1
|
Patel DA, Anand T, Jali BR, Sahoo SK. 4,4'-Sulfonyldianiline Derived Aggregation-Induced Emission Luminogen for the Detection of Ofloxacin. Chempluschem 2025; 90:e202400537. [PMID: 39305139 DOI: 10.1002/cplu.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Indexed: 11/02/2024]
Abstract
The excessive use of antibiotic ofloxacin (Oflx) can cause serious detrimental effects to human health. Therefore, the utmost research priority is required to develop facile methods to detect Oflx. Herein, a V-shaped aggregation-induced emission (AIE) active Schiff base SDANA was introduced for the fluorescent turn-on detection of Oflx. The Schiff base SDANA was synthesized by condensing 4,4'-sulfonyldianiline with two equivalents of 2-hydroxy-1-naphthaldehyde. The nearly non-fluorescent SDANA in DMSO showed strong orange emission with the increase in HEPES buffer (H2O, 10 mM, pH 7.4) fractions in DMSO from 70 %-95 % due to the combined effects of AIE and ESIPT. The DLS and SEM analyses were performed to complement the formation of self-aggregates of SDANA. With the addition of Oflx, the fluorescence emission of AIE luminogen (AIEgen) SDANA (λem=575 nm, λex=400 nm) was blue-shifted and enhanced at 530 nm. The interactions of Oflx over the surface of SDANA aggregates disrupted the intramolecular charge transfer and aggregation morphology of SDANA, which gave a distinct fluorescence response to detect Oflx. The detection limit for Oflx was estimated as 0.81 μM, and the developed probe AIEgen SDANA was applied for the quantification of Oflx in human blood serum.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| |
Collapse
|
2
|
Li X, Huang J, Li N, Salah M, Guan S, Pan W, Wang Z, Zhou X, Wang Y. Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin. Foods 2024; 13:4137. [PMID: 39767079 PMCID: PMC11675736 DOI: 10.3390/foods13244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The livestock industry uses ofloxacin, an antibiotic, to prevent several animal diseases; however, the overdose of ofloxacin used in animal farming treatments may appear in food products and cause some adverse human health effects. Hence, there is an immediate need to develop a method suitable for on site large-scale detection of ofloxacin residues in animal-derived foods. This study aimed to prepare a monoclonal antibody with high sensitivity and affinity for ofloxacin by re-synthesizing the ofloxacin hapten and synthesizing the corresponding complete antigen. The IC50 of the enzyme-linked immunosorbent assay (ic-ELISA) was 0.13 ng/mL, and the detection limit was 0.033 ng/mL. The visual detection limit of the established colloidal gold immunochromatographic test strip, for the visual detection of actual samples, was 1 ng/g. In summary, this work establishes a rapid detection method of ofloxacin residues on the basis of colloidal gold immunochromatography that is suitable for actual detection.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Jin Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Na Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Mahmoud Salah
- Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Shuoning Guan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Wenwen Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Ziyi Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.L.); (J.H.)
| |
Collapse
|
3
|
Iram S, Nazar Z, Sajid M, William Chamberlain T, Furqan Nawaz M, Mahboob Ahmed M, Kashif M. In-tube solid phase extraction with graphitic-based polyurethane sponge as a superhydrophobic sorbent and determination of drug residues in foodstuffs using high-performance liquid chromatography. Food Chem 2024; 448:139022. [PMID: 38522298 DOI: 10.1016/j.foodchem.2024.139022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Veterinary drugs used in animal husbandry raise public health concerns due to their residues in the bodies of animals. This study employs a simple and quick sample preparation technique, in-tube solid phase extraction, to extract drug residues from foodstuffs, including eggs, honey, and water. This technique utilizes the synergy of graphitic-based materials and polyurethane sponges (PU) combined through dip coating method to make reusable sorbents for extracting drugs, including amoxicillin, paracetamol, ciprofloxacin, and cefixime. These prepared sorbents were characterized using FTIR, SEM, and XRD. HPLC analysis assessed the extraction efficiency, considering various parameters such as analyte concentration, sample solution pH, extraction time, type of eluting solvent, and graphitic-based polyurethane sponge reusability and stability. The proposed method exhibited a linear response for all three sorbents in the range of 0.03-1000 µg mL-1, with LOD 0.03-1.60 µg mL-1 and LOQ 0.18-4.84 µg mL-1. The % RSD ranged from 1.3 to 9.3 %, with recoveries of up to 98.42 %.
