1
|
Ghaedamini H, Kim DS. Recent advances in electrochemical detection of reactive oxygen species: a review. Analyst 2025; 150:1490-1517. [PMID: 40151998 DOI: 10.1039/d4an01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Reactive oxygen species (ROS) are mainly generated as a result of cellular metabolism in plants and animals, playing a crucial role in cellular signaling mechanisms. The excessive generation of ROS leads to oxidative stress, which is associated with numerous diseases such as cancer, diabetes, and neurodegenerative disorders. Superoxide (O2˙-), hydrogen peroxide (H2O2), and hydroxyl radicals (˙OH) are the most common ROS involved in a wide range of human diseases. Therefore, sensitive and selective detection of these ROS is of paramount importance for understanding their roles in biological systems and for disease diagnosis. Among the various detection methods, electrochemical techniques have gained significant attention due to their high sensitivity, selectivity, and real-time monitoring capabilities. Electrochemical methods incorporate both organic and inorganic molecules to detect and monitor ROS, facilitating a deeper understanding of how their levels influence diseases linked to oxidative stress. This review aims to provide a critical discussion on the recent advances in electrochemical methods for detecting O2˙-, H2O2, and ˙OH. The review also highlights the application of these electrochemical techniques in detecting ROS in living cells and discusses the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Hamidreza Ghaedamini
- Department of Chemical Engineering, University of Toledo, Toledo, OH, 43606, USA.
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
2
|
Cui H, Ma J, Liu Y, Wang C, Song Q. Dimethyl Sulfoxide: An Ideal Electrochemical Probe for Hydroxyl Radical Detection. ACS Sens 2024; 9:1508-1514. [PMID: 38387077 DOI: 10.1021/acssensors.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In situ and real-time determination of hydroxyl radicals (•OH) in physiological and pathological processes is a great challenge due to their ultrashort lifetime. Herein, an electrochemical method was developed by using dimethyl sulfoxide (DMSO) as a trapping probe for rapid determination of •OH in aqueous solution. When DMSO reacted with •OH, an intermediate product methane sulfinic acid (MSIA) was formed, which can be electrochemically oxidized to methanesulfonic acid (MSA) on the glassy carbon electrode (GCE), resulting in a distinct voltammetric signal that is directly proportional to the concentration of •OH. Other commonly encountered reactive oxygen species (ROS), including hypochlorite anions (ClO-), superoxide anions (O2•-), sulfate radicals (SO4•-), and singlet oxygen (1O2), have showed no interference for •OH determination. Thus, an electrochemical method was developed for the determination of •OH, which exhibits a wide linear range (0.4-5120 μM) and a low limit detection of 0.13 μM (S/N = 3) and was successfully applied for the quantification of •OH in aqueous extracts of cigarette tar (ACT). Alternatively, the same reaction mechanism is also applicable for the determination of DMSO, in which a linear range of 40-320 μM and a detection limit 13.3 μM (S/N = 3) was achieved. The method was used for the evaluation of DMSO content in cell cryopreservation medium. This work demonstrated that DMSO can serve as an electrochemical probe and has valuable application potential in radical study, biological research, and environmental monitoring.
