1
|
Buczyńska D, Stelmach E, Jankowska M, Ruszczyńska A, Piątek P, Maksymiuk K, Michalska A. Adding colour to ion-selective membranes. Talanta 2025; 286:127497. [PMID: 39798414 DOI: 10.1016/j.talanta.2024.127497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one. Thus, coloured ion-selective membranes can be obtained. This in turn opens new possibilities of monitoring the state of the receptor layer as well as allows direct analytical application of ion-selective membranes in simple optical mode with all benefits related to eliminating the necessity of using reference electrodes. As a model system Nile blue derivative of tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ion-exchanger was prepared and used to obtain potassium or calcium selective sensors. Selective exchange of ions between the membrane and solution, leading to an increase in optical signal of the solution, can be used to quantify the presence of analyte ions. Thus the sensor pretreatment process is becoming a source of analytical information. The applicability of this approach was verified in determining the presence of potassium ions in the vast majority of interfering ions, e.g. present as impurities in the reagent grade calcium chloride. The resulting potassium ions contents was well comparable with values obtained in course of ICP-MS approach.
Collapse
Affiliation(s)
- Dorota Buczyńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Emilia Stelmach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maria Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Piotr Piątek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
2
|
Haidar LL, Wang Y, Gilmour AD, Austria E, Boumelhem BB, Aziz Khan N, Fadzil AA, Fraser ST, Bilek MMM, Akhavan B. Direct covalent attachment of fluorescent molecules on plasma polymerized nanoparticles: a simplified approach for biomedical applications. J Mater Chem B 2025; 13:1666-1680. [PMID: 39717992 DOI: 10.1039/d4tb01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers. While covalent attachment offers stability, it often entails laborious multi-step wet-chemistry processes. This work demonstrates that plasma polymerised nanoparticles (PPNs) can directly and covalently attach fluorescent molecules with no need for additional interim treatment processes. For the first time, we provide evidence indicating the formation of covalent bonds between the fluorescent molecules and PPN surfaces. Two model fluorescent molecules, fluorescein isothiocyanate (FITC) and Nile blue (NB), were attached to PPNs in a one-step process. The attached molecules remained on nanoparticle surfaces even after detergent washing, as confirmed by a combination of X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, flow cytometry, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. The robust attachment of fluorescent molecules on PPNs ensures their stability and functionality, enhancing the potential of these fluorescently labelled nanoparticles for diagnostic, therapeutic, and imaging applications.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuheng Wang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aaron D Gilmour
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elmer Austria
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Badwi B Boumelhem
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Naveed Aziz Khan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Arifah Anwar Fadzil
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart T Fraser
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
- School of Engineering, University of Newcastle, Callaghan, 2308 NSW, Australia.
| |
Collapse
|
3
|
Li JA, Pan N, Qi Z, He J, Wei Y, Chen W, Qu JB, Wang X, Huang F. Gold nanoclusters stabilized with dopa-containing ligands: Catalyst-indicator integrated probe for tumor cell screening. Talanta 2025; 282:126980. [PMID: 39368331 DOI: 10.1016/j.talanta.2024.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Elevated hydrogen peroxide (H2O2) levels not only inflict cellular damage but also serve as a harbinger for various diseases. Tumor cells, in particular, often exhibit an abundance of H2O2. Hence, the detection of this pivotal molecule assumes paramount importance in monitoring physiological states and expediting cancer diagnosis. To this end, we have ingeniously devised an enzyme-free and monomeric system for intracellular H2O2 detection. Our astute selection of dopa-containing peptidomimetics, replete with ortho-bisphenol and amino acid moieties, has engendered the synthesis of distinctive fluorescent gold nanoclusters (AuNCs). These nanoclusters not only function as a peroxidase-like catalyst, catalyzing the decomposition of H2O2 into hydroxyl radicals (·OH), but also serve as an indicator, with their fluorescence quenched in response to varying H2O2 concentrations. Experimental results evince that our GDpE-AuNCs exhibit remarkable sensitivity, boasting a detection limit of 0.49 μM and a linear range of 5-1000 μM. Moreover, the amalgamation of catalyst and indicator within a single structure, facilitating efficient cellular uptake, engenders intracellular H2O2 detection and discernment of tumor cells. This pioneering approach bequeaths a valuable assay probe for monitoring physiological states and ushering in early disease diagnosis.
Collapse
Affiliation(s)
- Jin-Ao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Nana Pan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zichun Qi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiahua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yifan Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Weilong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jian-Bo Qu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
4
|
He JF, Yang WW, Quan WX, Yang YC, Zhang Z, Luo QY. Application of rare earth elements in dual-modality molecular probes. RSC Adv 2024; 14:38480-38490. [PMID: 39640527 PMCID: PMC11618533 DOI: 10.1039/d4ra04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The unique 4f subshell electronic structure of rare earth elements endows them with exceptional properties in electrical, magnetic, and optical domains. These properties include prolonged fluorescence lifetimes, large Stokes shifts, distinctive spectral bands, and strong resistance to photobleaching, making them ideal for the synthesis of molecular probes. Each imaging technique possesses unique advantages and specific applicabilities but also inherent limitations due to its operational principles. Dual-modality molecular probes effectively address these limitations, particularly in applications involving high-resolution Magnetic Resonance Imaging (MRI) such as MRI/OI, MRI/PET, MRI/CT, and MRI/US. This review summarizes the applications, advantages, challenges, and current research status of rare earth elements in these four dual imaging modalities, providing a theoretical basis for the future development and application of rare earth elements in the field of dual-modality molecular probes.
