1
|
Dhiman R, Kumar J, Singh M. Fluorescent carbon dots for sensing applications: a review. ANAL SCI 2024; 40:1387-1396. [PMID: 38981955 DOI: 10.1007/s44211-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024]
Abstract
Luminescent carbon dots (CDs) are important class of nanomaterials with fantastic photoluminescence (PL) properties, great biocompatibility, extraordinary solubility in water, minimal expense, and so on. There are many methods for their preparation and they are mainly classed into two groups, top-down and bottom-up approaches. In order to understand the origin of fluorescence in quantum CDs, three mechanisms have been proposed namely molecular state, surface state, and quantum confinement phenomenon. Fluorescent CDs have significant application in the fields of biochemical sensing, photocatalysis, bioimaging, delivery of drugs, and other related fields. In this review article the application of quantum dots as detecting component, for the sensing of different targets, has been summed up. In fact, the detection of several analytes including, anions, cations, small molecules, polymers, cells, and microscopic organisms has been discoursed. Moreover, the future aspects of CDs as detecting resources have been explored.
Collapse
Affiliation(s)
- Rachna Dhiman
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jagdeep Kumar
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Mallika Singh
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
Bayindir S, Akar S. Synthesis of Phenol-Hydrazide-Appended Tetraphenylethenes as Novel On-Off-On Cascade Sensors of Copper and Glutathione. ACS OMEGA 2024; 9:26257-26266. [PMID: 38911777 PMCID: PMC11191134 DOI: 10.1021/acsomega.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
This study reports the synthesis of novel fluorescent probes, phenol-hydrazide-appended tetraphenylethenes (TPEs I and II), and explores their photochemical properties. The probes exhibit aggregation-induced emission (AIE) in increasing water content, as observed using fluorescence spectroscopy. Further investigation with UV-vis and fluorescence techniques revealed their potential as ion sensors. Both TPE I and TPE II act as "turn-off" sensors for Cu2+ ions, showing decreased fluorescence intensity in their presence. Their limit of detection (LOD) and association constant (K a) for Cu2+ were found to be comparable at 747 nM/597 nM, and 2.46 × 105 M-1/2/1.78 × 105 M-1/2, respectively. Moreover, the quantum yields of TPE I and TPE II were also calculated and found to be 0.651 and 0.325, respectively. Interestingly, these probes also function as "turn-on" sensors for glutathione (GSH) in the presence of copper. This means their fluorescence can be reversibly switched off and on by alternating CuCl2 and GSH additions. Moreover, the LOD values for GSH with TPE II-Cu2+ were calculated to be 544 nM. In addition, the investigation also employed visual analysis to assess the color alterations of TPEs on filter paper and in real water samples. Overall, this research introduces promising new probes with potential applications in copper ion detection and biomolecule glutathione sensing in real water samples.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department
of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Türkiye
| | - Sebiha Akar
- Department
of Chemistry, Graduate School of Natural and Applied Sciences, Bingol University, 12000 Bingol, Türkiye
| |
Collapse
|
3
|
Shellaiah M, Sun KW. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. BIOSENSORS 2023; 13:335. [PMID: 36979547 PMCID: PMC10046571 DOI: 10.3390/bios13030335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play a vital role in gene expression, maintaining redox homeostasis, reducing damages caused by free radicals/toxins, etc. Likewise, abnormal levels of biothiols can lead to severe diseases, such as Alzheimer's disease (AD), neurotoxicity, hair depigmentation, liver/skin damage, etc. To quantify the biothiols in a biological system, numerous low-toxic probes, such as fluorescent quantum dots, emissive organic probes, composited nanomaterials, etc., have been reported with real-time applications. Among these fluorescent probes, carbon-dots (CDs) have become attractive for biothiols quantification because of advantages of easy synthesis, nano-size, crystalline properties, low-toxicity, and real-time applicability. A CDs-based biothiols assay can be achieved by fluorescent "Turn-On" and "Turn-Off" responses via direct binding, metal complex-mediated detection, composite enhanced interaction, reaction-based reports, and so forth. To date, the availability of a review focused on fluorescent CDs-based biothiols detection with information on recent trends, mechanistic aspects, linear ranges, LODs, and real applications is lacking, which allows us to deliver this comprehensive review. This review delivers valuable information on reported carbon-dots-based biothiols assays, the underlying mechanism, their applications, probe/CDs selection, sensory requirement, merits, limitations, and future scopes.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. J Fluoresc 2022; 32:2223-2236. [PMID: 36042154 DOI: 10.1007/s10895-022-03018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.
Collapse
|
5
|
Abstract
Herein, a simple and efficient fluorescence analysis method for L-Cysteine (L-Cys) was established. The method was based on the fluorescent "off-on" mode of nitrogen doped carbon dots (NCDs). The NCDs were prepared via a facile one-step solvothermal method. In the process of exploring the bio-functional application of these newly synthesized NCDs, we found these NCDs with rich functional groups exhibited excellent optical properties. In addition, these newly synthesized NCDs showed an excitation-dependent emissions photolumine-scent (PL) property and exhibited good performance in the detection of Fe3+ ions by quenching the blue emission fluorescence. Interestingly, the quenched fluorescence of NCDs was recovered with the addition of L-Cys, which provided a novel approach for L-Cys detection. The NCDs-based fluorescent "off-on" sensor has a wide linear detection range (0-100 μM), and a relatively low detection limits (0.35 μM) for L-Cys. This simple fluorescent "off-on" approach is, very sensitive and selective for L-Cys detection, which also provides a new insight on NCDs biosensor application.