Collapse
Affiliation(s)
- Haining Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Jinxin Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
3
|
Dong H, Jiang Z, Chen Y, Han H, Zhou Y, Wang X, Xu M, Liu L. Ratiometric electrochemical determination of hydroxyl radical based on graphite paper modified with metal-organic frameworks and impregnated with salicylic acid. Mikrochim Acta 2024; 191:121. [PMID: 38308135 DOI: 10.1007/s00604-024-06202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Hydroxyl radical (•OH) detection is pivotal in medicine, biochemistry and environmental chemistry. Yet, electrochemical method-specific detection is challenging because of hydroxyl radicals' high reactivity and short half-life. In this study, we aimed to modify the electrode surface with a specific recognition probe for •OH. To achieve this, we conducted a one-step hydrothermal process to fabricate a CoZnMOF bimetallic organic framework directly onto conductive graphite paper (Gp). Subsequently, we introduced salicylic acid (SA) and methylene blue (MB), which easily penetrated the pores of CoZnMOF. By selectively capturing •OH by SA and leveraging the electrochemical signal generated by the reaction product, we successfully developed an electrochemical sensor Gp/CoZnMOF/SA + MB. The prepared sensor exhibited a good linear relationship with •OH concentrations ranging from 1.25 to 1200 nM, with a detection limit of 0.2 nM. Additionally, the sensor demonstrated excellent reproducibility and accuracy due to the incorporation of an internal reference. It exhibited remarkable selectivity for •OH detection, unaffected by other electrochemically active substances. The establishment of this sensor provides a way to construct MOF-modified sensors for the selective detection of other reactive oxygen species (ROS), offering a valuable experimental basis for ROS-related disease research and environmental safety investigations.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| | - Zhenlong Jiang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yanan Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Huabo Han
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Lantao Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
4
|
Hou Y, Lin J, Chen Y, He J, Su Z, Zheng Q, Zhao X, Lv X, Tang X, Zhou C. Flammulina velutipes-derived carbon dots for fluorescence detection and imaging of hydroxyl radical. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122304. [PMID: 36630809 DOI: 10.1016/j.saa.2022.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Monitoring hydroxyl radical (•OH) fluctuation is of great importance to study some relative pathological processes and to predict early diagnosis of diseases. Efficient •OH-responsive fluorescent sensors based on carbon dots (CDs) have been reported, but most researches have focused on the new strategies for the synthesis and doping of the CDs. Herein, a kind of biomass CDs (F-CDs) with Flammulina velutipes (F. velutipes) as the carbon source was prepared by a one-step hydrothermal method without any additional modification. The prepared F-CDs have remarkable sensitivity and selectivity and there is a good linear relationship from 0 to 12 μM with a low detection limit of 95 nM for quantitative •OH assay. With excitation-independent emission, favourable biocompatibility and low toxicity, the F-CDs can penetrate cell membranes as •OH-responsive fluorescent sensors to detect intracellular •OH in A549 cells stimulated by phorbol 12-myristate 13-acetate (PMA) and successfully monitor the •OH concentration levels by the corresponding fluorescence change. Given the combined benefits of the green and eco-friendly approach, the F-CDs show promise as novel theranostics tools for early detection and treatment of related diseases.
Collapse
Affiliation(s)
- Yu Hou
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China.
| | - Jiawei Lin
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Yichao Chen
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Jianbin He
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Zhe Su
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Qinhua Zheng
- School of Pharmacy and Food Sciences, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Xiujuan Zhao
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, PR China
| | - Xiaodan Lv
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| | - Xiuping Tang
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China.
| | - Changren Zhou
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, PR China
| |
Collapse
|
5
|
Ghaedamini H, Duanghathaipornsuk S, Onusko P, Binsheheween AM, Kim DS. Reduced Glutathione-Modified Electrode for the Detection of Hydroxyl Free Radicals. BIOSENSORS 2023; 13:254. [PMID: 36832020 PMCID: PMC9953857 DOI: 10.3390/bios13020254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hydroxyl radicals (•OH) are known as essential chemicals for cells to maintain their normal functions and defensive responses. However, a high concentration of •OH may cause oxidative stress-related diseases, such as cancer, inflammation, and cardiovascular disorders. Therefore, •OH can be used as a biomarker to detect the onset of these disorders at an early stage. Reduced glutathione (GSH), a well-known tripeptide for its antioxidant capacity against reactive oxygen species (ROS), was immobilized on a screen-printed carbon electrode (SPCE) to develop a real-time detection sensor with a high selectivity towards •OH. The signals produced by the interaction of the GSH-modified sensor and •OH were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV curve of the GSH-modified sensor in the Fenton reagent exhibited a pair of well-defined peaks, demonstrating the redox reaction of the electrochemical sensor and •OH. The sensor showed a linear relationship between the redox response and the concentration of •OH with a limit of detection (LOD) of 49 µM. Furthermore, using EIS studies, the proposed sensor demonstrated the capability of differentiating •OH from hydrogen peroxide (H2O2), a similar oxidizing chemical. After being immersed in the Fenton solution for 1 hr, redox peaks in the CV curve of the GSH-modified electrode disappeared, revealing that the immobilized GSH on the electrode was oxidized and turned to glutathione disulfide (GSSG). However, it was demonstrated that the oxidized GSH surface could be reversed back to the reduced state by reacting with a solution of glutathione reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH), and possibly reused for •OH detection.
