1
|
Varma S, Bamb AL, Haldar N, Gajbhiye V, Amalnerkar D, Chaudhari BP. Gold Nanorods (GNRs): A Golden Nano Compass to Navigate Breast Cancer by Multimodal Imaging Approaches. J Biomed Mater Res B Appl Biomater 2025; 113:e35543. [PMID: 39917809 DOI: 10.1002/jbm.b.35543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 05/08/2025]
Abstract
The ongoing rise in the incidences of breast cancer cases has concerned medical and scientific personnel around the world. Adequate treatment of cancer predominantly relies on the pertinent diagnosis of the type of cancer as well as other molecular and cellular details at the initial stage only. Surprisingly, up till now, there is no single, self-reliant imaging modality that helps to systematically find out the anatomical and functional events taking place inside the body. This resulted in the advent of the multimodal imaging concept, which encompasses the integration of complementary imaging modalities by designing multimodal imaging probes. Gold nanorods (GNRs) are extremely popular and effective nanoparticles for multimodal bioimaging due to their unique properties. Researchers have designed varieties of stable and biocompatible GNR-based probes for targeted and nontargeted multimodal imaging of breast cancer. However, there is a lack of investigations on the in vivo fate and the toxicity of GNRs. Thus, their preclinical to clinical translation can be attained by comprehensively determining the in vivo fate and toxicity of GNRs. The review provides details about the GNRs-based nanoprobes fabricated so far for breast cancer imaging, which, by consequent studies, can be taken up to clinical usage.
Collapse
Affiliation(s)
- Sanjana Varma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aagam Lalit Bamb
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niladri Haldar
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | | | - Dinesh Amalnerkar
- Department of Applied Sciences and Humanities, Pimpri Chinchwad College of Engineering, Pune, India
| | - Bhushan Pradosh Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
3
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Kotturi D, Paterson S, McShane M. Comparison of SERS pH probe responses after microencapsulation within hydrogel matrices. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210153R. [PMID: 34519190 PMCID: PMC8435981 DOI: 10.1117/1.jbo.26.9.097001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Personalized medicine requires the tracking of an individual's metabolite levels over time to detect anomalies and evaluate the body's response to medications. Implanted sensors offer effective means to continuously monitor specific metabolite levels, provided they are accurate, stable over long time periods, and do no harm. AIM Four types of hydrogel embedded with pH-sensitive sensors were evaluated for their accuracy, sensitivity, reversibility, longevity, dynamic response, and consistency in static versus dynamic conditions and long-term storage. APPROACH Raman spectroscopy was first used to calibrate the intensity of pH-sensitive peaks of the Raman-active hydrogel sensors in a static pH environment. The dynamic response was then assessed for hydrogels exposed to changing pH conditions within a flow cell. Finally, the static pH response after 5 months of storage was determined. RESULTS All four types of hydrogels allowed the surface-enhanced Raman spectroscopy (SERS) sensors to respond to the pH level of the local environment without introducing interfering signals, resulting in consistent calibration curves. When the pH level changed, the probes in the gels were slow to reach steady-state, requiring several hours, and response times were found to vary among hydrogels. Only one type, poly(2-hydroxyethyl methacrylate) (pHEMA), lasted five months without significant degradation of dynamic range. CONCLUSIONS While all hydrogels appear to be viable candidates as biocompatible hosts for the SERS sensing chemistry, pHEMA was found to be most functionally stable over the long interval tested. Poly(ethylene glycol) hydrogels exhibit the most rapid response to changing pH. Since these two gel types are covalently cross-linked and do not generally degrade, they both offer advantages over sodium alginate for use as implants.
Collapse
Affiliation(s)
- Dayle Kotturi
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Sureyya Paterson
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Mike McShane
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Department of Materials Science and Engineering, College Station, Texas, United States
| |
Collapse
|
5
|
Liu L, Du X. Stellate porous silica based surface-enhanced Raman scattering system for traceable gene delivery. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Kapara A, Brunton V, Graham D, Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem Sci 2020; 11:5819-5829. [PMID: 34094083 PMCID: PMC8159335 DOI: 10.1039/d0sc01255f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in various applications such as cancer imaging and drug delivery. The functionalisation of AuNPs has been shown to affect their cellular internalisation, accumulation and targeting efficiency. The mechanism of cellular uptake of functionalised AuNPs by different cancer cells is not well understood. Therefore, a detailed understanding of the molecular processes is necessary to improve AuNPs for their selective uptake and fate in specific cellular systems. This knowledge can greatly help in designing nanotags with higher cellular uptake for more selective and specific targeting capabilities with less off-target effects. Here, we demonstrate for the first time a straightforward and non-destructive 3D surface enhanced Raman spectroscopy (SERS) imaging approach to track the cellular uptake and localisation of AuNPs functionalised with an anti-ERα (estrogen receptor alpha) antibody in MCF-7 ERα-positive human breast cancer cells under different conditions including temperature and dynamin inhibition. 3D SERS enabled information rich monitoring of the intracellular internalisation of the SERS nanotags. It was found that ERα-AuNPs were internalised by MCF-7 cells in a temperature-dependent manner suggesting an active endocytosis-dependent mechanism. 3D SERS cell mapping also indicated that the nanotags entered MCF-7 cells using dynamin dependent endocytosis, since dynamin inhibition resulted in the SERS signal being obtained from, or close to, the cell surface rather than inside the cells. Finally, ERα-AuNPs were found to enter MCF-7 cells using an ERα receptor-mediated endocytosis process. This study addresses the role of functionalisation of SERS nanotags in biological environments and highlights the benefits of using 3D SERS for the investigation of cellular uptake processes.