Collapse
Affiliation(s)
- Sidra Iram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zahra Nazar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Thomas William Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Kashif
- Department of Chemistry, Emerson University, Multan 60000, Pakistan
| |
Collapse
|
4
|
Sartore DM, Vargas Medina DA, Bocelli MD, Jordan-Sinisterra M, Santos-Neto ÁJ, Lanças FM. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J Sep Sci 2023; 46:e2300215. [PMID: 37232209 DOI: 10.1002/jssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.
Collapse
Affiliation(s)
- Douglas M Sartore
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Deyber A Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcio D Bocelli
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcela Jordan-Sinisterra
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Álvaro J Santos-Neto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
5
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Niu Z, Sun Y, Yang Y, Wang Z, Wen Y. Self-synthesized TiO 2 nanoparticles-pH-mediated dispersive solid phase extraction coupled with high performance liquid chromatography for the determination of quinolones in biological matrices. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:656-666. [PMID: 35880484 DOI: 10.1080/10934529.2022.2101340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A simple and efficient pH-mediated dispersive solid phase extraction (dSPE) based on terbium doped titanium dioxide nanoparticles (TiO2-Tb NPs) combined with high performance liquid chromatography (HPLC) has been firstly developed for the determination of quinolones (QNs) in various biological samples. The adsorption kinetics and isotherms were investigated to indicate that the kinetic and equilibrium adsorption were well-described by pseudo-second order kinetic and Henry, Langmuir isotherm model, respectively. The parameters influencing the extraction performance were systematically investigated. The QNs are transferred into TiO2-Tb NPs in the first step at pH = 6.0 and eluted into acidic aqueous phase at pH = 2.5 in the second step. Under the optimum extraction and determination conditions, a linearity range with the coefficient of determination (R2) from 0.9977 to 0.9991 were obtained in a range of 10-10,000 ng mL-1. The limits of detection (LODs) based on a signal-to-noise ratio of 3 were 3.3 ng mL-1. The recoveries of the three QNs in human urine, rabbit plasma and serum samples ranged from 69.3% to 117.6%, with standard deviations ranging from 2.4% to 9.9%. Therefore, this pH-mediated dSPE-HPLC method exhibited the advantages of remarkable sensitivity, ease of operation, rapidity, low cost and environmental friendliness.
Collapse
Affiliation(s)
- Zongliang Niu
- Laboratory of Pathogenic Biology and Immunology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Yiqing Sun
- Department of Environmental Science, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Ying Yang
- Department of Environmental Science, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Zhencui Wang
- Department of Environmental Science, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yingying Wen
- Department of Environmental Science, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| |
Collapse
|
7
|
Yıldırım S, Cocovi-Solberg DJ, Uslu B, Solich P, Horstkotte B. Lab-In-Syringe automation of deep eutectic solvent-based direct immersion single drop microextraction coupled online to high-performance liquid chromatography for the determination of fluoroquinolones. Talanta 2022; 246:123476. [PMID: 35461115 DOI: 10.1016/j.talanta.2022.123476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/23/2023]
Abstract
Lab-In-Syringe direct immersion single drop microextraction is proposed as an automated sample pretreatment methodology and coupled online to HPLC with fluorescence detection for the determination of fluoroquinolones in environmental waters. For the first time, a drop of a natural deep eutectic solvent (NADES), synthesized from hexanoic acid and thymol, has been used as an extractant in automated single-drop microextraction. The extraction procedure was carried out within the 5 mL void of an automatic syringe pump. A 9-position head valve served the aspiration of all required solutions, air, waste disposal, and hyphenation with the HPLC instrument. Sample mixing during extraction was done by a magnetic stirring bar placed inside the syringe. Only 60 μL of NADES were required omitting toxic classical solvents and improving the greenness of the proposed methodology. By direct injection, linear working ranges between 0.1 and 5 μg L-1 were achieved for all fluoroquinolones. The limit of quantification values and enrichment factors ranged from 20 ng L-1 to 30 ng L-1 and 35 to 45, respectively. Accuracies obtained from the analysis of spiked surface water and wastewater treatment plant effluent analysis at two concentration levels (0.5 and 4 μg L-1) ranged from 84.6% to 119.7%, with RSD values typically <3%.