Collapse
Affiliation(s)
| | | | | | | | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
6
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Chen J, Qu X, Qi G, Xu W, Jin Y, Xu S. Electrostimulus-triggered reactive oxygen species level in organelles revealed by organelle-targeting SERS nanoprobes. Anal Bioanal Chem 2022; 414:6965-6975. [PMID: 35976421 DOI: 10.1007/s00216-022-04265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Electrostimulation (ES) is an important therapeutic method for diseases caused by abnormal intracellular electrical activity. Also, it can induce apoptosis of cells, which is a potential tumor treatment method. At present, there are no relevant studies on changes in intracellular reactive oxygen species (ROS) levels produced in the process of ES, or on the effects of simultaneous implementation of conventional antioxidant inhibitor drugs and ES therapy. To reveal these, two organelle-targeting core-shell plasmonic probes were designed for measuring ROS produced during ES. The probes were delivered into target organelles (nucleus and mitochondrion) before the cells were electrically stimulated for different periods of time. Surface-enhanced Raman scattering (SERS) signals were detected in situ, and the sensing mechanism for the quantitative analysis of ROS is based on the signal reduction of SERS caused by the ROS-etching effect on the silver shell. The detection results revealed that ES could trigger ROS generation in cells, and the ROS levels localized around organelles were assessed by SERS. This study has great potential for exploring abnormal organelle microenvironments via organelle-targeting probes combined with SERS technology.
Collapse
Affiliation(s)
- Jiaming Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaozhang Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.,First Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China. .,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China. .,Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
10
|
Han T, Huang Y, Sun C, Wang D, Xu W. A Water-Dispersible Carboxylated Carbon Nitride Nanoparticles-Based Electrochemical Platform for Direct Reporting of Hydroxyl Radical in Meat. Foods 2021; 11:foods11010040. [PMID: 35010165 PMCID: PMC8750351 DOI: 10.3390/foods11010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 12/04/2022] Open
Abstract
In this paper, carboxylated carbon nitride nanoparticles (carboxylated-g-C3N4 NPs) were prepared through a one-step molten salts method. The synthesized material was characterized by transmission electron microscope (TEM), Fourier transform-infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS), etc. An electrochemical sensor based on single-stranded oligonucleotide/carboxylated-g-C3N4/chitosan/glassy carbon electrode (ssDNA/carboxylated-g-C3N4/chitosan/GCE) was constructed for determination of the hydroxyl radical (•OH), and methylene blue (MB) was used as a signal molecule. The sensor showed a suitable electrochemical response toward •OH from 4.06 to 122.79 fM with a detection limit of 1.35 fM. The selectivity, reproducibility, and stability were also presented. Application of the sensor to real meat samples (i.e., pork, chicken, shrimp, and sausage) was performed, and the results indicated the proposed method could be used to detect •OH in practical samples. The proposed sensor holds a great promise to be applied in the fields of food safety.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (T.H.); (Y.H.); (W.X.)
| | - Yang Huang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (T.H.); (Y.H.); (W.X.)
| | - Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (T.H.); (Y.H.); (W.X.)
- Correspondence: (C.S.); (D.W.)
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Correspondence: (C.S.); (D.W.)
