1
|
Chauhan S, Mittal R, Kumar M, Mittal A, Kushwah AS. Gold Nanoparticle-based Biosensors for Point-of-Care Diagnostics: A Review of Sensing Nanoparticle Applications and Future Prospects. Comb Chem High Throughput Screen 2025; 28:417-434. [PMID: 38551055 DOI: 10.2174/0113862073293557240320065128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2025]
Abstract
Point of Care Diagnostics (POCD) is quintessential in hospitals and the healthcare sector as the secants uplift the quality of medical care and the life of a patient by facilitating quick identification of the underlying pathological condition. Nanotechnology can provide opportunities and has potential in the development of new-age sensing/diagnostic tools. Owing to extraordinary features (e.g., higher density, effective catalysis, good conduction, biocompatibility, inertness, and greater surface-to-volume ratio), gold nanoparticles (AuNPs) are frequently employed in POCT (Point-of-Care-Testing). Gold nanoparticles-based colorimetric methods are widely used in the rapid, sensitive, and selective detection of analytes/target molecules. AuNPs description is critical for their possible utility in prophylaxis, diagnostics, and treatment of an ailment. AuNPs interact with organic/inorganic target molecules to generate colorimetric shift that enables the accurate, precise, and subtle recognition of biologicals (e.g., microorganisms, cellular components, and proteins) and metal ions. This review focused on the need for AuNPs-based colorimetric application in prophylaxis, diagnostics, and treatment in healthcare and reviewed the future outlook of these AuNPs for biological applications. Different synthesis methods of AuNPs, their morphology, and characterization, including their surface functionalization, will be discussed in detail. AuNPs are very much preferable nanomaterials owing to exclusive optical, electrical, and photothermal features. AuNPsbased colorimetric biosensors are simple and possess great utility, yet these offer a robust technique to enable visual, quantitative analysis.
Collapse
Affiliation(s)
- Sakshi Chauhan
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India
| | - Roopal Mittal
- I.K.G. Punjab Technical University, Kapurthala, Punjab, 144601, India
- R. K. S. D. College of Pharmacy, Kaithal, Haryana, 136027, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144401, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, 140111, India
| |
Collapse
|
2
|
Zhang K, Luo M, Rao H, Liu H, Qiang R, Xue X, Li J, Lu X, Xue Z. Plasmonic and nanozyme dual-channel-based logic judgment for enhancing gold nanoparticle based colorimetric Hg 2+ ion sensing performance. Chem Commun (Camb) 2024; 60:10005-10008. [PMID: 39176439 DOI: 10.1039/d4cc02724h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
An AND logic gate-based Hg2+ ion colorimetric assay was constructed using the plasmonic and nanozyme dual signal channels of gold nanoparticles (AuNPs). This assay increased the judgment criteria for the identification of Hg2+ ions and effectively improved the accuracy of Hg2+ ion detection.
Collapse
Affiliation(s)
- Kehui Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Mingyue Luo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ruibin Qiang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xin Xue
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Jianying Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Zhonghua Xue
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Alshubramy MA, Alam MM, Alamry KA, Asiri AM, Hussein MA, Rahman MM. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg +2 sensor. Des Monomers Polym 2024; 27:35-50. [PMID: 38903406 PMCID: PMC11188959 DOI: 10.1080/15685551.2024.2360746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).
Collapse
Affiliation(s)
- Maha A. Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Single drop analysis of mercury ions by rational design of peptide coated gold nanoparticles integrated with MALDI-MS measurement. Talanta 2023; 253:123913. [PMID: 36095942 DOI: 10.1016/j.talanta.2022.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
In this study, a novel and rapid method for specific identification and accurate quantification of Hg2+ in environmental water was developed by using laser cleavable cysteine containing peptides modified gold nanoparticles coupled with high resolution matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS) measurement. First, gold nanoparticles were prepared by the reduction of tetrachloroauric (III) acid (HAuCl4) solution. Various cysteine containing peptides, photolabile linkers, including mercury ion binding motif with a proper molecular mass and amino acids were synthesized by solid phase peptide synthesis (SPPS). Subsequently, thiol-containing peptides were coated onto the surface of gold nanoparticles via the formation of gold-thiol (Au-S) bond. The resulting cysteine containing peptides modified gold nanoparticles were designed to specifically capture Hg2+ in water samples. After conjugated complex formation, ions of Hg2+-peptide complex were directly liberated by ultraviolet laser radiation by way of MALDI-MS using α-Cyano-4-hydroxycinnamic acid (CHCA) as matrix. The linear dynamic range of Hg2+ concentration in this study was 1-100 pmol/μL with coefficient of determination 0.9987. The limit of detection (LOD) and limit of quantification (LOQ) were 0.19 and 0.63 pmol/μL, respectively. Notably, the developed method allows rapid quantification of Hg2+ in 5 min and the desired sample volume was down to few μL.