Collapse
Affiliation(s)
- Sercan Yıldırım
- Karadeniz Technical University, Faculty of Pharmacy, Department of Analytical Chemistry, Farabi Street, 61080, Trabzon, Turkey; Charles University, Faculty of Pharmacy, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - David J Cocovi-Solberg
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Yenimahalle, 06560, Ankara, Turkey
| | - Petr Solich
- Charles University, Faculty of Pharmacy, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Burkhard Horstkotte
- Charles University, Faculty of Pharmacy, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Wang XP, Wang RQ, Pan XY, Xing RR, Yang L, Chen X, Hu S. Preconcentration of liposoluble constituents in Salvia Miltiorrhiza using acid-assisted liquid phase microextraction based on a switchable deep eutectic solvent. J Chromatogr A 2022; 1666:462858. [DOI: 10.1016/j.chroma.2022.462858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
|
9
|
Maleki F, Daneshfar A. Synthesis of surface dual-template molecularly imprinted silica nanoparticles for extraction of ciprofloxacin and norfloxacin. NEW J CHEM 2022. [DOI: 10.1039/d2nj04429c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis of selective dual-template molecularly imprinted silica nanoparticles (MI-SiNPs) on the surface of graphene quantum dots (GQDs) for the simultaneous extraction of ciprofloxacin (CIP) and norfloxacin (NOR) from biological samples.
Collapse
Affiliation(s)
- Farideh Maleki
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Ali Daneshfar
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
10
|
Tian C, Ren X, He M, Chen B, Hu B. Core-shell magnetic porous organic polymer for magnetic solid-phase extraction of fluoroquinolone antibiotics in honey samples followed by high-performance liquid chromatography with fluorescence detection. J Sep Sci 2021; 45:874-882. [PMID: 34882983 DOI: 10.1002/jssc.202100678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022]
Abstract
By monomer-mediated in-situ growth synthesis strategy, with hydroquinone and 1,3,5-tris(4-aminophenyl)benzene as monomers, a core-shell magnetic porous organic polymer was synthesized through a simple azo reaction. Based on this, a magnetic solid-phase extraction-high-performance liquid chromatography-fluorescence detection method was proposed for the analysis of fluoroquinolones in a honey sample. With ofloxacin, ciprofloxacin, enrofloxacin, lomefloxacin, and difloxacin as target analytes, factors affecting the extraction efficiency had been optimized. The LODs were 1.5-5.4 ng/L (corresponding to 0.23-0.81 μg/kg in honey). The linear range was 0.005-20 μg/L for difloxacin, 0.01-20 μg/L for ofloxacin, ciprofloxacin and lomefloxacin, and 0.02-20 μg/L for enrofloxacin. The enrichment factor was 84.4-91.7-fold with a high extraction efficiency of 84.4-91.7%. The method was assessed by the analysis of target fluoroquinolones in honey samples, and the recoveries for the spiked samples were 79.3-95.8%. The results indicated that the established magnetic solid-phase extraction-high-performance liquid chromatography-fluorescence detection method is efficient for the analysis of trace fluoroquinolones in honey.
Collapse
Affiliation(s)
- Cong Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xue Ren
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Man He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Beibei Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Bin Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
11
|
Huang Y, Wang C, Wei Q, Song Y, Chen P, Wang L, Yang X, Chen X. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta 2021; 235:122783. [PMID: 34517641 DOI: 10.1016/j.talanta.2021.122783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
As the light-harvesting "antenna", G-rich oligonucleotides (such as the G-quadruplex) can interact with lanthanide (III) to bring a luminescent enhancement response. In this study, phenomenon of luminescent enhancement of G-triplex/terbium (III) (G3/Tb3+) and interaction between G3 and Tb3+ were first reported and characterized. Based on G3/Tb3+ luminescence, a label-free aptasensor for the detection of ofloxacin (OFL) residues in the food was developed. The OFL triggered the action of rolling circle amplification (RCA) allowed for the amplification product of G3-forming sequences in the single-stranded DNA, which promoted the conformational transition of the G3/Tb3+ complexes once the addition of Tb3+. Under the optimal conditions, the logarithmic correlation between the G3/Tb3+ luminescence intensity and the concentration of OFL was found to be linear in the range of 5-1000 pmol L-1 (R2 = 0.9949). The limit of detection was 0.18 pmol L-1 (3σ/slope). Additionally, the good recoveries of 90.19-108.89 % and the relative standard deviations values of 0.59-5.87 % were obtained in the application of the aptasensor detecting OFL in the practical samples. These results confirmed that the present aptasensor has a good analytical performance and bright prospect for detecting ofloxacin residues in food.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| | - Chong Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Qiming Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Yaning Song
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Pengfei Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Lijun Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xiao Yang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| |
Collapse
|
12
|