Collapse
Affiliation(s)
- Anastasia Kapara
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh Crewe Road South Edinburgh Scotland EH4 2XU UK
| | - Valerie Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh Crewe Road South Edinburgh Scotland EH4 2XU UK
| | - Duncan Graham
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
| | - Karen Faulds
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
| |
Collapse
|
7
|
Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging. Proc Natl Acad Sci U S A 2020; 117:3518-3527. [PMID: 32015136 DOI: 10.1073/pnas.1916238117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous fatty acid receptors have proven to play critical roles in normal physiology. Interactions among these receptor types and their subsequent membrane trafficking has not been fully elucidated, due in part to the lack of efficient tools to track these cellular events. In this study, we fabricated the surface-enhanced Raman scattering (SERS)-based molecular sensors for detection of two putative fatty acid receptors, G protein-coupled receptor 120 (GPR120) and cluster of differentiation 36 (CD36), in a spatiotemporal manner in single cells. These SERS probes allowed multiplex detection of GPR120 and CD36, as well as a peak that represented the cell. This multiplexed sensing system enabled the real-time monitoring of fatty acid-induced receptor activation and dynamic distributions on the cell surface, as well as tracking of the receptors' internalization processes on the addition of fatty acid. Increased SERS signals were seen in engineered HEK293 cells with higher fatty acid concentrations, while decreased responses were found in cell line TBDc1, suggesting that the endocytic process requires innate cellular components. SERS mapping results confirm that GPR120 is the primary receptor and may work synergistically with CD36 in sensing polyunsaturated fatty acids and promoting Ca2+ mobilization, further activating the process of fatty acid uptake. The ability to detect receptors' locations and monitor fatty acid-induced receptor redistribution demonstrates the specificity and potential of our multiplexed SERS imaging platform in the study of fatty acid-receptor interactions and might provide functional information for better understanding their roles in fat intake and development of fat-induced obesity.
Collapse
|
8
|
Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Imaging technologies play a vital role in clinical oncology and have undergone massive growth over the past few decades. Research in the field of tumor imaging and biomedical diagnostics requires early detection of physiological alterations so as to provide curative treatment in real time. The objective of this review is to provide an insight about near infrared fluorescence (NIRF) and surface enhanced Raman scattering (SERS) imaging techniques that can be used to expand their capabilities for the early detection and diagnosis of cancer cells. Basic setup, principle and working of the instruments has been provided and common NIRF imaging agents as well as SERS tags are also discussed besides the analytical advantages/disadvantages of these techniques. This review can help researchers working in the field of molecular imaging to design cost effective fluorophores and SERS tags to overcome the limitations of both NIRF as well as SERS imaging technologies.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabhat Kumar
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Peng Z, Lu J, Zhang L, Liu Y, Li J. Label-free imaging of epidermal growth factor receptor-induced response in single living cells. Analyst 2018; 143:5264-5270. [PMID: 30280173 DOI: 10.1039/c8an01534a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR), which belongs to the second-largest protein family for cell signal transduction, plays crucial roles in homeostasis, cellular organized patterns and most human cancers. In EGFR-activated signaling networks, the detection of the spatial and temporal dynamics of cascades that encode the many cell fates is still a challenge. Here, we report real-time imaging of epidermal growth factor (EGF)-induced EGFR activation and its signaling cascade in single A431 cells using surface plasmon resonance (SPR) microscopy. A two-phase SPR response pattern was observed within 30 min after EGF treatment, including a positive SPR response that was related to the EGFR-activated mass redistribution in the first 600 s, and a subsequent negative SPR signal caused by the morphological change of the cells. Furthermore, the inhibitor analysis verified that AG1478 inhibited the response from the whole the cell, whereas cytochalasin B strongly inhibited the response from the cell edge region.