Collapse
|
5
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Kong L, Wang C, Yang W, Zhou L, Wei S. The ultrathin palladium nanosheets for sensitive and visual Hg 2+ detection in the food chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128135. [PMID: 34999403 DOI: 10.1016/j.jhazmat.2021.128135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The detection of mercury, one of the ten most dangerous chemicals, is significant to provide helpful information for assessing mercury toxicity and health risks. However, it is a challenge to explore simple, sensitive, accurate, and cheap Hg2+ detection methods. Noble metal nanomaterials are used for Hg2+ detection by the colorimetric method widely. Still, the pure noble metal materials' detection limit of Hg2+ is high, and sensitivity enhancement usually requires further complex modification. Here, we use a facile one-step route to synthesize ultra-thin two-dimensional palladium nanosheets (PdNS), which have high selectivity and sensitivity for Hg2+ detection by colorimetric method with a low detection limit (0.55 ppb). The detection of Hg2+ by PdNS involves multiple mechanisms, including the formation of amalgam and PdO to improve the peroxidase-mimic activity of PdNS and PdNS motor function to increase its collision probability with the detection reactant. The PdNS can be used to detect Hg2+ in various actual samples. The detection results are highly consistent with the data obtained by the atomic fluorescence spectrometer (AFS). Then, we developed a Hg2+ detection kit, which can realize simple, sensitive, and accurate Hg2+ detection by naked eye or cellphone at a meager cost (0.3 dollars each sample).
Collapse
Affiliation(s)
- Lulu Kong
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Chongchong Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University, Baoding 071003, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Zhang J, Huang Z, Xie Y, Jiang X. Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands. Chem Sci 2022; 13:1080-1087. [PMID: 35211273 PMCID: PMC8790798 DOI: 10.1039/d1sc05933e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nanozymes have broad applications in theranostics and point-of-care tests. To enhance the catalytic activity of nanozymes, the conventional strategy is doping metals to form highly active nanoalloys. However, high-quality and stable nanoalloys are hard to synthesize. Ligand modification is a powerful strategy to achieve chemoselectivity or bioactivity by changing the surface chemistry. Here, we explore different ligands to enhance the catalytic activity of nanozymes, e.g., gold nanoparticles (AuNPs). We systematically studied the impacts on the enzymatic activity of AuNPs by ligand engineering of surface chemistry (charge, group, and surface distance). Our work established critical guidelines for surface modification of nanozymes. The amine group favors higher activity of AuNPs than other groups. The flexible amine-rich ligand enhances the catalytic activity of AuNPs in contrast to other ligands and unmodified AuNPs. Using a proof-of-concept model, we screened many candidate ligands to obtain polyamine-AuNPs, which have strongly enhanced peroxidase-like activity and 100 times enhanced sensitivity compared to unmodified AuNPs. The strategy of enhancing the catalytic activity of AuNPs using ligands will facilitate the catalysis-related applications of nanozymes in biology and diagnostics. Surface ligand engineering can precisely modulate the catalytic activity of nanozymes from inactive to highly active.![]()
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Zhentao Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Yangzhouyun Xie
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
8
|
Noreldeen HAA, Yang L, Guo XY, He SB, Peng HP, Deng HH, Chen W. A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst 2021; 147:101-108. [PMID: 34846387 DOI: 10.1039/d1an01895g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heavy metal ions (HMIs), including Cu2+, Ag+, Cd2+, Hg2+, and Pb2+ from the environment pose a threat to human beings and can cause a series of life-threatening diseases. Therefore, colorimetric sensors with convenience and flexibility for HMI discrimination are still required. To provide a solution, a peroxidase-like activity-based colorimetric sensor array of citrate-capped noble metal nanozymes (osmium, platinum, and gold) has been fabricated. Some studies reported that some HMIs could interact with the noble metal nanozymes leading to a change in their peroxidase-like activity. This phenomenon was confirmed in our work. Based on this principle, different concentrations of HMIs (Cu2+, Ag+, Cd2+, Hg2+, and Pb2+) were discriminated. Moreover, their practical application has been tested by discriminating HMIs in tap water and SiYu lake water. What is more, as an example of the validity of our method to quantify HMIs at nanomolar concentrations, the LOD of Hg2+ was presented. To sum up, our study not only demonstrates the differentiation ability of this nanozyme sensor array but also gives hints for using nanozyme sensor arrays for further applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China. .,Marine Chemistry Lab, Marine Environment Division, National Institute of Oceanography and Fisheries (NIOF), Egypt
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Xiao-Yun Guo
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China. .,Department of Pharmacy, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
9
|
A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
11
|
The prototypes of nanozyme-based nanorobots. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AbstractArtificial nanorobot is a type of robots designed for executing complex tasks at nanoscale. The nanorobot system is typically consisted of four systems, including logic control, driving, sensing and functioning. Considering the subtle structure and complex functionality of nanorobot, the manufacture of nanorobots requires designable, controllable and multi-functional nanomaterials. Here, we propose that nanozyme is a promising candidate for fabricating nanorobots due to its unique properties, including flexible designs, controllable enzyme-like activities, and nano-sized physicochemical characters. Nanozymes may participate in one system or even combine several systems of nanorobots. In this review, we summarize the advances on nanozyme-based systems for fabricating nanorobots, and prospect the future directions of nanozyme for constructing nanorobots. We hope that the unique properties of nanozymes will provide novel ideas for designing and fabricating nanorobotics.