A nanocomposite optosensing probe based on hierarchical porous carbon and graphene quantum dots incorporated in selective polymer for the detection of trace ofloxacin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Pan S, Xu Q, Guo Y, Wang L. Simultaneous determination of 11 quinolone residues in freshwater fish samples by magnetic solid-extraction coupled to liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:4017-4024. [PMID: 34453397 DOI: 10.1002/jssc.202100554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/05/2022]
Abstract
In this study, well-defined core-shell ethylenediamine-functional magnetic ferroferric oxide polymers were prepared and were fully characterized by transmission electron microscopy, scanning electron microscopy, FTIR spectroscopy, and vibrating sample magnetometry. Then, it was used as a magnetic solid-phase extraction adsorbent for simultaneous determination of 11 trace quinolone residues in freshwater fish samples coupled to liquid chromatography-tandem mass spectrometry. The obtained results revealed that the adsorbent showed good extraction efficiency and the adsorption mechanisms referred to hydrogen bond and π-π stacking interaction. Moreover, the magnetic solid-phase extraction conditions were also carefully optimized. The limits of quantitation of 11 quinolones were in the range of 0.15-0.36 μg/kg, while spiking recoveries were in the range of 80.2-99.5% for the 11 quinolones in freshwater fish samples at four spiked levels including limits of quantitation, 1.0, 40.0, and 80.0 μg/kg with the relative standard deviations ranging from 0.8 to 9.1%. The proposed method was applied to analyze 45 freshwater fish samples, and enrofloxacin was detected in 91.1% samples with concentrations ranging from 0.659 to 333 μg/kg. It could be concluded that the proposed method is fast, simple, sensitive, and accurate for the routine monitor of freshwater fish.
Collapse
Affiliation(s)
- Shengdong Pan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang Province, 315010, P. R. China
| | - Qihong Xu
- Hangzhou BOSOM New Materials Technology Co., Ltd, Hangzhou, Zhejiang Province, 311103, P. R. China
| | - Yanbo Guo
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang Province, 315010, P. R. China
| | - Li Wang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang Province, 315010, P. R. China
| |
Collapse
|
14
|
Abbaszadeh S, Yousefinejad S, Jafari S, Soleimani E. In-syringe ionic liquid-dispersive liquid-liquid microextraction coupled with HPLC for the determination of trans,trans-muconic acid in human urine sample. J Sep Sci 2021; 44:3126-3136. [PMID: 34114310 DOI: 10.1002/jssc.202100044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
trans,trans-Muconic acid has been widely used as a biomarker in biological monitoring of benzene-exposed workers during routine occupational health services. In the present study, a novel microextraction technique, in-syringe ionic liquid-dispersive liquid-liquid microextraction, was implemented for preconcentration of trans,trans-muconic acid followed by analytical determination by high-performance liquid chromatography with ultraviolet detection. Moreover, the important variables affecting the performance of applied microextraction technique including needle diameter, volume of the spiked sample, volume of the ionic liquid, salt addition, rotation speed of centrifugation, centrifuge time, and ultrasonic time were optimized by experimental design. A good linear relationship was observed at the range of 0.032-10 μg/mL between the peak area and the concentration levels (R2 = 0.9997). The limit of detection and extraction recovery for trans,trans-muconic acid were 0.011 μg/mL and >96.2%, respectively. This method provided easy and rapid analysis of low amounts of trans,trans-muconic acid in human urine with simple equipment.
Collapse
Affiliation(s)
- Sepideh Abbaszadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jafari
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Soleimani
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Li F, Wang M, Zhou J, Yang M, Wang T. Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Polyethyleneimine-functionalized Fe 3O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle. Anal Bioanal Chem 2021; 413:3529-3540. [PMID: 33813591 DOI: 10.1007/s00216-021-03304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Fluoroquinolone (FQ) residues in foods of animal origin may threaten public health but are challenging to determine because of their low contents and complex matrices. In this study, novel polyethyleneimine-functionalized Fe3O4/attapulgite magnetic particles were prepared by a simple co-mixing method and applied as hydrophilic sorbents for the magnetic dispersive solid-phase extraction (MSPE) of three FQs, i.e., ciprofloxacin, norfloxacin, and enrofloxacin, from chicken muscle samples. The preparation of the magnetic particles was of high reproducibility and the products could be reused many times with high adsorption capacity. The key experimental factors possibly influencing the extraction efficiencies, including sample solution, extraction time, sample loading volume, desorption solution, desorption time, and elution volume were investigated. Under optimum MSPE conditions, the analytes in chicken muscle samples were extracted and then determined by RPLC-MS/MS in MRM mode. Good linearity was obtained for the analytes with correlation coefficients ranged from 0.9975 to 0.9995. The limits of detection were in the range of 0.02-0.08 μg kg-1, and the recoveries of the spiked FQs in chicken muscle samples ranged from 83.9 to 98.7% with relative standard deviations of 1.3-6.8% (n = 3). Compared with the traditional MSPE methods based on hydrophobic mechanism, this hydrophilic interaction-based method significantly simplifies the sample pretreatment procedure and improves repeatability. This method is promising for accurate monitoring of FQs in foods of animal origin.