Collapse
Affiliation(s)
- Jie-Fang He
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
| | - Wen-Wen Yang
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Wen-Xuan Quan
- Provincial Key Laboratory of Mountainous Ecological Environment, Guizhou Normal University Guiyang 550025 China
| | - Yue-Chun Yang
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhengwei Zhang
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
5
|
Li L, Lin D, Xu S, Yang L, Jiang C. Multi-deformable interpenetrating network thermosensitive hydrogel fluorescent device for real-time and visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135471. [PMID: 39146591 DOI: 10.1016/j.jhazmat.2024.135471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Functionalized thermosensitive hydrogel materials exhibit excellent properties for the fabrication of sensing devices that enable real-time visual detection of food safety duo to their good plasticity and powerful loading capacity. Here, a ratiometric fluorescent device based on an interpenetrating network (IPN) thermosensitive hydrogel was designed to embed functionalized Au nanoclusters (Au NCs) and Blue Carbon dots (BCDs) composites in a multi-network structure to build a sensitive hazardous material nitrite (NO2-) chemsensor. The hydrogel was utilized poloxamer 407 (P407), lignin and cellulose to form stable IPN structure, which resulted in complementation and synergy, thereby strengthening its porous network structure. The combination of fluorescent nanoprobes with the porous network structure has the potential to enhance stable fluorescence signals and improve sensing sensitivity. Moreover, the thermosensitive liquid-solid transition characteristics of the hydrogel facilitate its preparation into diverse sensing devices following curing at room temperature. The hydrogel device, when combined with a smartphone system, converted image information into data information, thereby enabling the accurate quantification of NO2- with a detection limit of 9.38 nM in 2 s. The designed multi-functional hydrogel device is capable of real-time differentiation of NO2- dosage with the naked eye, offering a high-contrast, rapid-response sensing methodology for visual assessment of food freshness. This research contributes to the expansion of hydrogel materials applications and the detection of hazardous materials in food safety.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
6
|
Imali DY, Perera ECJ, Kaumal MN, Dissanayake DP. Conducting polymer functionalization in search of advanced materials in ionometry: ion-selective electrodes and optodes. RSC Adv 2024; 14:25516-25548. [PMID: 39139237 PMCID: PMC11321474 DOI: 10.1039/d4ra02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Functionalized conducting polymers (FCPs) have recently garnered attention as ion-selective sensor materials, surpassing their intrinsic counterparts due to synergistic effects that lead to enhanced electrochemical and analytical parameters. Following a brief introduction of the fundamental concepts, this article provides a comprehensive review of the recent developments in the application of FCPs in ion-selective electrodes (ISEs) and ion-selective optodes (ISOs), particularly as ion-to-electron transducers, optical transducers, and ion-selective membranes. Utilizing FCPs in these devices offers a promising avenue for detecting and measuring ions in various applications, regardless of the sample nature and composition. Research has focused on functionalizing different conducting polymers, such as polyaniline and polypyrrole, through strategies such as doping and derivatization to alter their hydrophobicity, conductance, redox capacitance, surface area, pH sensitivity, gas and light sensitivity, etc. These modifications aim to enhance performance outcomes, including potential stability/emission signal stability, reproducibility and low detection limits. The advancements have led to the transition of ISEs from conventional zero-current potentiometric ion sensing to innovative current-triggered sensing approaches, enabling calibration-free applications and emerging concepts such as opto-electro dual sensing systems. The intrinsic pH cross-response and instability of the optical signal of ISOs have been overcome through the novel optical signal transduction mechanisms facilitated by FCPs. In this review, the characteristics of materials, functionalization approaches, particular implementation strategies, specific performance outcomes and challenges faced are discussed. Consolidating dispersed information in the field, the in-depth analysis presented here is poised to drive further innovations by broadening the scope of ion-selective sensors in real-world scenarios.
Collapse
Affiliation(s)
- D Yureka Imali
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | | - M N Kaumal
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | |
Collapse
|
7
|
Gerardos AM, Foryś A, Trzebicka B, Pispas S. Self-Assembly of Hydrophobic Hyperbranched PLMA Homopolymer with -COOH End Groups as Effective Nanocarriers for Bioimaging Applications. Polymers (Basel) 2024; 16:2166. [PMID: 39125191 PMCID: PMC11314538 DOI: 10.3390/polym16152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with -COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT-IR), and 1H-NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
8
|
Zhang N, Yu L, Zhang NN, Liu K, Lu ZY. Programmable Colloids with Analogous Hypercoordination Complex Architectures. J Phys Chem Lett 2024:5159-5164. [PMID: 38713012 DOI: 10.1021/acs.jpclett.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Colloidal molecule clusters (CMCs) are promising building blocks with molecule-like symmetry, offering exceptional synergistic properties for applications in plasmonics and catalysis. Traditional CMC fabrication has been limited to simple molecule-like structures utilizing isotropic particles. Here, we employ molecular dynamics simulation to investigate the co-assembly of anisotropic nanorods (NRs) and the stimulus-responsive polymer (SRP) via reversible adsorption. The results of the simulation show that it is possible to fabricate hypercoordination complex structures with high symmetry from the co-assembly of NRs and the SRP, even in analogy to the Th(BH4)4 structure. The coordination number of these CMCs can be precisely programmed by adjusting the shape and size of the ends of the NRs and the SRP cohesion energy. Furthermore, a finite-difference time-domain simulation indicates these hypercoordination structures exhibit significantly enhanced optical activity and plasmonic coupling effects. These findings introduce a new design approach for complex molecule-like structures utilizing anisotropic nanoparticles and may expand the applications of CMCs in photonics.