Collapse
|
12
|
Chen Q, Liu Y, Liu J, Liu J. Liposome‐Boosted Peroxidase‐Mimicking Nanozymes Breaking the pH Limit. Chemistry 2020; 26:16659-16665. [DOI: 10.1002/chem.202004133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong China
| |
Collapse
|
13
|
Yuan ZH, Yang YS, Lv PC, Zhu HL. Recent Progress in Small-Molecule Fluorescent Probes for Detecting Mercury Ions. Crit Rev Anal Chem 2020; 52:250-274. [PMID: 32715731 DOI: 10.1080/10408347.2020.1797466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mercury is a highly toxic and non-essential element that is found in every corner of the globe. The small amount of mercury produced by various pathways eventually enters freshwater and marine ecosystems, circulating through the food chain (especially fish) and causing various environmental problems in aspects including plants, animals, and human. There are several traditional quantitative methods developed for mercury ions (II) analysis in water samples. However, due to the complexity of the detection process, high cost and strong technical expertise, it is difficult to detect mercury ions in real-time. Therefore, in recent years, a large number of researchers have developed small-molecule fluorescent probes for Hg ions detection. Fluorimetry has the advantages of convenient detection, short response time, high sensitivity and good selectivity. This review summarized the small-molecule fluorescent probes for mercuric ion detection developed in recent years according to the chemical structural classification, compared their performances and elaborated the mechanism. We hope that the review will help the researches for the designs of metal ions fluorescent probes and their applications with certain reference value.
Collapse
Affiliation(s)
- Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Peng-Cheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Katowah DF, Alqarni S, Mohammed GI, Al Sheheri SZ, Alam MM, Ismail SH, Asiri AM, Hussein MA, Rahman MM. Selective Hg
2+
sensor performance based various carbon‐nanofillers into
CuO‐PMMA
nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Sara Alqarni
- Department of Chemistry, College of ScienceUniversity of Jeddah Jeddah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Soad Z. Al Sheheri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer ScienceShahjalal University of Science and Technology Sylhet Bangladesh
| | | | - Abdullah M. Asiri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
15
|
Nanozymes: created by learning from nature. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1183-1200. [DOI: 10.1007/s11427-019-1570-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
16
|
Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 2020; 11:923-936. [PMID: 34084347 PMCID: PMC8145530 DOI: 10.1039/c9sc06497d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications. Health-related applications of gold nanoparticles rely on the physical and chemical reactions between molecules and gold nanoparticles. Surface chemistry can precisely control and tailor the surface properties of gold nanoparticles to meet the needs of applications. Gold nanoparticles have unique physical and chemical properties, and have been used in a broad range of applications from prophylaxis to diagnosis and treatment. The surface chemistry of gold nanoparticles plays a crucial role in all of these applications. This minireview summarizes these applications from the perspective of surface chemistry and explores how surface chemistry improves and imparts new properties to gold nanoparticles for these applications.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Lei Mou
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Berlina AN, Zherdev AV, Dzantiev BB. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Mikrochim Acta 2019; 186:172. [PMID: 30767144 DOI: 10.1007/s00604-018-3168-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
This review (with 230 refs.) covers recent progress in rapid optical assays for heavy metals (primarily lead and mercury as the most relevant) based on the use of nanoparticles and receptor molecules. An introduction surveys the importance, regulatory demands (such as maximum permissible concentrations) and potential and limitations of various existing methods. This is followed by a general discussion on the use of nanoparticles in optical assays of heavy metals (including properties, basic mechanisms of signal generation). The next sections cover methods for the functionalization of nanoparticles with (a) sulfur-containing compounds (used for modification of nanoparticles or added to the reaction medium), (b) nitrogen-containing compounds (such as amino acids, polypeptides, and heterocyclic molecules), and (c) oxygen-containing species (such as hydroxy and carbonyl compounds). This is continued by a specific description of specific assays based on the use of aptamers as receptors, on the use of deoxyribozymes as synthetic reaction catalysts, of G-quadruplex aptamers, of aptamers in logic gate-type of assays of linear (unstructured) aptamers ("hairpins"), and on the use of aptamers in lateral flow assays. A next section covers assays based on the employment of antibodies as receptors (used in the immunoassay development). The properties of various nanoparticles and their applicability in optical assays are also discussed in some detail. Final sections discuss the selectivity of assays, potential interferences by other cations, methods for their elimination, and also matrix effects and approaches for sample pretreatment. A concluding section discusses current challenges and future trends. Analysis based on enzyme inhibition assay is not treated here but enzyme-like action of some receptor molecules such as DNAzymes is discussed. Graphical abstract Schematic presentation of main principles of application of various nanoparticles with receptor molecules (S-, N-, O-containing, heterocyclic compounds, proteins, antibody, aptamers) for heavy metals ions detection. The included methods cover optical assays with description of mechanisms of interactions and signal generation.