Collapse
|
17
|
Timofeeva I, Stepanova K, Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta 2021; 224:121888. [PMID: 33379097 DOI: 10.1016/j.talanta.2020.121888] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
In this work, an automated surfactant-assisted dispersive liquid-liquid microextraction approach based on in-a-syringe concept was developed for the first time. The procedure assumed mixing aqueous sample phase and hydrophilic emulsion containing hexanoic acid and sodium hexanoate in a syringe of flow system. Sodium hexanoate acted as an emulsifier in dispersive liquid-liquid microextraction process and it was required for the formation of supramolecular solvent phase. After spontaneous separation of phases in the syringe, the upper supramolecular solvent phase containing target analytes was withdrawn and analyzed. The procedure was applied to the determination of 13 polycyclic aromatic hydrocarbons in tea infusion by high performance liquid chromatography with fluorescence detection. It was shown that the supramolecular solvent provided effective extraction of polycyclic aromatic hydrocarbons and fast phase separation in the syringe without centrifugation. The enrichment factors were in the range of 38-46. The automated microextraction procedure lasted 4 min including syringe cleaning. Under optimal experimental conditions the linear detection ranges were found to be 0.05-50.00 μg L-1 with limits of detection calculated from a blank test, based on 3σ, 0.02-0.04 μg L-1. Recovery values in the range of 85-105% were achieved for tea infusion with a reproducibility expressed as RSD less than 4.1%.
Collapse
Affiliation(s)
- Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Kira Stepanova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| |
Collapse
|
18
|
Yu K, Yue ME, Xu J, Jiang TF. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chem 2020; 332:127371. [DOI: 10.1016/j.foodchem.2020.127371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
19
|
Zhao S, Sun Z, Wang X, Li J, Zhou Y, Gong B. Novel metal-organic framework combining with restricted access molecularly imprinted nanomaterials for solid-phase extraction of gatifloxacin from bovine serum. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122338. [DOI: 10.1016/j.jchromb.2020.122338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
|
20
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Dispersive Liquid–Liquid Microextraction of Organic Compounds: An Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820100056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Mostafavi B, Feizbakhsh A, Konoz E, Faraji H. Salting-out strategy for speciation of selenium in aqueous samples using centrifuge-less dispersive liquid-liquid microextraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:662. [PMID: 32979107 DOI: 10.1007/s10661-020-08609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The centrifuge-less dispersive liquid-liquid microextraction (DLLME) technique was used to separate selenium species in aqueous samples. According to the salting-out effect, a simple approach was used to eliminate the centrifugation step. The optimization of the independent variables was performed using chemometric methods. Under optimal conditions, this methodology was statistically validated. The linearity was between 20 and 300 μg L-1. The limit of detection and quantification were calculated 3.4 μg L-1 and 10.4 μg L-1, respectively. The values of reproducibility and repeatability were determined ≤ 9.5% and ≤ 6.4, respectively. The possibility of the method was successfully assessed by analyzing the analytes in real samples clarified satisfactory recoveries (98.1-101.4% for Se (IV) and 98.4-101.5% for Se (VI)).
Collapse
Affiliation(s)
- Beeta Mostafavi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran
| | - Alireza Feizbakhsh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran.
| | - Elaheh Konoz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran
| | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Naghsh-e-Jahan Sq., 338177489, Pishva, Varamin, Iran.
| |
Collapse
|
22
|
Bazel Y, Rečlo M, Chubirka Y. Switchable hydrophilicity solvents in analytical chemistry. Five years of achievements. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Li S, Zhang Q, Chen M, Zhang X, Liu P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Chen
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
24
|
Dugheri S, Mucci N, Bonari A, Marrubini G, Cappelli G, Ubiali D, Campagna M, Montalti M, Arcangeli G. Liquid phase microextraction techniques combined with chromatography analysis: a review. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid–liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed.