Collapse
Affiliation(s)
- Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
9
|
Zhong W, Shang L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem Sci 2024; 15:6218-6228. [PMID: 38699274 PMCID: PMC11062085 DOI: 10.1039/d4sc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
10
|
Ozawa K, Adachi M, Sugimoto H, Fujii M. Photoluminescence from FRET pairs coupled with Mie-resonant silicon nanospheres. NANOSCALE 2024; 16:4039-4046. [PMID: 38344928 DOI: 10.1039/d3nr06290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Optically resonant nanoparticles decorated with donor-acceptor molecular pairs have been attracting attention for applications as nanoprobes in bioimaging and biosensing. We produced composite nanoparticles composed of donor-acceptor molecular pairs and silicon nanospheres (Si NSs) with diameters of 100-200 nm exhibiting Mie resonances in the visible range and studied the effect of Mie resonances on their photoluminescence properties. We showed that the photoluminescence spectra are strongly modified by Mie resonances and the spectral shape is controlled in a wide range by the Si NS size; by controlling the size, we can achieve the photoluminescence maximum from that of a donor molecule to that of an acceptor molecule almost continuously. From the photoluminescence decay properties in combination with theoretical calculations, we showed that the observed strong modification of the spectral shape is mainly due to the Purcell effect on donor and acceptor molecules, and the effect of Mie resonances on the Förster resonance energy transfer (FRET) rate is relatively small. We also showed that because of the large Purcell effect and the small FRET rate enhancement, Mie resonances decrease the FRET efficiency.
Collapse
Affiliation(s)
- Keisuke Ozawa
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
11
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
12
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
13
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
14
|
Colombo E, Aydın EM, Canıtez İS, Polito L, Penconi M, Bossi A, Impresari E, Passarella D, Dallavalle S, Athanassopoulos CM, Pellegrino S, Şahin ID, Christodoulou MS. Tetraphenylethylene-Based Photoluminescent Self-Assembled Nanoparticles: Preparation and Biological Evaluation. ACS Med Chem Lett 2023; 14:1472-1477. [PMID: 37849561 PMCID: PMC10577884 DOI: 10.1021/acsmedchemlett.3c00396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
The conjugation of tetraphenylethylene (TPE) with podophyllotoxin, N-desacetylthiocolchicine, and cabazitaxel through a sebacic acid linker led to the formation of fluorescent nanoparticles. Dynamic light scattering (DLS) and photoluminescence spectroscopy were used for the identification and characterization of the fluorescent nanoparticles. The biological evaluation was determined in three human ovarian (KURAMOCHI, OVCAR3, OVSAHO) and three human breast (MCF7, SKBR 3, and MDA-MB231) cancer cell lines. In the case of cabazitaxel, the nanoparticles maintained the activity of the parent drug, at the low nanomolar range, while exhibiting high blue fluorescence. The internalization of the fluorescent NPs into cells was detected using immunofluorescence assay.
Collapse
Affiliation(s)
- Eleonora Colombo
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, 20133 Milano, Italy
- Ann Romney
Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Elif Merve Aydın
- Koc
University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - İdil Su Canıtez
- Koc
University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Laura Polito
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta”, SCITEC−CNR, 20138 Milano, Italy
| | - Marta Penconi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta”, SCITEC−CNR, 20138, Milano, Italy
- SmartMatLab
Center, 20133 Milano, Italy
| | - Alberto Bossi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta”, SCITEC−CNR, 20138, Milano, Italy
- SmartMatLab
Center, 20133 Milano, Italy
| | - Elisa Impresari
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica “A. Marchesini”, Università degli Studi di Milano, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, 20133 Milano, Italy
| | - Sabrina Dallavalle
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | | | - Sara Pellegrino
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica “A. Marchesini”, Università degli Studi di Milano, 20133 Milano, Italy
| | | | - Michael S. Christodoulou
- Department
of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
15
|
Xu J, Wang J, Li Y, Zhang L, Bi N, Gou J, Zhao T, Jia L. A wearable gloved sensor based on fluorescent Ag nanoparticles and europium complexes for visualized assessment of tetracycline in food samples. Food Chem 2023; 424:136376. [PMID: 37244186 DOI: 10.1016/j.foodchem.2023.136376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The abuse of tetracycline antibiotics leads to accumulating residues in the human body, seriously affecting human health. Establishing a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline (TC) is necessary. This study integrated silver nanoclusters and europium-based materials into the same nano-detection system to construct a visual and rapid TC sensor with rich fluorescence color changes. The nanosensor has the advantages of a low detection limit (10.5 nM), high detection sensitivity, fast response, and wide linear range (0-30 μM), which can meet the analysis requirements of different types of food samples. In addition, portable devices based on paper and gloves were designed. Through the smartphone's chromaticity acquisition and calculation analysis application (APP), the real-time rapid visual intelligent analysis of TC in the sample can be realized, which guides the intelligent application of multicolor fluorescent nanosensors.