Collapse
Affiliation(s)
- Anna N Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia.
| |
Collapse
|
18
|
You JG, Wang YT, Tseng WL. Adenosine-Related Compounds as an Enhancer for Peroxidase-Mimicking Activity of Nanomaterials: Application to Sensing of Heparin Level in Human Plasma and Total Sulfate Glycosaminoglycan Content in Synthetic Cerebrospinal Fluid. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37846-37854. [PMID: 30360086 DOI: 10.1021/acsami.8b13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A variety of compounds, such as DNA and protein, have been demonstrated to be effective in suppressing the catalytic activity of peroxidase-like nanomaterials. However, little investigations have been conducted to discover new chemical compounds for amplifying the catalytic activity of peroxidase-mimicking nanomaterials. This study discloses that adenosine analogues were useful as a universal enhancer for peroxidase-mimicking nanomaterials in the hydrogen peroxide-mediated oxidation of amplex ultrared at neutral pH. The optimal adenosine analogues for improving the peroxidase-like performance of citrate-stabilized gold nanoparticles (Au NPs), citrate-capped platinum NPs, bovine serum albumin-encapsulated gold nanoclusters, and unmodified magnetite NPs were found to be adenosine diphosphate (ADP), ADP, ADP, and adenosine monophosphate, respectively. The results show that adenosine analogue-induced enhancement in the peroxidase-like activity of nanomaterials was heavily associated with the number of adsorbed adenosine analogues onto the nanomaterial surface. The analysis of ADP-modified Au NPs by electron paramagnetic resonance spectroscopy indicates that the adsorbed ADP molecules on the Au NP surface not only activated H2O2 but also strengthened the interaction between hydroxyl radicals and nanomaterials. By integrating the ADP-boosted catalytic activity of peroxidase-like Au NPs, surfen-triggered NP aggregation, and specific surfen-sulfated glycosaminoglycan (GAG) interaction, a turn-on fluorescent probe was constructed to quantify the heparin level in human plasma and total sulfate GAG content in synthetic cerebrospinal fluid.
Collapse
Affiliation(s)
- Jyun-Guo You
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
| | - Yen-Ting Wang
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry , National Sun Yat-sen University , Kaohsiung City 80424 , Taiwan
- School of Pharmacy, College of Pharmacy , Kaohsiung Medical University , Kaohsiung City 80708 , Taiwan
| |
Collapse
|
19
|
Xie ZJ, Bao XY, Peng CF. Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles. SENSORS 2018; 18:s18082679. [PMID: 30111699 PMCID: PMC6111283 DOI: 10.3390/s18082679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
A new colorimetric detection of methylmercury (CH3Hg+) was developed, which was based on the surface deposition of Hg enhancing the catalytic activity of gold nanoparticles (AuNPs). The AuNPs were functionalized with a specific DNA strand (HT7) recognizing CH3Hg+, which was used to capture and separate CH3Hg+ by centrifugation. It was found that the CH3Hg+ reduction resulted in the deposition of Hg onto the surface of AuNPs. As a result, the catalytic activity of the AuNPs toward the chromogenic reaction of 3,3,5,5-tetramethylbenzidine (TMB)-H2O2 was remarkably enhanced. Under optimal conditions, a limit of detection of 5.0 nM was obtained for CH3Hg+ with a linear range of 10–200 nM. We demonstrated that the colorimetric method was fairly simple with a low cost and can be conveniently applied to CH3Hg+ detection in environmental samples.
Collapse
Affiliation(s)
- Zheng-Jun Xie
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xian-Yu Bao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China.
