1
|
Magar HS, Fayez M, Febbraio F, Hassan RYA. Esterase-2 mutant-based nanostructured amperometric biosensors for the selective determination of paraoxon (Neurotoxin). Anal Biochem 2025; 698:115751. [PMID: 39681172 DOI: 10.1016/j.ab.2024.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Organophosphate pesticides (OPs) are causing non-selective inhibition in enzymatic bioreceptors, thus the enzymatic-inhibition-based traditional assays are not suitable for their specific detection in food and environmental samples. Accordingly, a selective nanostructured electrochemical biosensing system was designed using six mutants of the esterase-2 (EST2 protein) enzymes from A. acidocaldarius to be exploited as targeting bio-receptors for the specific detection of OPs. Each of the EST2 mutant enzymes was immobilized on disposable screen-printed electrodes modified with Aluminum oxide (Al2O3)/Copper (Cu) nanocomposite. Consequently, chronoamperometric assay was fully optimized, and cross-reactivity study was carried out using paraoxon, malathion and chlorpyrifos. The comparative cross-reactivity study was performed on the six mutant proteins in terms of inhibitory percentage over a wide range of pesticide concentrations. Eventually, a wide dynamic inhibition range was achieved while the limit of detection for the paraoxon toxicity was 0.01 nM and the limit of quantification was 0.05 nM. Finally, paraoxon was selectively determined using the newly developed EST-based biosensor in different spiked food samples.
Collapse
Affiliation(s)
- Hend Samy Magar
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza, 2622, Egypt
| | - Muhammad Fayez
- Biosensors Research Lab, Zewail City of Science and Technology, 6th October City, Giza, 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131, Naples, Italy.
| | - Rabeay Y A Hassan
- Biosensors Research Lab, Zewail City of Science and Technology, 6th October City, Giza, 12578, Egypt; Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza, 2622, Egypt.
| |
Collapse
|
2
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
3
|
Thongkum W, Klayprasert P, Semakul N, Jakmunee J, Kasinrerk W, Setshedi M, Sayed Y, Tayapiwatana C. Semi-quantification and Potency Verification of the HIV Protease Inhibitor Based on the Matrix-Capsid Protein Immobilized Nickel (II)/NTA-Tol/Graphene Oxide/SPCE Electrochemical Biosensor. ACS OMEGA 2023; 8:17932-17940. [PMID: 37251123 PMCID: PMC10210225 DOI: 10.1021/acsomega.3c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Human immunodeficiency virus (HIV) causing acquired immune deficiency syndrome (AIDS) is still a global issue. Long-term drug treatment and nonadherence to medication increase the spread of drug-resistant HIV strains. Therefore, the identification of new lead compounds is being investigated and is highly desirable. Nevertheless, a process generally necessitates a significant budget and human resources. In this study, a simple biosensor platform for semi-quantification and verification of the potency of HIV protease inhibitors (PIs) based on electrochemically detecting the cleavage activity of the HIV-1 subtype C-PR (C-SA HIV-1 PR) was proposed. An electrochemical biosensor was fabricated by immobilizing His6-matrix-capsid (H6MA-CA) on the electrode surface via the chelation to Ni2+-nitrilotriacetic acid (NTA) functionalized GO. The functional groups and the characteristics of modified screen-printed carbon electrodes (SPCE) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). C-SA HIV-1 PR activity and the effect of PIs were validated by recording changes in electrical current signals of the ferri/ferrocyanide redox probe. The detection of PIs, i.e., lopinavir (LPV) and indinavir (IDV), toward the HIV protease was confirmed by the decrease in the current signals in a dose-dependent manner. In addition, our developed biosensor demonstrates the ability to distinguish the potency of two PIs to inhibit C-SA HIV-1 PR activities. We anticipated that this low-cost electrochemical biosensor would increase the efficiency of the lead compound screening process and accelerate the discovery and development of new HIV drugs.