Collapse
Affiliation(s)
- Stefano Dugheri
- 1 Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, Florence, Italy
| | - Nicola Mucci
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Bonari
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Cappelli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Ubiali
- 3 Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Campagna
- 4 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manfredi Montalti
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Al-Nidawi M, Alshana U, Caleb J, Hassan M, Rahman ZU, Hanoğlu DY, Çalış İ. Switchable-hydrophilicity solvent liquid-liquid microextraction versus dispersive liquid-liquid microextraction prior to HPLC-UV for the determination and isolation of piperine from Piper nigrum L. J Sep Sci 2020; 43:3053-3060. [PMID: 32419309 DOI: 10.1002/jssc.202000152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/07/2022]
Abstract
Switchable-hydrophilicity solvent liquid-liquid microextraction and dispersive liquid-liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high-performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2-0.6 and 0.7-2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2 ) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable-hydrophilicity solvent liquid-liquid microextraction is a better alternative to dispersive liquid-liquid microextraction for the routine analysis of piperine in food samples. A novel scaled-up dispersive liquid-liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.
Collapse
Affiliation(s)
- Mais Al-Nidawi
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Usama Alshana
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Jude Caleb
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Malek Hassan
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Zia Ur Rahman
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Duygu Yiğit Hanoğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - İhsan Çalış
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
26
|
A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta 2020; 208:120391. [DOI: 10.1016/j.talanta.2019.120391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
|
27
|
Vakh KS, Timofeeva II, Bulatov AV. Automation of Microextraction Preconcentration Methods Based on Stepwise Injection Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s106193481911011x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yan Z, Yi H, Wang L, Zhou X, Yan R, Zhang D, Wang S, Su L, Zhou S. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117203. [PMID: 31174139 DOI: 10.1016/j.saa.2019.117203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
This paper proposes the idea of building a fluorescent biosensor for ofloxacin (OFL) determination in aqueous and milk samples by label-free OFL-specific aptamer, gold nanoparticles (AuNPs) and Rhodamine B (RB). In the absence of OFL, AuNPs are coated with OFL aptamer and maintain dispersed in the high concentration of NaCl. The dispersed AuNPs could reduce the strong fluorescence intensity of RB efficiently. By contrast, in the presence of OFL, OFL is combined with aptamer to form stable compounds, causing the aptamers separated from the surface of AuNPs, thus AuNPs would be exposed in the solution. And the aggregated AuNPs will not quench the fluorescence intensity of RB. Through the distinction of the fluorescence intensity, the concentration of OFL could be detected in aqueous and milk samples quantitatively. The convenient and specific fluorescent assay for OFL is established with a linear range (R = 0.9907) from 20 to 300 nM and a detection limit of 1.66 nM in aqueous solution, and a linear range (R = 0.9963) from 20 to 300 nM and a detection limit of 4.61 nM (1.66 μg/L) in milk samples. With the good sensitivity and selectivity, this biosensor has good application potential to detect OFL in food and environmental samples.
Collapse
Affiliation(s)
- Zhiyu Yan
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoyang Yi
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaotong Zhou
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Rui Yan
- Meteorological Bureau of Liupanshui, Liupanshui 553000, PR China
| | - Dongwei Zhang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Song Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lantian Su
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
29
|
Bulatov AV, Shishov AY, Moskvin LN. Concept of Equilibrium Flow-Through Methods: Cyclic Injection Analysis and Its Analytical Potential. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Yi H, Yan Z, Wang L, Zhou X, Yan R, Zhang D, Shen G, Zhou S. Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I. Mikrochim Acta 2019; 186:668. [DOI: 10.1007/s00604-019-3788-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
|
31
|
Hassan M, Alshana U. Switchable-hydrophilicity solvent liquid–liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination. J Pharm Biomed Anal 2019; 174:509-517. [DOI: 10.1016/j.jpba.2019.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
|
32
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
33
|
Wang Q, Chen R, Shatner W, Cao Y, Bai Y. State-of-the-art on the technique of dispersive liquid-liquid microextraction. ULTRASONICS SONOCHEMISTRY 2019; 51:369-377. [PMID: 30377081 DOI: 10.1016/j.ultsonch.2018.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Dispersive liquid-liquid microextraction is a new sample pretreatment technology based on traditional liquid liquid extraction. In this paper, the application of low-toxicity extractants such as low-density extractants, auxiliary extractants, stripping agents and ionic liquids in this technology and the extraction modes such as solvent de-emulsification, suspension extractant curing, auxiliary extraction, back extraction, and ionic liquid-dispersion liquid microextraction, are summarized. In addition, the synergism of this technique with other sample preparation techniques, such as liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, dispersive solid phase extraction, matrix solid-phase dispersion extraction, supercritical fluid extraction and ultrasound-assisted dispersive liquid-liquid microextraction is discussed.