| | - Chi-Fang Peng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Zhang J, Zheng W, Jiang X. Ag + -Gated Surface Chemistry of Gold Nanoparticles and Colorimetric Detection of Acetylcholinesterase. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801680. [PMID: 29971910 DOI: 10.1002/smll.201801680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Indexed: 05/24/2023]
Abstract
Chemical regulation of enzyme-mimic activity of nanomaterials is challenging because it requires a precise understanding of the surface chemistry and mechanism, and rationally designed applications. Herein, Ag+ -gated peroxidase activity is demonstrated by successfully modulating surface chemistry of cetyltrimethylammonium bromide-capped gold nanoparticles (CTAB-AuNPs). A surface blocking effect of long-chain molecules on surfaces of AuNPs that inhibit peroxidase activity of AuNPs is found. Ag+ ions can selectively bind on the surfaces of AuNPs and competitively destroy CTAB membrane forming Ag+ @CTAB-AuNPs complexes to result in enhanced peroxidase activity. Ag+ @CTAB-AuNPs show the highest peroxidase activity compared to similar-sized citrate-capped and ascorbic acid-capped AuNPs. Ag+ @CTAB-AuNPs can potentially develop into analyte-responsive systems and exhibit advantages in the optical sensing field. For example, the Ag+ @CTAB-AuNPs system shows an enhanced sensitivity and selectivity for acetylcholinesterase activity sensing compared to other methods.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
22
|
Kumar V, Jain A, Wadhawan S, Mehta SK. Synthesis of biosurfactant‐coated magnesium oxide nanoparticles for methylene blue removal and selective Pb 2+ sensing. IET Nanobiotechnol 2018; 12:241-253. [PMCID: PMC8676576 DOI: 10.1049/iet-nbt.2017.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 11/09/2017] [Indexed: 03/21/2024] Open
Abstract
Dyes and lead (Pb2+) are toxic compounds that can contaminant water. In this study, magnesium oxide (MgO) nanoparticles (NPs) prepared using clove, i.e. Syzygium aromaticum extract [clove extract (CE)] were used for methylene blue (MB) removal and Pb2+ ion sensing in aqueous solution. Maximum 90% MB removal was achieved using MgO NPs. The MB adsorption on MgO NPs surface followed second‐order kinetics and Langmuir isotherm. MB dye was adsorbed as a monolayer on the surface of MgO NPs with maximum adsorption capacity, 5555 mg g−1. MgO NPs were also able to selectively detect lead (Pb2+) in 1 nM–200 µM range with 24 µM (3σ) limit of detection. So, CE prepared MgO NPs are useful for MB dye adsorption and metal ion sensing applications.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of ChemistryPanjab UniversityChandigarhU.T.160014India
- Department of BiotechnologyDAV UniversitySarmastpur, NH‐44Jalandhar144012PunjabIndia
- Present address:
Department of BiotechnologyFaculty of Technology and SciencesLovely Professional University (LPU)Jalandhar – Delhi G.T. RoadPhagwaraPunjab144411India
| | - Ayushi Jain
- Department of ChemistryPanjab UniversityChandigarhU.T.160014India
- Department of ChemistryPU Research CentreGGDSD CollegeChandigarhU.T160030India
| | - Shweta Wadhawan
- Department of ChemistryPU Research CentreGGDSD CollegeChandigarhU.T160030India
| | | |
Collapse
|
23
|
Hong Y, Kim DJ, Choi IA, Pal M, Lee G, Nam KM, Seo WS. Highly stable mesoporous silica nanospheres embedded with FeCo/graphitic shell nanocrystals as magnetically recyclable multifunctional adsorbents for wastewater treatment. RSC Adv 2018; 8:1089-1097. [PMID: 35538962 PMCID: PMC9077014 DOI: 10.1039/c7ra12240c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
We report the first synthesis of highly stable and efficiently recyclable multifunctional adsorbents containing FeCo/GC nanoparticles with the strongest magnetic properties.
Collapse
Affiliation(s)
- Yonghoon Hong
- Department of Chemistry
- Sogang University
- Seoul
- Republic of Korea
| | - Da Jeong Kim
- Department of Chemistry
- Sogang University
- Seoul
- Republic of Korea
| | - In Ae Choi
- Department of Chemistry
- Sogang University
- Seoul
- Republic of Korea
| | - Mou Pal
- Instituto de Física
- BUAP
- Ciudad Universitaria
- Mexico
| | - Gaehang Lee
- Korea Basic Science Institute
- University of Science and Technology
- Daejeon 34133
- Republic of Korea
| | - Ki Min Nam
- Department of Chemistry
- Mokpo National University
- Jeonnam 58554
- Republic of Korea
| | - Won Seok Seo
- Department of Chemistry
- Sogang University
- Seoul
- Republic of Korea
| |
Collapse
|
24
|
Gold-Carboxymethyl Cellulose Nanocomposites Greenly Synthesized for Fluorescent Sensitive Detection of Hg(II). J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1317-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep 2017; 7:2806. [PMID: 28584238 PMCID: PMC5459837 DOI: 10.1038/s41598-017-02948-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, we developed a facile gold nanozyme-based paper chip (AuNZ-PAD) for Hg2+ detection. This device has the advantages of being simple, rapid, cost effective, sensitive, selective, high throughput, and applicable to onsite detection. The colorimetric mercury assay on the AuNZ-PAD is established based on the enzyme-like catalytic activity of gold nanoparticles promoted by the formation of Au–Hg amalgam, which is correlated to the intensity of the colorimetric response resulting from the catalytic reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2. Highly sensitive and selective detection of Hg2+ ions is achieved in both distilled and tap water samples, indicating the feasibility and applicability of our device for the determination of mercury pollution in real samples. Moreover, AuNZ-PAD analysis using a smartphone camera eliminates the need for expensive analytical equipment, thereby increasing the practicality of field monitoring of trace Hg2+ compared with other sensing methods.
