AM. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr Rev Food Sci Food Saf 2020; 19:1680-1726. [PMID: 33337087 DOI: 10.1111/1541-4337.12566] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022]
Abstract
Natural phenolic compounds are abundant in the vegetable kingdom, occurring mainly as secondary metabolites in a wide variety of chemical structures. Around 10,000 different plant phenolic derivatives have been isolated and identified. This review provides an exhaustive overview concerning the electron transfer reactions in natural polyphenols, from the point of view of their in vitro antioxidant and/or pro-oxidant mode of action, as well as their identification in highly complex matrixes, for example, fruits, vegetables, wine, food supplements, relevant for food quality control, nutrition, and health research. The accurate assessment of polyphenols' redox behavior is essential, and the application of the electrochemical methods in routine quality control of natural products and foods, where the polyphenols antioxidant activity needs to be quantified in vitro, is of the utmost importance. The phenol moiety oxidation pathways and the effect of substituents and experimental conditions on their electrochemical behavior will be reviewed. The fundamental principles concerning the redox behavior of natural polyphenols, specifically flavonoids and other benzopyran derivatives, phenolic acids and ester derivatives, quinones, lignins, tannins, lignans, essential oils, stilbenes, curcuminoids, and chalcones, will be described. The final sections will focus on the electroanalysis of phenolic antioxidants in natural products and the electroanalytical evaluation of in vitro total antioxidant capacity.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Eric De Souza Gil
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal.,Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, Goiânia, Goiás, Brasil
| | | |
Collapse
|
48
|
Rojas D, Della Pelle F, Del Carlo M, Compagnone D, Escarpa A. Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
Liedel C. Sustainable Battery Materials from Biomass. CHEMSUSCHEM 2020; 13:2110-2141. [PMID: 32212246 PMCID: PMC7318311 DOI: 10.1002/cssc.201903577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Indexed: 05/22/2023]
Abstract
Sustainable sources of energy have been identified as a possible way out of today's oil dependency and are being rapidly developed. In contrast, storage of energy to a large extent still relies on heavy metals in batteries. Especially when built from biomass-derived organics, organic batteries are promising alternatives and pave the way towards truly sustainable energy storage. First described in 2008, research on biomass-derived electrodes has been taken up by a multitude of researchers worldwide. Nowadays, in principle, electrodes in batteries could be composed of all kinds of carbonized and noncarbonized biomass: On one hand, all kinds of (waste) biomass may be carbonized and used in anodes of lithium- or sodium-ion batteries, cathodes in metal-sulfur or metal-oxygen batteries, or as conductive additives. On the other hand, a plethora of biomolecules, such as quinones, flavins, or carboxylates, contain redox-active groups that can be used as redox-active components in electrodes with very little chemical modification. Biomass-based binders can replace toxic halogenated commercial binders to enable a truly sustainable future of energy storage devices. Besides the electrodes, electrolytes and separators may also be synthesized from biomass. In this Review, recent research progress in this rapidly emerging field is summarized with a focus on potentially fully biowaste-derived batteries.
Collapse
Affiliation(s)
- Clemens Liedel
- Department Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
50
|
Study of reactions of Nε-(carboxymethyl) lysine with o-benzoquinones by cyclic voltammetry. Food Chem 2020; 307:125554. [PMID: 31648176 DOI: 10.1016/j.foodchem.2019.125554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
The reaction of Nε-(carboxymethyl) lysine (CML) with eight kinds of non-flavonoid o-benzoquinones and five kinds of flavonoid o-benzoquinones were investigated by cyclic voltammetry at pH 5.0, 7.0 and 8.0 and scan rate of 10, 50 and 100 mV/s. The reactivity of o-benzoquinones towards CML is weakened by the electron-donating substituent and strengthened by the electron-withdrawing substituent on the o-benzoquinone rings. The steric hindrance of the substituents on o-benzoquinone rings also weakens the quinone reactivity. Reaction of 4-methylbenzoquinone with CML (38.0 ± 1.3%) was found to be faster than that with l-lysine (31.3 ± 1.5%) and Nα-acetyl-l-lysine (14.5 ± 0.1%) but slower than that with l-cysteine (≥100.0%) and Nα-acetyl-l-cysteine (≥100.0%) at pH 7.0 and scan rate of 10 mV/s. Products obtained by the reaction of CML with o-benzoquinones were found to include a CML-quinone adduct according to the cyclic voltammetry and UPLC-QTOF-MS/MS analysis.
Collapse
|