Collapse
Affiliation(s)
- Qiangfeng Wang
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Renji Chen
- Cleft Lip and Palate Treatment Center, Beijing Stomatological Hospital, TianTan-XiLi the 4th, DongCheng District, BeiJing 100050, China.
| | - William Shatner
- Jiaotong Institute, A0E 2Z0: Monkstown, Newfoundland, Canada
| | - Yan Cao
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Yu Bai
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
34
|
Teglia CM, Gonzalo L, Culzoni MJ, Goicoechea HC. Determination of six veterinary pharmaceuticals in egg by liquid chromatography: Chemometric optimization of a novel air assisted-dispersive liquid-liquid microextraction by solid floating organic drop. Food Chem 2019; 273:194-202. [DOI: 10.1016/j.foodchem.2017.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
|
35
|
Vakh C, Pochivalov A, Koronkiewicz S, Kalinowski S, Postnov V, Bulatov A. A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system. Food Chem 2019; 270:10-16. [DOI: 10.1016/j.foodchem.2018.07.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/25/2022]
|
36
|
Lu W, Liu J, Li J, Wang X, Lv M, Cui R, Chen L. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019; 144:1292-1302. [DOI: 10.1039/c8an02133c] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dual-template molecularly imprinted polymers were synthesized using norfloxacin and enrofloxacin as templates by precipitation polymerization with a multi-template imprinting strategy.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Light Industry Science and Technology
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jie Liu
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Rong Cui
- School of Environment and Materials Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Center for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
37
|
Leng G, Hu Q, He WF, Liu Z, Chen WJ, Xu WB, Yang QH, Sun J. A simple field method for the determination of sulfite in natural waters: Based on automated dispersive liquid-liquid microextraction coupled with ultraviolet-visible spectrophotometry. J Chromatogr A 2019; 1584:72-79. [DOI: 10.1016/j.chroma.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
|
38
|
Development of a Liquid–Liquid Microextraction Method Based on a Switchable Hydrophilicity Solvent for the Simultaneous Determination of 11 Drugs in Urine by GC–MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3643-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Li W, Chen N, Huang Z, Zeng X, Zhu Y. Switchable Hydrophilicity Dispersive Solvent-Based Liquid-Liquid Microextraction Coupling to High-Performance Liquid Chromatography for the Determination of Amphenicols in Food Products. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Mikrochim Acta 2018; 185:355. [DOI: 10.1007/s00604-018-2895-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
|
41
|
Medina DAV, Santos-Neto ÁJ, Cerdà V, Maya F. Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta 2018; 189:241-248. [PMID: 30086913 DOI: 10.1016/j.talanta.2018.06.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
In this work, the dispersive liquid-liquid microextraction technique based on the solidification of the organic phase (DLLME-SFO) has been automated for the first time. DLLME-SFO is automated by hyphenating a sequential injection analysis (SIA) system with a custom-made robotic phase separator. Automated in-syringe DLLME is followed by phase separation in a 3D printed device integrating a Peltier cell set, mounted on a multi-axis robotic arm. The combined action of the flow system and the robotic arm is controlled by a single software package, enabling the solidification/melting and collection of the organic phase for further analyte quantification. As proof-of-concept, automated DLLME-SFO was applied to the extraction of parabens followed by separation using liquid chromatography, obtaining LODs between 0.3 and 1.3 µg L-1 (4 mL of sample extracted in 1 mL of 1-dodecanol: MeOH, 15:85, v-v). The method showed a high reproducibility, obtaining intraday RSDs between 4.6% and 5.8% (n = 6), and interday RSDs between 5.6% and 8.6% (n = 6). The developed method was evaluated for the determination of parabens in water, urine, saliva, and personal care products.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain; Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP 13566-590, Brazil
| | - Álvaro José Santos-Neto
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP 13566-590, Brazil
| | - Víctor Cerdà
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain
| | - Fernando Maya
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca E-07122, Spain.