Collapse
|
26
|
Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles. Biosens Bioelectron 2017; 92:328-334. [DOI: 10.1016/j.bios.2016.10.097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022]
|
27
|
Guang S, Tian J, Wei G, Yan Z, Pan H, Feng J, Xu H. A modified fluorescein derivative with improved water-solubility for turn-on fluorescent determination of Hg 2+ in aqueous and living cells. Talanta 2017; 170:89-96. [PMID: 28501218 DOI: 10.1016/j.talanta.2017.03.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
To improve the water-solubility of heavy-metal sensing materials, a modified fluorescein-based derivative, acryloyl fluorescein hydrazine (ACFH), was designed and developed by incorporating a non-hydrogen-bonding group into the conjugated molecule for weakening intermolecular hydrogen-bonding interactions. In neutral water environments, ACFH presented a fluorescence-enhancement performance at λmax=512nm in the presence of Hg2+, which could be visualized by naked-eyes. Under the optimized conditions, the linear range of Hg2+ detection was 1.0-100×10-9molL-1 with a correlation coefficient of 0.9992 and a detection limit of 0.86×10-9molL-1. The recognition mechanism was confirmed to be a stable and irreversible 1:1 five-member ring complex between ACFH and Hg2+ with a coordination constant of 3.36×109. ACFH would possess a potential application in detecting Hg2+ for biological assay with low cytotoxicity.
Collapse
Affiliation(s)
- Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiachan Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Gang Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hongfei Pan
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Jihong Feng
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Hongyao Xu
- College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| |
Collapse
|
28
|
Gu B, Huang L, Su W, Duan X, Li H, Yao S. A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg 2+ and Cu 2+. Anal Chim Acta 2017; 954:97-104. [DOI: 10.1016/j.aca.2016.11.044] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
|
29
|
Liao H, Liu G, Liu Y, Li R, Fu W, Hu L. Aggregation-induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb2+ detection. Chem Commun (Camb) 2017; 53:10160-10163. [DOI: 10.1039/c7cc05409b] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we found that the peroxidase-like catalytic activities of Au-NCs are nearly 10-fold increased after Pb2+-induced aggregation.
Collapse
Affiliation(s)
- Hong Liao
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| | - Guangjuan Liu
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| | - Yun Liu
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| | - Rong Li
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications
- and Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
| |
Collapse
|
30
|
|
31
|
Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Wang X, Pauli J, Niessner R, Resch-Genger U, Knopp D. Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1. Analyst 2016; 140:7305-12. [PMID: 26359515 DOI: 10.1039/c5an01300c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multifunctional fluorescence platform has been constructed based on gold nanoparticle (AuNP)-catalyzed uranine reduction. The catalytic reduction of uranine was conducted in aqueous solution using AuNPs as nanocatalyst and sodium borohydride as reducing reagent, which was monitored by fluorescence and UV-vis spectroscopy. The reaction rate was highly dependent on the concentration, size and dispersion state of AuNPs. When AuNPs aggregated, their catalytic ability decreased, and thereby a label-free fluorescent assay was developed for the detection of melamine, which can be used for melamine determination in milk. In addition, a fluorescent immunoassay for aflatoxin B1 (AFB1) was established using the catalytic reaction for signal amplification based on target-induced concentration change of AuNPs, where AFB1-BSA-coated magnetic beads and anti-AFB1 antibody-conjugated AuNPs were employed as capture and signal probe, respectively. The detection can be accomplished in 1 h and acceptable recoveries in spiked maize samples were achieved. The developed fluorescence system is simple, sensitive and specific, which could be used for the detection of a wide range of analytes.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Hydrochemistry, Chair for Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 München, Germany.
| | | | | | | | | |
Collapse
|
33
|
Li XJ, Wang YS, Yang SY, Tang X, Liu L, Zhou B, Wang XF, Zhu YF, Huang YQ, He SZ. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Inhibition of rhodamine B–ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury (II) ions. Microchem J 2016. [DOI: 10.1016/j.microc.2015.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Kuah E, Toh S, Yee J, Ma Q, Gao Z. Enzyme Mimics: Advances and Applications. Chemistry 2016; 22:8404-30. [PMID: 27062126 DOI: 10.1002/chem.201504394] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications.