Collapse
Affiliation(s)
- Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Junxi Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| |
Collapse
|
16
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
17
|
Vega JD, Hara D, Schmidt RM, Abuhaija MB, Tao W, Dogan N, Pollack A, Ford JC, Shi J. In vivo active-targeting fluorescence molecular imaging with adaptive background fluorescence subtraction. Front Oncol 2023; 13:1130155. [PMID: 36998445 PMCID: PMC10043309 DOI: 10.3389/fonc.2023.1130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Using active tumor-targeting nanoparticles, fluorescence imaging can provide highly sensitive and specific tumor detection, and precisely guide radiation in translational radiotherapy study. However, the inevitable presence of non-specific nanoparticle uptake throughout the body can result in high levels of heterogeneous background fluorescence, which limits the detection sensitivity of fluorescence imaging and further complicates the early detection of small cancers. In this study, background fluorescence emanating from the baseline fluorophores was estimated from the distribution of excitation light transmitting through tissues, by using linear mean square error estimation. An adaptive masked-based background subtraction strategy was then implemented to selectively refine the background fluorescence subtraction. First, an in vivo experiment was performed on a mouse intratumorally injected with passively targeted fluorescent nanoparticles, to validate the reliability and robustness of the proposed method in a stringent situation wherein the target fluorescence was overlapped with the strong background. Then, we conducted in vivo studies on 10 mice which were inoculated with orthotopic breast tumors and intravenously injected with actively targeted fluorescent nanoparticles. Results demonstrated that active targeting combined with the proposed background subtraction method synergistically increased the accuracy of fluorescence molecular imaging, affording sensitive tumor detection.
Collapse
Affiliation(s)
- Jorge D. Vega
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Daiki Hara
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Ryder M. Schmidt
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Marwan B. Abuhaija
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nesrin Dogan
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John C. Ford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- *Correspondence: John C. Ford, ; Junwei Shi,
| | - Junwei Shi
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: John C. Ford, ; Junwei Shi,
| |
Collapse
|
18
|
Lee M, Joo S, Lee TG. Quantitative evaluation of brightness of fluorescent nanoparticles using
DNA
origami standards. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Mina Lee
- Safety Measurement Institute Korea Research Institute of Standards and Science (KRISS) Daejeon South Korea
| | - Sihwa Joo
- Safety Measurement Institute Korea Research Institute of Standards and Science (KRISS) Daejeon South Korea
| | - Tae Geol Lee
- Safety Measurement Institute Korea Research Institute of Standards and Science (KRISS) Daejeon South Korea
- Department of Nano Science University of Science and Technology (UST) Daejeon South Korea
| |
Collapse
|
19
|
Zhang Y, Du Y, Yuan Q, Hang C, Zhang X, Hu B, Jin Q, Chen M. Unraveling the Strong Fluorescence Enhancement of HPBI Molecules by ZIF-8 Colloidal Suspensions via Adsorption Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3312-3319. [PMID: 36802635 DOI: 10.1021/acs.langmuir.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the fluorescence of organic dye by colloidal particles is one of the most promising routes to optimize fluorescence detection. However, in addition to metallic particles, which serve as the most frequently used particles and have been found to employ the plasmonic resonance to provide strong fluorescence enhancement, neither new types of colloidal particles nor new fluorescence mechanisms have been intensively explored in recent years. In this work, strongly enhanced fluorescence was observed when 2-(2-hydroxyphenyl)-1H-benzimidazole (HPBI) molecules were simply mixed with zeolitic imidazolate framework-8 (ZIF-8) colloidal suspensions. Moreover, the enhancement factor ΔI = IHPBI+ZIF-8/IHPBI does not increase accordingly with the increasing amount of HPBI. To find out how the strong fluorescence was triggered and affected by the amount of HPBI, multiple techniques were applied to analyze the adsorption behavior. By combining analytical ultracentrifugation with first-principles calculations, we proposed that HPBI molecules were adsorbed onto the surface of ZIF-8 particles coordinatively and electrostatically, depending on the concentration of HPBI molecules. The coordinative adsorption would result in a new kind of fluorescence emitter. The new fluorescence emitters tend to distribute on the outer surface of ZIF-8 particles periodically. The distance between each fluorescence emitter is fixed and much smaller than the wavelength of the excitation light. Thus, it can be concluded that collective spontaneous emission might be triggered.