| |
Collapse
|
42
|
Rykowska I, Ziemblińska J, Nowak I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.043] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Shishov A, Wieczorek M, Kościelniak P, Dudek-Adamska D, Telk A, Moskvin L, Bulatov A. An automated continuous homogeneous microextraction for the determination of selenium and arsenic by hydride generation atomic fluorescence spectrometry. Talanta 2018; 181:359-365. [DOI: 10.1016/j.talanta.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
|
44
|
Tian HX, Zhang YJ, Qin L, Chen C, Liu Y, Yu HY. Evaluating taste contribution of brown sugar in chicken seasoning using taste compounds, sensory evaluation, and electronic tongue. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1424721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huai-Xiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Ya-Jing Zhang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lan Qin
- Science & Technology Platform, Sensory Group, Nestlé R&D Centre Shanghai Ltd, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yuan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hai-Yan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
45
|
Worawit C, Cocovi-Solberg DJ, Varanusupakul P, Miró M. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: A proof of concept study. Talanta 2018; 185:611-619. [PMID: 29759249 DOI: 10.1016/j.talanta.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023]
Abstract
A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L-1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L-1 to 500 µg L-1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L-1. Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Chanatda Worawit
- Chemical Approaches for Food Applications Research Group, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - David J Cocovi-Solberg
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pakorn Varanusupakul
- Chemical Approaches for Food Applications Research Group, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
46
|
Vakh C, Alaboud M, Lebedinets S, Korolev D, Postnov V, Moskvin L, Osmolovskaya O, Bulatov A. An automated magnetic dispersive micro-solid phase extraction in a fluidized reactor for the determination of fluoroquinolones in baby food samples. Anal Chim Acta 2017; 1001:59-69. [PMID: 29291807 DOI: 10.1016/j.aca.2017.11.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
An automated magnetic dispersive micro-solid phase extraction procedure in a fluidized reactor was developed for the determination of fluoroquinolone antimicrobial drugs (fleroxacin, norfloxacin and ofloxacin) in meat-based baby food samples. A stepwise injection system was successfully combined with afluidized reactorand applied for the magnetic dispersive micro-solid phase extraction procedure automation. The developed automated procedure involved injection of the sample solution into the fluidized reactor followed by the on-line separation of the analytes from the sample matrix based on fluidized beds strategy using magnetic nanoparticles, elution and determination of the analytes using a high performance liquid chromatography system with fluorescence detection. The floating of the magnetic nanoparticles in a liquid sample phase was accomplished by air-bubbling. In the developed method Zr-Fe-C magnetic nanoparticles were used as an efficient sorbent for the determination of fleroxacin, norfloxacin and ofloxacin. Under the optimal conditions, the calibration graphs were linear over the concentration ranges of 10-1000 μg L-1 for fleroxacin (R2 = 0.996), 5-1000 μg L-1for norfloxacin (R2 = 0.998) and ofloxacin (R2 = 0.998). The limits of detection, calculated from the blank tests based on 3σ, were 3.0 μg L-1forfleroxacin, 1.5 μg L-1for norfloxacin and ofloxacin. The limits of quantification, calculated from the blank tests based on 10σ, were 10 μg L-1 forfleroxacin, 5 μg L-1for norfloxacin and ofloxacin. The method was applied for the determination of fluoroquinolonesin meat-based baby food samples and the results were compared with those obtained by the reference method. The recovery values for all analytes were within of 86-122% range.
Collapse
Affiliation(s)
- Christina Vakh
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia.
| | - Marcel Alaboud
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| | - Sofya Lebedinets
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| | - Dmitry Korolev
- Almazov Federal Medical Research Center, St. Petersburg, Russia
| | - Viktor Postnov
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| | - Leonid Moskvin
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| | - Olga Osmolovskaya
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Institute of Chemistry, Saint-Petersburg University St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskayanab., St. Petersburg 199034, Russia
| |
Collapse
|
47
|
An effervescence tablet-assisted switchable solvent-based microextraction: On-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Pochivalov A, Vakh C, Andruch V, Moskvin L, Bulatov A. Automated alkaline-induced salting-out homogeneous liquid-liquid extraction coupled with in-line organic-phase detection by an optical probe for the determination of diclofenac. Talanta 2017; 169:156-162. [DOI: 10.1016/j.talanta.2017.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
|
49
|
Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry. Anal Chim Acta 2017; 972:38-45. [DOI: 10.1016/j.aca.2017.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/16/2017] [Accepted: 04/02/2017] [Indexed: 11/21/2022]
|