Collapse
Affiliation(s)
- Evelyn Kuah
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Seraphina Toh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Jessica Yee
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Qian Ma
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax.
| |
Collapse
|
36
|
Deng HH, Hong GL, Lin FL, Liu AL, Xia XH, Chen W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 2016; 915:74-80. [DOI: 10.1016/j.aca.2016.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
|
37
|
A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1738-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Niu Q, Wu X, Zhang S, Li T, Cui Y, Li X. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg²⁺ based on phenylamine-oligothiophene derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:143-146. [PMID: 26298681 DOI: 10.1016/j.saa.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/04/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
A fast-responsive fluorescent phenylamine-oligothiophene sensor 3TDDA was reported. This sensor exhibited highly selective and sensitive detection of Hg(2+) ion in aqueous solution (THF/CH3CN/H2O, 45/50/5, v/v) through fluorescence quenching. The detection was not affected by the coexistence of other competitive metal ions such as Na(+), K(+), Ag(+), Ca(2+), Fe(3+), Al(3+), Co(2+), Ni(2+), Zn(2+), Pb(2+), Cd(2+), Fe(2+) and Cr(3+). A stoichiometric ratio (1:1) of the sensor and Hg(2+) was determined by a Job's plot and mole-ratio curves. The binding of sensor 3TDDA and Hg(2+) was also chemically reversible with EDTA. The detection limit was calculated as low as 4.392×10(-7) M.
Collapse
Affiliation(s)
- Qingfen Niu
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China.
| | - Xingxing Wu
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Shanshan Zhang
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| |
Collapse
|
39
|
Wu LL, Wang LY, Xie ZJ, Xue F, Peng CF. Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA–Ag/Pt nanoclusters. RSC Adv 2016. [DOI: 10.1039/c6ra12597b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This paper reported that the peroxidase-like activity of DNA–Ag/Pt nanoclusters (NCs) can be inhibited selectively by Hg2+.
Collapse
Affiliation(s)
- Liang-Liang Wu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Li-Ying Wang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zheng-Jun Xie
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Feng Xue
- Animal, Plant and Food Inspection Center
- Jiangsu Entry-Exit Inspection and Quarantine Bureau
- Nanjing
- China
| | - Chi-Fang Peng
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
40
|
Wang X, Li W, Li Z, Li H, Xu D. A highly sensitive fluorescence turn-on platform with silver nanoparticles aptasening for human platelet-derived growth factor-BB. Talanta 2015; 144:1273-8. [PMID: 26452958 DOI: 10.1016/j.talanta.2015.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
In this paper, we demonstrated a simple and highly sensitive fluorescence platform for protein detection. Silver nanoparticles (AgNPs) worked as carriers and quenchers for FAM labeled aptamers (FAM-apt). Biotin labeled aptamers (Bio-apt), FAM-apt functionalized AgNPs (Ag-FAM-apt), and a target protein, human platelet-derived growth factor-BB (PDGF-BB) could form a sandwich-type complex. Once the etching solvents were added, AgNPs were dissolved and the fluorescence resonance energy transfer (FRET) between AgNPs and FAM was broken. FAM-apt were no longer quenched and released into the solution in the 96-well microplates, so the fluorescence signal would turn from "off" state to "on" state. This method had possessed several advantages: Firstly, increased specificity which was contributed by the sandwich binding of aptamers; Secondly, quenching ability of AgNPs which was utilized to make signal turn-on; Thirdly, high throughout in which 96 samples could be detected simultaneously. The results showed a linear relationship between fluorescence intensity and PDGF-BB concentration (10 ng mL(-1)-100 ng mL(-1)), and the detection limit was 7 ng mL(-1). This simple and sensitive method would have a promising future for development and application.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Zhonghui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| |
Collapse
|
41
|
Xu H, Zhu X, Ye H, Yu L, Chen G, Chi Y, Liu X. A bio-inspired sensor coupled with a bio-bar code and hybridization chain reaction for Hg2+ assay. Chem Commun (Camb) 2015; 51:15031-4. [DOI: 10.1039/c5cc05369b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this article, a bio-inspired DNA sensor is developed, which coupled with bio-bar code and hybridization chain reaction. This bio-inspired sensor has high sensitivity to Hg2+, and has been used to assay Hg2+ in the extraction of traditional Chinese medicine.
Collapse
Affiliation(s)
- Huifeng Xu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
| | - Xi Zhu
- College of Life Sciences
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Hongzhi Ye
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| | - Lishuang Yu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Yuwu Chi
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Xianxiang Liu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| |
Collapse
|
42
|
Choi S, Kim Y. Gold nanoparticle-based fluorescent “turn-on” sensing system for the selective detection of mercury ions in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra20152g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and straightforward fluorometric assay using dye-adsorbed gold nanoparticles (AuNPs) was used in the highly selective and sensitive detection of mercury ions in aqueous buffer solution.