Collapse
Affiliation(s)
- Weeraya Thongkum
- Division
of Clinical Immunology, Department of Medical Technology, Faculty
of Associated Medical Sciences, Chiang Mai
University, Chiang
Mai 50200, Thailand
- Center
of Innovative Immunodiagnostic Development, Department of Medical
Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang
Mai 50200, Thailand
- Center
of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical
Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttaporn Klayprasert
- Research
Laboratory for Analytical Instrument and Electrochemistry Innovation,
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Natthawat Semakul
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Research
Laboratory for Analytical Instrument and Electrochemistry Innovation,
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand
- Center
of
Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division
of Clinical Immunology, Department of Medical Technology, Faculty
of Associated Medical Sciences, Chiang Mai
University, Chiang
Mai 50200, Thailand
- Center
of Innovative Immunodiagnostic Development, Department of Medical
Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Mpho Setshedi
- Protein
Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Wits 2050, South Africa
| | - Yasien Sayed
- Protein
Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Wits 2050, South Africa
| | - Chatchai Tayapiwatana
- Division
of Clinical Immunology, Department of Medical Technology, Faculty
of Associated Medical Sciences, Chiang Mai
University, Chiang
Mai 50200, Thailand
- Center
of Innovative Immunodiagnostic Development, Department of Medical
Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang
Mai 50200, Thailand
- Center
of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical
Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Rodrigues ACM, Barbieri MV, Chino M, Manco G, Febbraio F. A 3D printable adapter for solid-state fluorescence measurements: the case of an immobilized enzymatic bioreceptor for organophosphate pesticides detection. Anal Bioanal Chem 2022; 414:1999-2008. [PMID: 35064794 PMCID: PMC8791905 DOI: 10.1007/s00216-021-03835-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
The widespread use of pesticides in the last decades and their accumulation into the environment gave rise to major environmental and human health concerns. To address this topic, the scientific community pointed out the need to develop methodologies to detect and measure the presence of pesticides in different matrices. Biosensors have been recently explored as fast, easy, and sensitive methods for direct organophosphate pesticides monitoring. Thus, the present work aimed at designing and testing a 3D printed adapter useful on different equipment, and a membrane support to immobilize the esterase-2 from Alicyclobacillus acidocaldarius (EST2) bioreceptor. The latter is labelled with the IAEDANS, a bright fluorescent probe. EST2 was selected since it shows a high specificity toward paraoxon. Our results showed good stability and replicability, with an increasing linear fluorescent intensity recorded from 15 to 150 pmol of labelled EST2. Linearity of data was also observed when using the immobilized labelled EST2 to detect increasing amounts of paraoxon, with a limit of detection (LOD) of 0.09 pmol. This LOD value reveals the high sensitivity of our membrane support when mounted on the 3D adapter, comparable to modern methods using robotic workstations. Notably, the use of an independent support significantly simplified the manipulation of the membrane during experimental procedures and enabled it to match the specificities of different systems. In sum, this work emphasizes the advantages of using 3D printed accessories adapted to respond to the newest research needs.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Maria Vittoria Barbieri
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples "Federico II", 80126, Naples, Italy.
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy.
| |
Collapse
|
5
|
Rodrigues ACM, Barbieri MV, Chino M, Manco G, Febbraio F. A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:561. [PMID: 35062524 PMCID: PMC8778994 DOI: 10.3390/s22020561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023]
Abstract
The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser-His-Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices.
Collapse
Affiliation(s)
- Andreia C. M. Rodrigues
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Maria Vittoria Barbieri
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| |
Collapse
|
6
|
Shahriari S, Sastry M, Panjikar S, Singh Raman RK. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol Sci Appl 2021; 14:197-220. [PMID: 34815666 PMCID: PMC8605898 DOI: 10.2147/nsa.s334487] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023] Open
Abstract
Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.
Collapse
Affiliation(s)
- Shiva Shahriari
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Murali Sastry
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - Santosh Panjikar
- ANSTO, Australian Synchrotron, Melbourne, Victoria, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Ultrasensitive photoelectrochemical microcystin-LR immunosensor using carboxyl-functionalized graphene oxide enhanced gold nanoclusters for signal amplification. Anal Chim Acta 2021; 1185:339078. [PMID: 34711309 DOI: 10.1016/j.aca.2021.339078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
An ultrasensitive photoelectrochemical (PEC) immunosensor based on gold nanoclusters (AuNCs) with 11-mercaptoundecanoic acid (MUA) ligands was fabricated for determination of microcystin-LR (MC-LR). The PEC immunosensor was developed by loading the monoclonal MC-LR antibody (Ab) to the MUA-AuNCs modified gold electrodes. After different measurement conditions being optimized, silver nanoparticles (AgNPs), gold nanorods (AuNRs), graphene oxide (GO) and carboxyl-functionalized graphene oxide (cGO) were introduced into MUA-AuNCs to enhance the sensing properties. The experimental result revealed that the sensitivity of PEC immunosensors was enhanced by both their photoelectrochemical properties and antibody loading properties with dependent relationship, which was different from the enhancement strategy of PEC sensors based on redox reactions. Among different hybrid nanocomposites, MUA-AuNCs/cGO not only improved the photoelectrochemical properties, but also loaded more antibodies for sensing, which resulted in best sensing performance. Thus, a universal method was proposed to enhance the sensing performance of PEC immunosensors based on impedance changes. Finally, MUA-AuNCs/cGO based PEC immunosensors exhibited a wide linear range of 0.001 nM-1000 nM with low detection limit of 0.011 pM (S/N = 3) for MC-LR determination. Meanwhile, the designed PEC immunosensors showed high selectivity, reproducibility and specificity, which provided the promising applications in aquatic environment.