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (T.H.); (Y.H.); (W.X.)
| |
Collapse
|
11
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
12
|
Peng Q, Shi X, Yan X, Ji L, Hu Y, Shi G, Yu Y. Electrochemical Strategy for Analyzing the Co-evolution of Cu 2+ and •OH Levels at the Early Stages of Transgenic AD Mice. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42595-42603. [PMID: 32883066 DOI: 10.1021/acsami.0c13759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As more researchers have acknowledged that the aggregation of amyloid β (Aβ) peptides might only be a pathological phenomenon that appears during the course of Alzheimer's disease (AD), it is therefore of great significance to have a preclinical or an early clinical diagnosis. Cu2+ dyshomeostasis and oxidative stress, such as hydroxyl radical (•OH), are found to be associated with peptide aggregations. However, we still do not know how the levels of Cu2+ and •OH are altered in the brain before massive Aβ plaques appear. Herein, we demonstrated the design and application of a sensitive electrochemical sensor to monitor Cu2+ and •OH simultaneously in one system without obvious cross-talk. The electrode was fabricated using black phosphorus-loaded Au (BP-Au) nanoparticles, which were then sequentially linked with DNA1, DNA2-labeled Au (Au-DNA2) nanoparticles, and methylene blue (MB). Cu2+ was first recognized and captured onto the sensor by BP with high selectivity and then produced a reduction current at around -0.01 V. The •OH quantification was established on the cleavage of the hybrid structure between DNA1 and BP-Au upon the appearance of •OH in the phosphate-buffered saline (PBS), leading to the depletion of the voltammetric response of MB around -0.25 V. Good linear correlations were obtained over concentrations of 0.5-127.5 μM for Cu2+ and 0.5-96.0 μM for •OH. Most importantly, the developed sensor was successfully applied to track the variations of the two species in brain tissues from APP/PS1 transgenic AD mice at the early stages before massive Aβ plaques appeared.
Collapse
Affiliation(s)
- Qiwen Peng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| | - Xinran Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| | - Xueyan Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| | - Yuanyuan Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| | - Guoyue Shi
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, P. R. China
| |
Collapse
|
13
|
Detection of Hydroxyl Radicals Using Cerium Oxide/Graphene Oxide Composite on Prussian Blue. NANOMATERIALS 2020; 10:nano10061136. [PMID: 32526855 PMCID: PMC7353455 DOI: 10.3390/nano10061136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
A composite sensor consisting of two separate inorganic layers of Prussian blue (PB) and a composite of cerium oxide nanoparticles (CeNPs) and graphene oxide (GO), is tested with •OH radicals. The signals from the interaction between the composite layers and •OH radicals are characterized using cyclic voltammetry (CV). The degradation of PB in the presence of H2O2 and •OH radicals is observed and its impact on the sensor efficiency is investigated. The results show that the composite sensor differentiates between the solutions with and without •OH radicals by the increase of electrochemical redox current in the presence of •OH radicals. The redox response shows a linear relation with the concentration of •OH radicals where the limit of detection, LOD, is found at 60 µM (100 µM without the PB layer). When additional composite layers are applied on the composite sensor to prevent the degradation of PB layer, the PB layer is still observed to be degraded. Furthermore, the sensor conductivity is found to decrease with the additional layers of composite. Although the CeNP/GO/PB composite sensor demonstrates high sensitivity with •OH radicals at low concentrations, it can only be used once due to the degradation of PB.
Collapse
|
14
|
Huang Y, Sinha A, Zhao H, Dang X, Zhang Y, Quan X. Real Time Detection of Hazardous Hydroxyl Radical Using an Electrochemical Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201902512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yujin Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| | - Ankita Sinha
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| | - Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Linggong Road 2 Dalian 116024 P.R. China
| |
Collapse
|
15
|
Braun WA, Horn BC, Hoehne L, Stülp S, Rosa MBDA, Hilgemann M. Poly(methylene blue)-modified electrode for indirect electrochemical sensing of OH radicals and radical scavengers. AN ACAD BRAS CIENC 2017; 89:1381-1389. [PMID: 28813104 DOI: 10.1590/0001-3765201720160833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023] Open
Abstract
A new modified electrode for indirect sensing of OH· and radical scavengers was described. The electrochemical polymerization of methylene blue in aqueous solutions and the properties of the resulting films on a glassy carbon electrode were carried out using cyclic voltammetry. A surface coverage of 1.11 × 109mol cm2 was obtained, revealing a complete surface coverage of the polymeric film on the electrode surface. OH· was able to destroy the poly(methylene blue) film by exposure to a Fenton solution. The loss of the electrochemical signal of the residual polymeric film attached to the electrode surface was related to the extent of its dissolution. The applicability of the sensor was demonstrated by evaluating the OH radical scavenging effect on different concentrations of ascorbic acid. The obtained radical scavenging capacity were 31.4%, 55.7%, 98.9% and 65.7% for the ascorbic acid concentrations of 5, 10, 30 and 50 mM, respectively.