Collapse
Affiliation(s)
- Sohee Choi
- Department of Chemistry
- Institute of Nanosensor and Biotechnology
- Dankook University
- Yongin-si
- Korea
| | - Youngmi Kim
- Department of Chemistry
- Institute of Nanosensor and Biotechnology
- Dankook University
- Yongin-si
- Korea
| |
Collapse
|
43
|
Yan Z, Xue H, Berning K, Lam YW, Lee CS. Identification of multifunctional graphene-gold nanocomposite for environment-friendly enriching, separating, and detecting Hg²⁺ simultaneously. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22761-8. [PMID: 25458522 DOI: 10.1021/am506875t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
By virtue of the specific amalgam of mercury with gold and high specific area of a graphene scaffold, an environment-friendly multifunctional graphene-gold nanocomposite (G-AuNPs) has been identified and prepared by a simple one-pot redox reaction. The resultant G-AuNPs can reversibly enrich about 94% of Hg(2+) in water samples, which can be further separated by only a simple filtration. Importantly, the color of the G-AuNPs suspension exclusively changes from purple-red to light brown upon the addition of Hg(2+) in the presence of ascorbic acid, which can be applied for colorimetric detection of Hg(2+) with a detection limit (3σ, n = 20) of 1.6 × 10(-8) mol·L(-1). Furthermore, using ascorbic acid as reducing agents, both the preparation process and the resultant nanocomposite are nontoxic. To the best of our knowledge, this is the first report to enrich, separate and detect Hg(2+) contaminant simultaneously without causing any secondary pollution.
Collapse
Affiliation(s)
- Zhengquan Yan
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology and Solar Photovoltaic Materials Research Center, West Anhui University , Lu'an 237012, China
| | | | | | | | | |
Collapse
|
44
|
Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W. Citrate-Capped Platinum Nanoparticle as a Smart Probe for Ultrasensitive Mercury Sensing. Anal Chem 2014; 86:10955-60. [DOI: 10.1021/ac503544w] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gang-Wei Wu
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Department
of Pharmacy, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Shao-Bin He
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Hua-Ping Peng
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Hao-Hua Deng
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Ai-Lin Liu
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xin-Hua Lin
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xing-Hua Xia
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Chen
- Department
of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, Fujian 350004, China
- Nano
Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|
45
|
Hsu KC, Lee CF, Tseng WC, Chao YY, Huang YL. Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs–PDMS composite microfluidic device/ICP-MS system. Talanta 2014; 128:408-13. [DOI: 10.1016/j.talanta.2014.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/21/2023]
|
46
|
Hsu KI, Lien CW, Lin CH, Chang HT, Huang CC. Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 2014. [DOI: 10.1039/c4ra05047a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
47
|
Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4200-17. [PMID: 24692212 DOI: 10.1002/adma.201400238] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Indexed: 05/18/2023]
Abstract
Creating artificial enzymes that mimic the complexity and function of natural systems has been a great challenge for the past two decades. In this Progress Report, the focus is on recently discovered "hidden talents" of gold nanomaterials in artificial enzymes, including mimicking of nuclease, esterase, silicatein, glucose oxidase, peroxidase, catalase, and superoxide dismutase. These unexpected enzyme-like activities can be ascribed to nano-gold itself or the functional groups present on surrounding monolayer. Along with introducing the mechanisms of the various enzyme-like activities, the design and development of gold-based biomimetic catalysts, the search for efficient modulators, and their potential applications in bionics, biosensing, and biomedical sciences are highlighted. Eventually, it is expected that the rapidly growing interest in gold-based nanozymes will certainly fuel the excitement and stimulate research in this highly active field.
Collapse
Affiliation(s)
- Youhui Lin
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | |
Collapse
|
48
|
Lien CW, Tseng YT, Huang CC, Chang HT. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 2014; 86:2065-72. [PMID: 24451013 DOI: 10.1021/ac4036789] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution.
Collapse
Affiliation(s)
- Chia-Wen Lien
- Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan
| | | | | | | |
Collapse
|
49
|
Zhan L, Li CM, Wu WB, Huang CZ. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles–graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun (Camb) 2014; 50:11526-8. [DOI: 10.1039/c4cc05155f] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel colorimetric immunoassay for detection of respiratory syncytial virus (RSV) was developed based on mercury-stimulated peroxidase-like activity of gold nanoparticles–graphene composites (AuNPs–GO).
Collapse
Affiliation(s)
- Lei Zhan
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, China
| | - Chun Mei Li
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400716, China
| | - Wen Bi Wu
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400716, China
| | - Cheng Zhi Huang
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715, China
| |
Collapse
|
50
|
Xu Y, Jiang Z, Xiao Y, Zhang TT, Miao JY, Zhao BX. A new fluorescent turn-on chemodosimeter for mercury ions in solution and its application in cells and organisms. Anal Chim Acta 2014; 807:126-34. [DOI: 10.1016/j.aca.2013.11.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/11/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
|