Collapse
Affiliation(s)
- Yuyi Zhang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yuting Du
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Chao Hang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xiaolei Zhang
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Qingyuan Jin
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Mengdi Chen
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
20
|
Ferguson CA, Hwang JCM, Zhang Y, Cheng X. Single-Cell Classification Based on Population Nucleus Size Combining Microwave Impedance Spectroscopy and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:1001. [PMID: 36679798 PMCID: PMC9860723 DOI: 10.3390/s23021001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Many recent efforts in the diagnostic field address the accessibility of cancer diagnosis. Typical histological staining methods identify cancer cells visually by a larger nucleus with more condensed chromatin. Machine learning (ML) has been incorporated into image analysis for improving this process. Recently, impedance spectrometers have been shown to generate all-inclusive lab-on-a-chip platforms to detect nucleus abnormities. In this paper, a wideband electrical sensor and data analysis paradigm that can identify nuclear changes shows the realization of a single-cell microfluidic device to detect nuclei of altered sizes. To model cells of altered nucleus, Jurkat cells were treated to enlarge or shrink their nucleus followed by broadband sensing to obtain the S-parameters of single cells. The ability to deduce important frequencies associated with nucleus size is demonstrated and used to improve classification models in both binary and multiclass scenarios, despite a heterogeneous and overlapping cell population. The important frequency features match those predicted in a double-shell circuit model published in prior work, demonstrating a coherent new analytical technique for electrical data analysis. The electrical sensing platform assisted by ML with impressive accuracy of cell classification looks forward to a label-free and flexible approach to cancer diagnosis.
Collapse
Affiliation(s)
| | - James C. M. Hwang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
21
|
González K, Gangapurwala G, Alex J, Vollrath A, Cseresnyés Z, Weber C, Czaplewska JA, Hoeppener S, Svensson CM, Orasch T, Heinekamp T, Guerrero-Sánchez C, Figge MT, Schubert US, Brakhage AA. Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Appl Microbiol Biotechnol 2023; 107:819-834. [PMID: 36480041 PMCID: PMC9842589 DOI: 10.1007/s00253-022-12287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.
Collapse
Affiliation(s)
- Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| | - Gauri Gangapurwala
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Thomas Orasch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| |
Collapse
|
22
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
24
|
Konefał A, Piątek P, Paterczyk B, Maksymiuk K, Michalska A. Ionophore based optical sensors using hydrophilic polymer matrix – Ratiometric, pH independent ion-selective optodes. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Umabharathi PS, Karpagam S. Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
Collapse
Affiliation(s)
| | - Subramanian Karpagam
- Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore - 14 , Tamil Nadu , India
| |
Collapse
|
26
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
28
|
Su G, Li Z, Dai R. Recent Advances in Applied Fluorescent Polymeric Gels. ACS APPLIED POLYMER MATERIALS 2022; 4:3131-3152. [DOI: 10.1021/acsapm.1c01504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Gongmeiyue Su
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Sciences, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
29
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
30
|
Rehhagen C, Rather SR, Schwarz KN, Scholes GD, Lochbrunner S. The effect of intermolecular electronic coupling on the exciton dynamics in perylene red nanoparticles. Phys Chem Chem Phys 2022; 24:8695-8704. [PMID: 35373223 DOI: 10.1039/d1cp05375b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the transport mechanisms of electronic excitations in molecular systems is the basis for their application in light harvesting and opto-electronic devices. The exciton transfer properties depend pivotally on the intermolecular coupling and the latter on the supramolecular structure. In this work, organic nanoparticles of the perylene derivative Perylene Red are prepared with flash-precipitation under different conditions. We correlate their intermolecular couplings, optical spectra, quantum yields, emission lifetimes and their size and characterize their exciton dynamics upon excitation with ultrashort laser pulses by transient absorption spectroscopy. We find that the intermolecular coupling can be varied by changing the preparation conditions and thus the supramolecular structure. In contrast to the monomeric system, the generation of charge-transfer states is found after optical excitation of the nanoparticles. The time of the generation step is in the order of 100 ps and depends on the intermolecular coupling. The mobility of the originally excited excitons is determined from measurements with varying exciton density. To this end, we model the contribution of exciton-exciton annihilation to the exciton decay assuming three-dimensional incoherent diffusion. The extracted exciton diffusion constant of nanoparticles with stronger intermolecular coupling is found to be 0.17 nm2 ps-1 and thereby about ten times higher than in the particles with smaller coupling.
Collapse
Affiliation(s)
- Chris Rehhagen
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany.
| | | | - Kyra N Schwarz
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany.
| |
Collapse
|
31
|
Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022; 243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
32
|
Metal-free Lewis pairs catalysed synthesis of fluorescently labelled polyester-based amphiphilic polymers for biological imaging. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Cappellozza E, Boschi F, Sguizzato M, Esposito E, Cortesi R, Malatesta M, Calderan L. A spectrofluorometric analysis to evaluate transcutaneous biodistribution of fluorescent nanoparticulate gel formulations. Eur J Histochem 2022; 66. [PMID: 35130675 PMCID: PMC8859714 DOI: 10.4081/ejh.2022.3321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
The investigation of the absorption of drug delivery systems, designed for the transport of therapeutic molecules inside the body, could be relatively simplified by the fluorophore association and tracking by means of bio-imaging techniques (i.e., optical in vivo imaging or confocal and multiphoton microscopy). However, when a fluorescence signal comes out from the skin, its specific detection can be problematic. Skin high autofluorescence can hinder the observation of administered exogenous fluorophores conjugated to drug delivery systems, making it more challenging to detect their biodistribution. In the present study, we have developed a method based on the spectrofluorometric analysis of skin samples to discriminate the fluorescent signal coming from administered fluorescent molecules from the background. Moreover, we gave a semi-quantitative evaluation of the signal intensity. Thus, we distinguished two gel formulations loading the fluorophore rhodamine B (called GEL RHO and GEL SLN-RHO). The two formulations of gels, one of which containing solid lipid nanoparticles (GEL RHO-SLN), were administered on skin explants incubated in a bioreactor, and the penetration was evaluated at different time points (2 and 6 hours). Cryostatic sections of skin samples were observed with confocal laser scanning microscopy, and a spectrofluorometric analysis was performed. Significantly higher signal intensity in the samples administered with SLN-RHO GEL, with a preferential accumulation in the hair bulbs, was found. Reaching also the deeper layers of the hair shaft after 6 hours, the solid lipid nanoparticles thickened with polymer represent a suitable drug delivery system for transcutaneous administration.