Collapse
|
6
|
Abstract
Carbon and graphene quantum dots (CQDs and GQDs), known as zero-dimensional (0D) nanomaterials, have been attracting increasing attention in sensing and bioimaging. Their unique electronic, fluorescent, photoluminescent, chemiluminescent, and electrochemiluminescent properties are what gives them potential in sensing. In this Review, we summarize the basic knowledge on CQDs and GQDs before focusing on their application to sensing thus far followed by a discussion of future directions for research into CQDs- and GQD-based nanomaterials in sensing. With regard to the latter, the authors suggest that with the potential of these nanomaterials in sensing more research is needed on understanding their optical properties and why the synthetic methods influence their properties so much, into methods of surface functionalization that provide greater selectivity in sensing and into new sensing concepts that utilize the virtues of these nanomaterials to give us new or better sensors that could not be achieved in other ways.
Collapse
Affiliation(s)
- Meixiu Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Tao Chen
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - J. Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Choi W, Lim NY, Choi H, Seo ML, Ahn J, Jung JH. Self-Assembled Triphenylphosphonium-Conjugated Dicyanostilbene Nanoparticles and Their Fluorescence Probes for Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1034. [PMID: 30545092 PMCID: PMC6316551 DOI: 10.3390/nano8121034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
We report self-assembled novel triphenylphosphonium-conjugated dicyanostilbene-based as selective fluorescence turn-on probes for ¹O₂ and ClO-. Mono- or di-triphenylphosphonium-conjugated dicyanostilbene derivatives 1 and 2 formed spherical structures with diameters of ca. 27 and 56.5 nm, respectively, through π-π interaction between dicyanostilbene groups. Self-assembled 1 showed strong fluorescent emission upon the addition of ¹O₂ and ClO- compared to other ROS (O₂-, •OH, NO, TBHP, H₂O₂, GSH), metal ions (K⁺, Na⁺), and amino acids (cysteine and histidine). Upon addition of ¹O₂ and ClO-, the spherical structure of 1 changed to a fiber structure (8-nm wide; 300-nm long). Upon addition of ¹O₂ and ClO-, the chemical structural conversion of 1 was determined by FAB-Mass, NMR, IR and Zeta potential analysis, and the strong emission of the self-assembled 1 was due to an aggregation-induced emission enhancement. This self-assembled material was the first for selective ROS as a fluorescence turn-on probe. Thus, a nanostructure change-derived turn-on sensing strategy for ¹O₂ or ClO- may offer a new approach to developing methods for specific guest molecules in biological and environmental subjects.
Collapse
Affiliation(s)
- Wonjin Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Na Young Lim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Moo Lyong Seo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Junho Ahn
- Composites Research Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
8
|
Xue SF, Han XY, Chen ZH, Yan Q, Lin ZY, Zhang M, Shi G. The Chemistry of Europium(III) Encountering DNA: Sprouting Unique Sequence-Dependent Performances for Multifunctional Time-Resolved Luminescent Assays. Anal Chem 2018; 90:10614-10620. [PMID: 30099873 DOI: 10.1021/acs.analchem.8b03010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Screening functional DNA that can fruitfully interact with metal ions is a long-standing hot topic in the fields of biotechnology, medicine, and DNA-based sensors. In this paper, we focus on the chemistry of europium(III) (Eu) coupled with single-stranded DNA (ssDNA), and we innovatively unveil that cytosine- and thymine-rich ssDNA oligomers (e.g., C16 and T16) can be effective antenna ligands to sensitize the luminescence of Eu. Luminescence lifetime spectroscopy, circular dichroic (CD) spectroscopy, and isothermal titration calorimetry (ITC) have been used to systematically characterize the interaction involved between Eu and ssDNA. In light of the resultant sequence-dependent performances, the long luminescence lifetime Eu/ssDNA-based label-free and versatile probes are further devised as a pattern distinction system for time-resolved luminescent (TRL) sensing applications. The interactions of metal ions and ssDNA can distinctively shift the antenna effect of ssDNA toward Eu as accessible pattern signals. As a result, as few as two Eu/ssDNA label-free TRL probes can discriminate 17 metal ions via principal component analysis (PCA). In addition, thiols can readily capture metal ions to switch the luminescence of Eu/ssDNA probes initially altered by metal ions. Hence, four Eu/ssDNA-metal ion ensembles are demonstrated to be a powerful label-free TRL sensor array for pattern differentiation of eight thiols and even chiral recognition of cysteine enantiomers with different concentrations. Moreover, the sensitive TRL detection of thiols in biofluids can be successfully realized by using our method, promising its potential practical usage. This is the first report of a ssDNA-sensitized Eu-based TRL platform for label-free yet multifunctional background-free sensing and would open a door for sprouting of more novel lanthanide ion/DNA-relevant strategies toward widespread applications.
Collapse
Affiliation(s)
- Shi-Fan Xue
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xin-Yue Han
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Han Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Qing Yan
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Yang Lin
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
9
|
Yazdanparast MS, Jeffries WR, Gray ER, McLaurin EJ. Mn 2+-ZnSe/ZnS@SiO₂ Nanoparticles for Turn-on Luminescence Thiol Detection. J Funct Biomater 2017; 8:jfb8030036. [PMID: 28832505 PMCID: PMC5618287 DOI: 10.3390/jfb8030036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022] Open
Abstract
Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI.
Collapse
Affiliation(s)
| | | | - Eric R Gray
- Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Emily J McLaurin
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|