Collapse
Affiliation(s)
- Walter A Braun
- Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Avenida Avelino Talini, 171, 95914-014 Lajeado, RS, Brazil
| | - Bruna C Horn
- Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Avenida Avelino Talini, 171, 95914-014 Lajeado, RS, Brazil
| | - Lucélia Hoehne
- Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Avenida Avelino Talini, 171, 95914-014 Lajeado, RS, Brazil
| | - Simone Stülp
- Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Avenida Avelino Talini, 171, 95914-014 Lajeado, RS, Brazil
| | - Marcelo B DA Rosa
- Universidade Federal de Santa Maria, Departamento de Química, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Maurício Hilgemann
- Centro de Ciências Exatas e Tecnológicas, Centro Universitário UNIVATES, Avenida Avelino Talini, 171, 95914-014 Lajeado, RS, Brazil
| |
Collapse
|
16
|
A voltammetric study on the interaction between isoproterenol and cardiomyocyte DNA by using a glassy carbon electrode modified with carbon nanotubes, polyaniline and gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2295-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
18
|
Liu S, Zhao J, Zhang K, Yang L, Sun M, Yu H, Yan Y, Zhang Y, Wu L, Wang S. Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe. Analyst 2017; 141:2296-302. [PMID: 26958658 DOI: 10.1039/c5an02261d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work reports a novel dual-emissive fluorescent probe based on dye hybrid silica nanoparticles for ratiometric measurement of the hydroxyl radical (˙OH). In the probe sensing system, the blue emission of coumarin dye (coumarin-3-carboxylic acid, CCA) immobilized on the nanoparticle surface is selectively enhanced by ˙OH due to the formation of a coumarin hydroxylation product with strong fluorescence, whereas the emission of red fluorescent dye encapsulated in the silica nanoparticle is insensitive to ˙OH as a self-referencing signal, and so the probe provides a good quantitative analysis based on ratiometric fluorescence measurement with a detection limit of 1.65 μM. Moreover, the probe also shows high selectivity for ˙OH determination against metal ions, other reactive oxygen species and biological species. More importantly, it exhibits low cytotoxicity and high biocompatibility in living cells, and has been successfully used for cellular imaging of ˙OH, showing its promising application for monitoring of intracellular ˙OH signaling events.