Collapse
|
34
|
Wu Y, Shi C, Wang G, Sun H, Yin S. Recent Advances in the Development and Applications of Conjugated Polymer dots. J Mater Chem B 2022; 10:2995-3015. [DOI: 10.1039/d1tb02816b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer dots or semiconducting polymer nanoparticles (Pdots) are nanoparticles prepared based on organic polymers. Pdots have the advantages of lower cost, simple preparation process, good biocompatibility, excellent stability, easy...
Collapse
|
35
|
Al-Assar NB, Khattak MNK, Mashwani ZUR, Kanan S, Ullah I, Ali U, Khan AA. Phytochemical profile and antiproliferative activities of acetone extracts of Asplenium polypodioides Blume. and A. dalhousiae Hook. in MDA-MB-231 breast cancer cells. Saudi J Biol Sci 2021; 28:6324-6331. [PMID: 34764753 PMCID: PMC8568994 DOI: 10.1016/j.sjbs.2021.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022] Open
Abstract
The plants extracts are widely used in traditional medicines and hence considered a potential source for drug discovery. In this study, we assessed the phytochemical composition of Asplenium dalhousiae and Asplenium polypodioides in acetone extracts and checked its antiproliferative potential in MDA-MB-231 cells. We found that both plants are rich in phenolic and flavonoid compounds and are efficient in antioxidant activities. The total phenolic compounds in A. dalhousiae were 44.15 ± 1.38 µg/mg whereas in A. polypodioides were 27.73 ± 1.35 µg/mg. Total flavonoids in A. dalhousiae were 105.39 ± 2.92 µg/mg whereas in A. polypodioides were 101.56 ± 1.75 µg/mg. The ferric reducing power assay indicates 66.38 ± 2.6% reduction by A. dalhousiae whereas 78.43 ± 0.47% reduction by A. polypodioides. Similarly, the total antioxidant capacity of A. dalhousiae was found to be 59.95 ± 1.13 whereas for A. polypodioides the recorded value was 33.03 ± 1.67%. Using GCMS analysis, we identified 25 compounds in A. dalhousiae whereas 26 in A. polypodioides. Four of these compounds are common in both plants. The morphological study and MTT assay revealed that both plants have antiproliferative potential as both plants exerted significant effects on the shape of the MDA-MB-231 cells and inhibited cellular proliferation in time and dose dependent manner. We conclude that both Asplenium plants have potential anticancer compounds.
Collapse
Affiliation(s)
- Nada Beesan Al-Assar
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cells Research Group, University of Sharjah, United Arab Emirates
| | - Zia-Ur-Rehman Mashwani
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, United Arab Emirates
| | - Ikram Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Usman Ali
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cells Research Group, University of Sharjah, United Arab Emirates
| |
Collapse
|
36
|
Stelmach E, Maksymiuk K, Michalska A. Dual Sensitivity─Potentiometric and Fluorimetric─Ion-Selective Membranes. Anal Chem 2021; 93:14737-14742. [PMID: 34699175 PMCID: PMC8581967 DOI: 10.1021/acs.analchem.1c03193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Classical application of ion-selective membranes is limited to either electrochemical or optical experiments. Herein, the proposed ion-selective membrane system can be used in both modes; each of them offering competitive analytical parameters: high selectivity and linear dependence of the signal on logarithm of analyte concentration, high potential stability in potentiometric mode, or applicability for alkaline solutions in optical mode. Incorporation of analyte ions into the membrane results in potentiometric signals, as in a classical system. However, due to the presence of lipophilic positively charged ions, polymer backbones, full saturation of the membrane is prevented even for long contact time with solution. The presence of both positively charged and neutral forms of conducting polymers in the membrane results in high stability of potential readings in time. Optical signal generation is based on polythiophene particulates dispersed within the ion-selective membrane as the optical transducer. An increase of emission is observed with an increase of analyte contents in the sample.
Collapse
Affiliation(s)
- Emilia Stelmach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
37
|
Stelmach E, Nazaruk E, Maksymiuk K, Michalska A. Cubosome Based Ion-Selective Optodes-Toward Tunable Biocompatible Sensors. Anal Chem 2021; 93:13106-13111. [PMID: 34546044 PMCID: PMC8495674 DOI: 10.1021/acs.analchem.1c01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/28/2022]
Abstract
We report here on a new generation of optical ion-selective sensors benefiting from cubosomes or hexosomes-nanostructural lipid liquid phase. Cubosome as well as hexosome optodes offer biocompatibility, self-assembly preparation, high stability in solution, and unique, tunable analytical performance. The temperature trigger reversibly changes the lipid nanoparticle internal structure-changing analyte access to the bulk of the probe and ultimately affecting the response pattern. Thus, cubosome or hexosome optodes are highly promising alternatives to conventional polymeric based optical nanoprobes.