Collapse
Affiliation(s)
- Zanying Peng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jin Lu
- Department of Electrical and Systems Engineering, Washington University in St Louis, MO 63130, USA
| | - Ling Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Yang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Xiao L, Parchur AK, Gilbertson TA, Zhou A. SERS-fluorescence bimodal nanoprobes for in vitro imaging of fatty acid responsive receptor GPR120. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 10:22-29. [PMID: 29449902 PMCID: PMC5808993 DOI: 10.1039/c7ay02039b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
G-protein-coupled receptor 120 (GPR120), as a member of the rhodopsin family of G-protein-coupled receptors, has been shown to function as a sensor for dietary fat in the gustatory and digestive systems. Its specific role in the chemoreception of fatty acids, which is thought to be crucial in understanding the mechanism surrounding the control of fat intake and, accordingly, in the treatment of obesity, remains unclear. Here we report a novel surface-enhanced Raman spectroscopy (SERS)-fluorescence bimodal microscopic technique for detection and imaging of GPR120 in single living cells. CaMoO4:Eu3+@AuNR hybrid nanoparticles are synthesized and characterized as imaging probes. Biocompatibility and imaging capability of the probes are investigated using a model HEK293 cell line with an inducible GPR120 gene transfection. Cellular distribution of GPR120 is visualized by single-cell SERS and fluorescence imaging. A dose-dependent GPR120 response to linoleic acid treatment is revealed by SERS.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Abdul K. Parchur
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| | | | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| |
Collapse
|
11
|
Navas-Moreno M, Mehrpouyan M, Chernenko T, Candas D, Fan M, Li JJ, Yan M, Chan JW. Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective. Sci Rep 2017; 7:4471. [PMID: 28667313 PMCID: PMC5493633 DOI: 10.1038/s41598-017-04066-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022] Open
Abstract
Surface enhanced Raman scattering (SERS) nanoparticles are an attractive alternative to fluorescent probes for biological labeling because of their photostability and multiplexing capabilities. However, nanoparticle size, shape, and surface properties are known to affect nanoparticle-cell interactions. Other issues such as the formation of a protein corona and antibody multivalency interfere with the labeling properties of nanoparticle-antibody conjugates. Hence, it is important to consider these aspects in order to validate such conjugates for live cell imaging applications. Using SERS nanoparticles that target HER2 and CD44 in breast cancer cells, we demonstrate labeling of fixed cells with high specificity that correlates well with fluorescent labels. However, when labeling live cells to monitor surface biomarker expression and dynamics, the nanoparticles are rapidly uptaken by the cells and become compartmentalized into different cellular regions. This behavior is in stark contrast to that of fluorescent antibody conjugates. This study highlights the impact of nanoparticle internalization and trafficking on the ability to use SERS nanoparticle-antibody conjugates to monitor cell dynamics.
Collapse
Affiliation(s)
- Maria Navas-Moreno
- University of California-Davis, Center for Biophotonics, Sacramento, 95817, USA
| | | | | | - Demet Candas
- University of California-Davis, Dept. of Radiation Oncology, Sacramento, 95817, USA
| | - Ming Fan
- University of California-Davis, Dept. of Radiation Oncology, Sacramento, 95817, USA
| | - Jian Jian Li
- University of California-Davis, Dept. of Radiation Oncology, Sacramento, 95817, USA
| | - Ming Yan
- BD Biosciences, San Jose, 95131, USA
| | - James W Chan
- University of California-Davis, Center for Biophotonics, Sacramento, 95817, USA.
- University of California-Davis, Dept. of Pathology and Laboratory Medicine, Sacramento, 95817, USA.
| |
Collapse
|
12
|
Xiao L, Tian X, Harihar S, Li Q, Li L, Welch DR, Zhou A. Gd 2O 3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:218-225. [PMID: 28365452 PMCID: PMC5427483 DOI: 10.1016/j.saa.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm-1. By spatially mapping the SERS intensity at 1075cm-1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA
| | - Xiumei Tian
- Department of Biomedical Engineering, Guangzhou Medical College, Guangzhou 510182, People's Republic of China
| | - Sitaram Harihar
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA; Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning 530003, Guangxi, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center and The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA.