Collapse
|
8
|
López-Laguna H, Voltà-Durán E, Parladé E, Villaverde A, Vázquez E, Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 2021; 54:107817. [PMID: 34418503 DOI: 10.1016/j.biotechadv.2021.107817] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|
9
|
Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Qu JH, Horta S, Delport F, Sillen M, Geukens N, Sun DW, Vanhoorelbeke K, Declerck P, Lammertyn J, Spasic D. Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His 6-Tagged Bioreceptors for Applications in Complex Matrices. ACS Sens 2020; 5:960-969. [PMID: 32216277 DOI: 10.1021/acssensors.9b02227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cobalt-nitrilotriacetic acid (Co(III)-NTA) chemistry is a recognized approach for oriented patterning of His6-tagged bioreceptors. We have applied the matching strategy for the first time on a surface plasmon resonance (SPR) platform, namely, the commercialized fiber optic (FO)-SPR. To accomplish this, His6-tagged bioreceptor (scFv-33H1F7) and its target PAI-1 were used as a model system, after scrutinizing the specificity of their interaction. When benchmarked to traditional carboxyl-based self-assembled monolayers (SAM), NTA allowed (1) more efficient FO-SPR surface coverage with bioreceptors compared with the former and (2) realization of thus far difficult-to-attain label-free bioassays on the FO-SPR platform in both buffer and 20-fold diluted human plasma. Moreover, Co(III)-NTA surface proved to be compatible with traditional gold nanoparticle-mediated signal amplification in the buffer as well as in 10-fold diluted human plasma, thus expanding the dynamic detection range to low ng/mL. Both types of bioassays revealed that scFv-33H1F7 immobilized on the FO-SPR surface using different concentrations (20, 10, or 5 μg/mL) had no impact on the bioassay sensitivity, accuracy, or reproducibility despite the lowest concentration effectively resulting in close to 20% fewer bioreceptors. Collectively, these results highlight the importance of Co(III)-NTA promoting the oriented patterning of bioreceptors on the FO-SPR sensor surface for securing robust and sensitive bioassays in complex matrices, both in label-free and labeled formats.
Collapse
Affiliation(s)
- Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Filip Delport
- FOx Biosystems, Bioville, Agoralaan Abis, 3590 Diepenbeek, Belgium
| | - Machteld Sillen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs, KU Leuven, Herestraat 49,
Box 820, B 3000 Leuven, Belgium
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, 510641 Guangzhou, China
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Paul Declerck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Jia L, Zhou Y, Wu K, Feng Q, Wang C, He P. Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: Towards efficient fabrication and application in paraoxon detection. Bioelectrochemistry 2020; 131:107392. [DOI: 10.1016/j.bioelechem.2019.107392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023]
|
12
|
Screening of Carbamate and Organophosphate Pesticides in Food Matrices Using an Affordable and Simple Spectrophotometric Acetylcholinesterase Assay. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbamates (CMs) and organophosphates (OPs) are widely used pesticides with known neurotoxicity arising from the inhibition of acetylcholinesterase (AChE). When AChE is active, in vitro, it can hydrolyze certain substrates to colored products while in the presence of an inhibitor this color development is decreased. Based on this principle, an AChE assay for CM and OP compounds was optimized and validated for carbofuran, carbofuran-3-hydroxy and dichlorvos in lettuce and strawberry extracts. The analytical performance of the assay was confirmed by an accredited liquid chromatography tandem mass spectrometry (LC–MS/MS) method. The developed AChE assay achieved low limits of detection (LODs) at the part per billion (ppb) level, depending the analyte inhibitory strength, recovery rates higher than 70% and good repeatability. Moreover, the toxic unit (TU) approach was applied, for extracts containing the validated analytes, and antagonism was noticed in all cases. Overall, the developed method is rapid, simple, cost-effective and may find application as a low-cost pre-screening tool of AChE inhibitors presence. Last but not least, this study can be considered a guide on development, validation and benchmarking of bioassays in food safety, a topic, which is commonly mispresented in the available literature.