Collapse
Affiliation(s)
- Emilia Stelmach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
38
|
Pan T, Shen M, Shi J, Ning J, Su F, Liao J, Tian Y. Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging. SENSORS AND ACTUATORS B: CHEMICAL 2021; 345:130450. [DOI: 10.1016/j.snb.2021.130450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
39
|
Thomas B, Jose ET, Chacko JK, Divya KV. Green Light Emitting Cadmium Sulfide Nanoparticles with Coral Surface Morphology. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Khorablou Z, Shahdost-Fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. CHEMOSPHERE 2021; 278:130393. [PMID: 33823350 DOI: 10.1016/j.chemosphere.2021.130393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Recognition of misused stimulant drugs has always been a hot topic from a medical and judicial perspective. Methamphetamine (MAMP) is an addictive and illegal drug that profoundly affects the central nervous system. Like other illicit drugs, the detection of MAMP in biological and street samples is vital for several organizations such as forensic medicine, anti-drug headquarters and diagnostic clinics. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of analytical sensors in MAMP tracing. For the first time, this study has briefly reviewed all the optical and electrochemical sensors in MAMP detection from earlier so far. How various receptors with engineering nanomaterials allow developing novel approaches to measure MAMP have been studied. Fundamental concepts related to optical and electrochemical recognition assays in which nanomaterials have been used and relevant MAMP sensing applications have been comprehensively covered. Challenges, opportunities and future outlooks of this field have also been discussed at the end.
Collapse
Affiliation(s)
- Zeynab Khorablou
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
41
|
Recent developments on fluorescent hybrid nanomaterials for metal ions sensing and bioimaging applications: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115950] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B 2021; 8:7042-7061. [PMID: 32743631 DOI: 10.1039/d0tb00570c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive polymers exhibit properties that make them ideal candidates for biosensing and molecular diagnostics. Through rational design of polymer composition combined with new polymer functionalization and synthetic strategies, polymers with myriad responsivities, e.g., responses to temperature, pH, biomolecules, CO2, light, and electricity can be achieved. When these polymers are specifically designed to respond to biomarkers, stimuli-responsive devices/probes, capable of recognizing and transducing analyte signals, can be used to diagnose and treat disease. In this review, we highlight recent state-of-the-art examples of stimuli-responsive polymer-based systems for biosensing and bioimaging.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
43
|
Yun W, Zhu H, Wu H, Zhuo L, Wang R, Ha X, Wang X, Zhang J, Chen H, Yang L. A "turn-on" and proximity ligation assay dependent DNA tweezer for one-step amplified fluorescent detection of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119292. [PMID: 33348097 DOI: 10.1016/j.saa.2020.119292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A "turn-on" and proximity ligation assay dependent DNA tweezer was proposed for one-step amplified fluorescent detection of DNA. Target DNA can anneal with capture probe to form an entire long sequence. The formed long sequence can circularly open the hairpin, resulting the "turn-on" of DNA tweezers. A good linear relationship was shown from 40 pM to 20 nM with limit of detection of 10 pM. In addition, it has been successfully utilized to analysis DNA in human serum, representing a great and practical application future.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hanhong Zhu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Zhuo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruiqi Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xia Ha
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 803 Zhongshan North 1st Road, Shanghai 200083, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
44
|
Kokorina AA, Ponomaryova TS, Goryacheva IY. Photoluminescence-based immunochemical methods for determination of C-reactive protein and procalcitonin. Talanta 2021; 224:121837. [PMID: 33379055 DOI: 10.1016/j.talanta.2020.121837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Modern, sensitive, rapid, and selective analytical methods for the detection of inflammatory markers are a crucial tool for the assessment of inflammation state, efficacy of medical intervention, and the prediction of future diseases. Their development requires understanding of current state for point-of-care testing of inflammatory markers and identification of their crucial drawbacks. This review summarizes the progress in the application of luminescent labels for immunoassays. The luminescent labels became more popular in the latest decade due to their high sensitivity, selectivity, and robustness. This review presents a constructive analysis of different luminescent labels such as fluorescent organic dyes, quantum dots, long-lived emissive nanoparticles, and up-converting nanocrystals, as well as a range of the strategies for inflammatory markers determination. The advantages and disadvantages of all classes of luminescent labels are demonstrated, and the strategies of labels modification for their improvement are discussed. The current approaches for the creation of luminescent probes and robust assays are also highlighted.
Collapse
Affiliation(s)
- Alina A Kokorina
- Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia.