| |
Collapse
|
13
|
Darrigues E, Nima ZA, Majeed W, Vang-Dings KB, Dantuluri V, Biris AR, Zharov VP, Griffin RJ, Biris AS. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance.Part 1: Diagnosis. Drug Metab Rev 2017; 49:212-252. [DOI: 10.1080/03602532.2017.1302465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Waqar Majeed
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Kieng Bao Vang-Dings
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Vijayalakshmi Dantuluri
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Alexandru R. Biris
- National Institute for Research and Development of Isotopic and Molecular Technologies
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J. Griffin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Radiation Oncology, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
14
|
Xiao L, Schultz ZD. Targeted-TERS detection of integrin receptors on human cancer cells. CANCER CELL & MICROENVIRONMENT 2016; 3:e1419. [PMID: 27722181 PMCID: PMC5051698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Membrane receptors play important roles in regulating cellular activities. Targeting membrane receptors in cancer cells and understanding their interactions with specific ligands are key for cancer prognosis and therapeutics. However, there is a need to develop new technologies to provide molecular insight into ligand-receptor binding chemistry in cell membrane. Integrin receptors are important membrane receptors that regulate cellular migration, invasion and proliferation in tumors. Integrins have a well-known affinity towards small peptide ligands containing arginine-glycine-aspartate (RGD) sequence and are therefore an attractive model system to study ligand-receptor interactions. We have recently reported a method to detect integrin receptors and study their binding chemistry with cyclic-RGDfC ligand using tip-enhanced Raman scattering (TERS). We have demonstrated that two integrins with similar structures can be differentiated in intact cell membrane, due to the differences in their RGD ligand binding sites, showing the potential of this TERS methodology to study other membrane receptors and their interactions in live cells.
Collapse
|
15
|
Bocklitz TW, Guo S, Ryabchykov O, Vogler N, Popp J. Raman Based Molecular Imaging and Analytics: A Magic Bullet for Biomedical Applications!? Anal Chem 2015; 88:133-51. [DOI: 10.1021/acs.analchem.5b04665] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas W. Bocklitz
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Shuxia Guo
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Oleg Ryabchykov
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Nadine Vogler
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- InfectoGnostics
Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
16
|
Narayanan N, Karunakaran V, Paul W, Venugopal K, Sujathan K, Kumar Maiti K. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Biosens Bioelectron 2015; 70:145-52. [DOI: 10.1016/j.bios.2015.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/28/2023]
|
17
|
Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization. Adv Drug Deliv Rev 2015; 89:71-90. [PMID: 25728764 DOI: 10.1016/j.addr.2015.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 12/11/2022]
Abstract
Progress in advanced therapeutic concepts requires the development of appropriate carrier systems for intracellular drug delivery. Consequently, analysis of interaction between carriers, drugs and cells as well as their uptake and intracellular fate is a current focus of research interest. In this context, Raman spectroscopy recently became an emerging analytical technique, due to its non-destructive, chemically selective and label-free working principle. In this review, we briefly present the state-of-the-art technologies for cell visualization and drug internalization. Against this background, Raman microscopy is introduced as a versatile analytical technique. An overview of various Raman spectroscopy investigations in this field is given including interactions of cells with drug molecules, carrier systems and other nanomaterials. Further, Raman instrumentations and sample preparation methods are discussed. Finally, as the analytical limit is not reached yet, a future perspective for Raman microscopy in pharmaceutical and biomedical research on the single cell level is given.
Collapse
|
18
|
Xiao L, Chen Q, Wu Y, Qi X, Zhou A. Simultaneous topographic and recognition imaging of epidermal growth factor receptor (EGFR) on single human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1988-95. [PMID: 26002322 DOI: 10.1016/j.bbamem.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in signaling pathway of the development of breast cancer cells. Since EGFR overexpresses in most breast cancer cells, it is regarded as a biomarker molecule of breast cancer cells. Here we demonstrated a new AFM technique-topography and recognition (TREC) imaging-to simultaneously obtain highly sensitive and specific molecular recognition images and high-resolution topographic images of EGFR on single breast cancer cells.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Qian Chen
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Yangzhe Wu
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Xiaojun Qi
- Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA.
| |
Collapse
|
19
|
Pissuwan D, Niidome T. Polyelectrolyte-coated gold nanorods and their biomedical applications. NANOSCALE 2015; 7:59-65. [PMID: 25387820 DOI: 10.1039/c4nr04350b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gold nanorods (GNRs) have been extensively used in biomedical applications, because of their favourable optical properties. Their longitudinal surface plasmon resonance can be tuned, providing a strong near-infrared (NIR) extinction coefficient peak within the tissue transparency window. However, the modification of the surface of GNRs is essential before they can be used for biomedical applications. The number of GNRs taken up by cells and their biodistribution depend on their surface modification. Here, we review the recent advances in modifying GNR surfaces with polyelectrolytes for biomedical applications. Major polyelectrolytes used to coat GNR surfaces over the past few years and the biocompatibility of polyelectrolyte-coated GNRs are discussed.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Materials Science and Engineering Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Thailand.
| | | |
Collapse
|