Collapse
|
13
|
Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Sgobbi LF, Machado SAS. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron 2017; 100:290-297. [PMID: 28942211 DOI: 10.1016/j.bios.2017.09.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
A plethora of publications has continuously reported electrochemical biosensors for detection of pesticides. However, those devices rarely accomplish commercial application due to technical issues associated with the lack of stability and high cost of the biological recognition element (enzyme). Alternatively, the biomimetic catalysts have arisen as a candidate for application in electrochemical biosensors to overcome the enzymatic drawbacks, combining low cost scalable materials with superior stability. Herein, for the first time, we propose a biomimetic biosensor for organophosphorus pesticide detection employing a functionalized polyacrylamide, polyhydroxamicalkanoate (PHA), which mimics the performance of the acetylcholinesterase (AChE) enzyme. The PHA bears functional groups inserted along its backbone chain working as active sites. Thereby, PHA was immobilized on screen printed electrodes (SPE) through a blend formation with poly(ethylene glycol) methyl ether (mPEG) to prevent its leaching out from the surface. Under optimum conditions, the biomimetic sensor was employed for the amperometric detection of paraoxon-ethyl, fenitrothion and chlorpyrifos ranging from 1.0 and 10.0μmolL-1 with a limit of detection of 0.36μmolL-1, 0.61μmol L-1, and 0.83μmolL-1, respectively. Typical AChE-based interfering species did not affect the PHA performance, which endorsed its superior behavior. The proposed biomimetic biosensor, denoted as SPE/PHA/mPEG, represents a significant advance in the field, offering a new path for low cost devices by means of an artificial enzyme, simple configuration and superior stability. Moreover, the biosensor performance can be further improved by modifying the electrode surface to enhance electronic transfer rate.
Collapse
Affiliation(s)
- Livia F Sgobbi
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, Avenida Trabalhador São-carlense, 400, 13560-970 São Carlos, São Paulo, Brazil.
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, Avenida Trabalhador São-carlense, 400, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Cao C, Zhang Y, Jiang C, Qi M, Liu G. Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5031-5049. [PMID: 28124552 DOI: 10.1021/acsami.6b16108] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.
Collapse
Affiliation(s)
- Chaomin Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Yin Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford , Oxford OX1 2JD, United Kingdom
| | - Meng Qi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guozhen Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University , North Ryde 2109, Australia
| |
Collapse
|
18
|
Zhang W, Guo Z, Chen Y, Cao Y. Nanomaterial Based Biosensors for Detection of Biomarkers of Exposure to OP Pesticides and Nerve Agents: A Review. ELECTROANAL 2017. [DOI: 10.1002/elan.201600748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college; Wuhan University of Science and Technology; Wuhan 430065 P.R.China
| | - Yong Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640; 24 Rue Lhomond Paris 75005 France
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| |
Collapse
|
19
|
Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13:57. [PMID: 27799056 PMCID: PMC5088662 DOI: 10.1186/s12989-016-0168-y] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell models by following with different administration routes and penetrating through physiological barriers, subsequently being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and facilitate their wide application.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Song
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Deng
- The General Hospital of People’s Liberation Army, Beijing, China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
20
|
Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Anal Bioanal Chem 2016; 408:7299-309. [DOI: 10.1007/s00216-016-9604-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
21
|
Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
An enhanced SPR immunosensing platform for human IgG based on the use of silver nanocubes and carboxy-functionalized graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1853-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Wu Q, Sun Y, Ma P, Zhang D, Li S, Wang X, Song D. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Anal Chim Acta 2016; 913:137-44. [DOI: 10.1016/j.aca.2016.01.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 01/30/2016] [Indexed: 12/29/2022]
|
24
|