| | | | | |
Collapse
|
45
|
Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent nanomaterials have exhibited promising applications in biomedical and tissue engineering fields. To improve the properties and expand bioapplications of fluorescent nanomaterials, various functionalization and biomodification strategies have been utilized to engineer the structure and function of fluorescent nanomaterials. Due to their high biocompatibility, satisfied bioactivity, unique biomimetic function, easy structural tailoring, and controlled self-assembly ability, supramolecular peptides are widely used as versatile modification agents and nanoscale building blocks for engineering fluorescent nanomaterials. In this work, recent advance in the synthesis, structure, function, and biomedical applications of peptide-engineered fluorescent nanomaterials is presented. Firstly, the types of different fluorescent nanomaterials are introduced. Then, potential strategies for the preparation of peptide-engineered fluorescent nanomaterials via templated synthesis, bioinspired conjugation, and peptide assembly-assisted synthesis are discussed. After that, the unique structure and functions through the peptide conjugation with fluorescent nanomaterials are demonstrated. Finally, the biomedical applications of peptide-engineered fluorescent nanomaterials in bioimaging, disease diagnostics and therapy, drug delivery, tissue engineering, antimicrobial test, and biosensing are presented and discussed in detail. It is helpful for readers to understand the peptide-based conjugation and bioinspired synthesis of fluorescent nanomaterials, and to design and synthesize novel hybrid bionanomaterials with special structures and improved functions for advanced applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiujie Sang
- Department of Food and Medicine, Weifang Vocational College, Weifang, 262737, P. R. China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Faculty of Production Engineering, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
46
|
Chen S, Yu D, Zhong W, Liu J, Liu J, Liu B, Zheng J, Yang R. Visualization of O 2/ATP cross-talk in living cells with a smart fluorescent nanoprobe. Chem Commun (Camb) 2021; 57:7786-7789. [PMID: 34264259 DOI: 10.1039/d1cc02644e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we propose a dual-responsive fluorescent nanoprobe to visualize the cross-talk between O2 and adenosine triphosphate (ATP) in living cells. We hope it will be a helpful tool for the further understanding of cellular metabolism and further facilitating risk warning in the process of adaptation to consistent environmental pressures in premalignant lesions.
Collapse
Affiliation(s)
- Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Dingwen Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Wen Zhong
- Department of Geriatrics, Department of General Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
| | - Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Jun Liu
- Department of Geriatrics, Department of General Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
| | - Bo Liu
- Department of Geriatrics, Department of General Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha, 410082, China.
| |
Collapse
|
47
|
Yuan Y, Hou W, Qin W, Wu C. Recent advances in semiconducting polymer dots as optical probes for biosensing. Biomater Sci 2021; 9:328-346. [DOI: 10.1039/d0bm01038c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review mainly summarized the recent results that used bright polymer dots (Pdots) for the detection of different analytes such as reactive oxygen species (ROS), metal ions, pH values, and a variety of biomolecules.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Weiying Hou
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Weiping Qin
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Changfeng Wu
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
48
|
Peng Y, Cheng Z, Khan WU, Liu T, Shen M, Yang S, Zhang Y. Enhancing upconversion emissions and temperature sensing properties by incorporating Mn 2+ for KLu 2F 7:Yb 3+/Er 3+ nanocrystals based on thermally and non-thermally coupled levels. NEW J CHEM 2021. [DOI: 10.1039/d0nj06195f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pure phase KLu2F7:Yb3+/Er3+/Mn2+ nanocrystals were obtained for which the temperature sensitivity reached up to 45.11 × 10−3 K−1 employing non-thermally coupled levels.
Collapse
Affiliation(s)
- Yan Peng
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Zhiyuan Cheng
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Wasim Ullah Khan
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Tong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Menghan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Shenghong Yang
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
49
|
Pack CG, Paulson B, Shin Y, Jung MK, Kim JS, Kim JK. Variably Sized and Multi-Colored Silica-Nanoparticles Characterized by Fluorescence Correlation Methods for Cellular Dynamics. MATERIALS 2020; 14:ma14010019. [PMID: 33374548 PMCID: PMC7793086 DOI: 10.3390/ma14010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.
Collapse
Affiliation(s)
- Chan-Gi Pack
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Bjorn Paulson
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
| | - Yeonhee Shin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Min Kyo Jung
- Neural Circuits Group, Korea Brain Research Institute, Daegu 41062, Korea;
| | - Jun Sung Kim
- Research and Development Center, H-MED Incorporated, Seoul 03761, Korea
- Correspondence: (J.S.K.); (J.K.K.); Tel.: +82-2-3010-8619 (J.K.K.)
| | - Jun Ki Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea; (C.-G.P.); (B.P.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (J.S.K.); (J.K.K.); Tel.: +82-2-3010-8619 (J.K.K.)
| |
Collapse
|
50
|
Sun W, Tang F, Cui JX, Lu ZL. Fluorescent Nanoparticles for Targeted Tumor Imaging and DNA Tracking Gene Delivery In Vitro/ In Vivo. ACS OMEGA 2020; 5:31700-31705. [PMID: 33344822 PMCID: PMC7745405 DOI: 10.1021/acsomega.0c04213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Fluorescence detection is desirable to track the gene transfer process in order to explain the mechanism. Here, a fluorescent nanoparticle, diketopyrrolopyrrole-based liposome (DPL), was prepared for DNA delivery and tumor imaging in vitro and in vivo. The process to deliver DNA into cells was detected in real time by DPL according to the fluorescent property. The transfection efficacies (TEs) for luciferase and enhanced green fluorescent protein (EGFP) analysis of DPL were 1.5 times those of the commercial transfection agent Lipo 2000. Importantly, the DPL/DNA system has high EGFP TE in vivo with tumor targeting ability. This work provided an effective strategy for monitoring transfection processes.
Collapse
Affiliation(s)
- Wan Sun
- Shandong
Provincial Engineering Laboratory of Novel Pharmaceutical Excipients,
Sustained and Controlled Release Preparations, College of Medicine
and Nursing, Dezhou University, Dezhou 253023, China
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang Tang
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing-Xue Cui
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|