Collapse
Affiliation(s)
- Saisai Liu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and Department of Materials Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jun Zhao
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Kui Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599, USA
| | - Mingtai Sun
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Huan Yu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yehan Yan
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yajun Zhang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Suhua Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
19
|
Li W, Jiang W, Dai S, Wang L. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting. Anal Chem 2016; 88:1578-84. [DOI: 10.1021/acs.analchem.5b03043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Li
- Key
Laboratory of Natural Products Chemical Biology, Ministry of Education,
School of Pharmacy, Shandong University, Jinan, 250012, P. R. China
| | - Wei Jiang
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shuang Dai
- Key
Laboratory of Natural Products Chemical Biology, Ministry of Education,
School of Pharmacy, Shandong University, Jinan, 250012, P. R. China
| | - Lei Wang
- Key
Laboratory of Natural Products Chemical Biology, Ministry of Education,
School of Pharmacy, Shandong University, Jinan, 250012, P. R. China
| |
Collapse
|
20
|
Wu L, Yao Y, Li Z, Zhang X, Chen J. A new amplified impedimetric aptasensor based on the electron transfer ability of Au nanoparticles and their affinity with aptamer. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Gualandi I, Ferraro L, Matteucci P, Tonelli D. Assessment of the Antioxidant Capacity of Standard Compounds and Fruit Juices by a Newly Developed Electrochemical Method: Comparative Study with Results from Other Analytical Methods. ELECTROANAL 2015. [DOI: 10.1002/elan.201500076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Wu L, Xiong E, Yao Y, Zhang X, Zhang X, Chen J. A new electrochemical aptasensor based on electrocatalytic property of graphene toward ascorbic acid oxidation. Talanta 2014; 134:699-704. [PMID: 25618724 DOI: 10.1016/j.talanta.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
Abstract
Based on the superior electrocatalytic property of graphene (GN) toward ascorbic acid (AA) oxidation, a new electrochemical aptasensor has been developed. Here, adenosine triphosphate (ATP) is used as the model to demonstrate the performance of the developed aptasensor. Briefly, GN is attached to the thiolated ATP binding aptamer (ABA) modified gold electrode through π-π stacking interaction, resulting in a significant oxidation signal of AA. In the presence of ATP, the formation of ATP-ABA complex leads to the release of GN from sensing interface, resulting in a sharp decrease of the oxidation peak current of AA and an obviously positive shift of the related peak potential. Taking both the change values of the peak current and peak potential of AA oxidation as the response signals, ATP can be detected sensitively. This is the first time to demonstrate the application of GN as the nanocatalyst in an amplified aptasensor. It can be expected that GN, as nanocatalyst, should become the very promising amplifying-elements in DNA-based electrochemical biosensors.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yue Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xia Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| |
Collapse
|
23
|
Tatsumi H, Tsuchiya Y, Sakamoto K. Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine-xanthine oxidase system. Anal Biochem 2014; 467:22-7. [PMID: 25180984 DOI: 10.1016/j.ab.2014.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 11/25/2022]
Abstract
A sensitive electrochemical measurement system for hydroxyl radical (OH) was developed using enzyme-catalyzed signal amplification. In the presence of 2,6-xylenol as a trapping agent, glucose as a substrate, and pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) as a catalyst, the amperometric signal of the trapping adduct 2,6-dimethylhydroquinone (DMHQ) produced by the hydroxylation of 2,6-xylenol was able to be amplified and detected sensitively. The limit of detection (signal/noise [S/N]=3) for DMHQ was 1 nM. There was no significant interference from urate and other oxidizable compounds in the reaction mixture at the applied potential of 0V versus Ag/AgCl. This method was employed to observe the OH generation induced by the xanthine-xanthine oxidase (XO) system. The reaction rates of the DMHQ production induced from the xanthine-XO system in the presence and absence of various Fe(III) complexes and proteins were compared. Those with a free coordination site on the Fe atom effectively enhanced the OH generation.
Collapse
Affiliation(s)
- Hirosuke Tatsumi
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan.
| | - Yui Tsuchiya
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Koichi Sakamoto
- Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
24
|
Gualandi I, Guadagnini L, Zappoli S, Tonelli D. A Polypyrrole Based Sensor for the Electrochemical Detection of OH Radicals. ELECTROANAL 2014. [DOI: 10.1002/elan.201400054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Zhou J, Wang W, Yu P, Xiong E, Zhang X, Chen J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv 2014. [DOI: 10.1039/c4ra08090d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A simple and label-free electrochemical biosensor based on a dopamine DNA aptamer was developed for the sensitive and selective detection of dopamine.
Collapse
Affiliation(s)
- Jiawan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Wenyang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Peng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P.R. China
| |
Collapse
|
26
|
Xia N, Ma F, Zhao F, He Q, Du J, Li S, Chen J, Liu L. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Gualandi I, Tonelli D. A new electrochemical sensor for OH radicals detection. Talanta 2013; 115:779-86. [DOI: 10.1016/j.talanta.2013.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 02/01/2023]
|