Dzudzevic Cancar H, Soylemez S, Akpinar Y, Kesik M, Göker S, Gunbas G, Volkan M, Toppare L. A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8058-8067. [PMID: 26956086 DOI: 10.1021/acsami.5b12383] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To construct a sensing interface, in the present work, a conjugated polymer and core-shell magnetic nanoparticle containing biosensor was constructed for the pesticide analysis. The monomer 4,7-di(furan-2-yl)benzo[c][1,2,5]thiadiazole (FBThF) and core-shell magnetic nanoparticles were designed and synthesized for fabrication of the biosensing device. The magnetic nanoparticles were first treated with silica and then modified using carboxyl groups, which enabled binding of the biomolecules covalently. For the construction of the proposed sensor a two-step procedure was performed. First, the poly(FBThF) was electrochemically generated on the electrode surface. Then, carboxyl group modified magnetic nanoparticles (f-MNPs) and acetylcholinesterase (AChE), the model enzyme, were co-immobilized on the polymer-coated surface. Thereby, a robust and novel surface, conjugated polymer bearing magnetic nanoparticles with pendant carboxyl groups, was constructed, which was characterized using Fourier transform infrared spectrometer, cyclic voltammetry, scanning electron microscopy, and contact angle measurements. This novel architecture was then applied as an immobilization platform to detect pesticides. To the best of our knowledge, a sensor design that combines both conjugated polymer and magnetic nanoparticles was attempted for the first time, and this approach resulted in improved biosensor characteristics. Hence, this approach opens a new perspective in the field of enzyme immobilization and sensing applications. Paraoxon and trichlorfon were selected as the model toxicants. To obtain best biosensor performance, optimization studies were performed. Under optimized conditions, the biosensor in concern revealed a rapid response (5 s), a low detection limit (6.66 × 10(-3) mM), and high sensitivity (45.01 μA mM(-1) cm(-2)). The KM(app) value of poly(FBThF)/f-MNPs/AChE were determined as 0.73 mM. Furthermore, there was no considerable activity loss for 10 d for poly(FBThF)/f-MNPs/AChE biofilm.
Collapse
Affiliation(s)
- Hurija Dzudzevic Cancar
- Department of Natural Sciences in Pharmacy, Faculty of Pharmacy, University of Sarajevo , Sarajevo 71000, Bosnia-Herzegovina
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sekar P, Anothumakkool B, Kurungot S. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7661-7669. [PMID: 25783045 DOI: 10.1021/acsami.5b00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other highlights of the supercapacitor system derived from this composite material.
Collapse
Affiliation(s)
- Pandiaraj Sekar
- †Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- ‡Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2, Rafi Marg, New Delhi 110 001, India
| | - Bihag Anothumakkool
- †Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- ‡Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2, Rafi Marg, New Delhi 110 001, India
| | - Sreekumar Kurungot
- †Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- ‡Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2, Rafi Marg, New Delhi 110 001, India
| |
Collapse
|
26
|
Yang Z, She M, Yin B, Hao L, Obst M, Liu P, Li J. Solvent-dependent turn-on probe for dual monitoring of Ag+ and Zn2+ in living biological samples. Anal Chim Acta 2015; 868:53-9. [DOI: 10.1016/j.aca.2015.01.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/29/2014] [Accepted: 01/14/2015] [Indexed: 11/29/2022]
|
27
|
Ionita M, Pandele AM, Crica LE, Obreja AC. Preparation and characterization of polysulfone/ammonia-functionalized graphene oxide composite membrane material. HIGH PERFORM POLYM 2015. [DOI: 10.1177/0954008315576233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study highlights the first use of ammonia-functionalized graphene oxide (GO-NH2) as an additive to enhance the features of polysulfone (PSF) matrix. Composite membrane materials with different ratios of GO-NH2 (0.25, 0.5, 1, and 1.5 wt%) were obtained by phase inversion method. Subsequently structural and morphological characteristics were investigated by Raman spectroscopy, X-ray diffraction (XRD), scanning, and transmission electron microscopy (TEM). Lastly, mechanical and thermogravimetric studies were performed in order to establish whether GO-NH2 addition influenced PSF/GO-NH2 composite material performance. Raman spectroscopy, XRD, and TEM revealed evenly dispersed GO-NH2 within PSF/GO-NH2 composite membrane material forming exfoliated structures for lower concentration of GO-NH2. An enhancement in both mechanical and thermal characteristics was attained. The decomposition temperature at which the mass loss is 3%, of the composite membrane material with 1 wt% GO-NH2 was increased with 7°C. Conversely, an increase in Young’s modulus from 246 MPa to 285 MPa was achieved with the addition of 1 wt% GO-NH2 within the PSF matrix.
Collapse
Affiliation(s)
- Mariana Ionita
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | | | - Livia Elena Crica
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Alexandru Cosmin Obreja
- National Institute for Research and Development in Microtechnologies, Judetul Ilfov, Romania
| |
Collapse
|
28
|
Molecularly engineered graphene surfaces for sensing applications: A review. Anal Chim Acta 2015; 859:1-19. [DOI: 10.1016/j.aca.2014.07.031] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 11/23/2022]
|
29
|
Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1370-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|