1
|
Lundberg R, Dahlén J, Lundeberg T. Considerations regarding the selection, sampling, extraction, analysis, and modelling of biomarkers in exhaled breath for early lung cancer screening. J Pharm Biomed Anal 2025; 260:116787. [PMID: 40043331 DOI: 10.1016/j.jpba.2025.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Lung cancer (LC) is the deadliest cancer due to the lack of efficient screening methods that detect the disease early. This review, covering the years 2011 - 2025, summarizes state-of-the-art LC screening through analysis of volatile organic compounds (VOCs) in exhaled breath. All fundamental parts of the methodology are covered, i.e., sampling, analysis, and multivariate data modelling. This review shows that breath is commonly collected in Tedlar® bags and subsequently analysed with solid phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) or sensors. Data analysis has been made using multivariate methods like principal component analysis (PCA) or artificial neural networks (ANNs). The VOCs exhaled by LC patients and healthy subjects are in principle the same. However, concentration levels differ between the two groups. Therefore, LC patients are usually separated from healthy controls through multivariate modelling of a set of VOC biomarkers rather than by individual biomarkers. Although most exhaled VOCs are formed endogenously via metabolic processes and oxidative stress, some compounds also have exogenous origins, which must be taken into consideration. More than 200 different VOCs have been reported as potential biomarkers in the breath of LC patients, while the number of biomarkers per study were typically around 10-20 compounds. The 15 most common LC biomarkers were (from high to low frequency) acetone, isoprene, hexanal, benzene, butanone, styrene, ethylbenzene, 1-propanol, 2-propanol, toluene, pentanal, 2-pentanone, cyclohexane, nonanal and decane. Several methods showed, in combination with multivariate data analysis, potential to distinguish between LC patients and healthy controls.
Collapse
Affiliation(s)
- Robert Lundberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | | |
Collapse
|
2
|
Buma AIG, Muntinghe-Wagenaar MB, van der Noort V, de Vries R, Schuurbiers MMF, Sterk PJ, Schipper S, Meurs J, Cristescu SM, Hiltermann TJN, van den Heuvel MM. Lung cancer detection by electronic nose analysis of exhaled breath: a multi-center prospective external validation study. Ann Oncol 2025:S0923-7534(25)00125-5. [PMID: 40174676 DOI: 10.1016/j.annonc.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Electronic nose (eNose) analysis of exhaled breath shows potential for accurate and timely lung cancer diagnosis, yet prospective external validation studies are lacking. Our study primarily aimed to prospectively and externally validate a published eNose model for lung cancer detection in COPD patients and assess its diagnostic performance alongside a new eNose model, specifically tailored to the target population, in a more general outpatient population. PATIENTS AND METHODS This multi-center prospective external validation study included adults with clinical and/or radiological suspicion of lung cancer who were recruited from thoracic oncology outpatient clinics of two sites in The Netherlands. Breath profiles were collected using a cloud-connected eNose (SpiroNose®). The diagnostic performance of the original and new eNose model was assessed in various population subsets based on ROC-AUC, specificity, positive predictive value (PPV), and negative predictive value (NPV), targeting 95% sensitivity. For the new eNose model, a training and validation cohort were used. RESULTS Between March 2019 and November 2023, 364 participants were included. The original eNose model detected lung cancer with a ROC-AUC of 0.92 (95% CI: 0.85-0.99) in COPD patients (n=98/116; 84%) and 0.80 (95% CI: 0.75-0.85) in all participants (n=216/364; 59%). At 95% sensitivity, the specificity, PPV, and NPV, were 72% and 51%, 95% and 74%, and 72% and 88%, respectively. In the validation cohort, the new eNose model identified lung cancer across all participants (n=72/121; 60%) with a ROC-AUC of 0.83 (95% CI: 0.75-0.91), 94% sensitivity, 63% specificity, PPV of 79%, and NPV of 89%. Notably, accurate detection was consistent across tumour characteristics, disease stage, diagnostic centers, and clinical characteristics. CONCLUSION This multi-center prospective external validation study confirms that eNose analysis of exhaled breath enables accurate lung cancer detection at thoracic oncology outpatient clinics, irrespective of tumour characteristics, disease stage, diagnostic center, and clinical characteristics.
Collapse
Affiliation(s)
- A I G Buma
- Department of Respiratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M Benthe Muntinghe-Wagenaar
- Department of Respiratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - V van der Noort
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R de Vries
- Breathomix B.V., Leiden, The Netherlands
| | - M M F Schuurbiers
- Department of Respiratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P J Sterk
- Emeritus, University of Amsterdam, Amsterdam, The Netherlands
| | - S Schipper
- Department of Respiratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Life Science Trace Detection Laboratory, Department of Analytical Chemistry & Chemometrics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - J Meurs
- Life Science Trace Detection Laboratory, Department of Analytical Chemistry & Chemometrics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - S M Cristescu
- Life Science Trace Detection Laboratory, Department of Analytical Chemistry & Chemometrics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - T J N Hiltermann
- Department of Respiratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M M van den Heuvel
- Department of Respiratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Hsiao BY, Huang CS, Wu CF, Chien KL, Yang HY. Residential Proximity Land Use Characteristics and Exhaled Volatile Organic Compounds' Impact on Pulmonary Function in Asthmatic Children. J Xenobiot 2025; 15:27. [PMID: 39997370 PMCID: PMC11856375 DOI: 10.3390/jox15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Urban air pollution adversely affects children's respiratory systems, but the impact of volatile organic compounds (VOCs) on children's pulmonary function remains unclear. This study aims to identify exhaled VOCs linked to land use characteristics and reduced pulmonary function in asthmatic children, as well as to explore environmental thresholds influencing VOC exposure levels. METHODS We enrolled 97 asthmatic children, aged 7 to 20, from Changhua County, Taiwan, and collected personal and residential data, collected exhaled VOC samples, and conducted pulmonary function tests. Land use characteristics were derived from the children's residential addresses. This study used two models to explore the relationships between land use, VOC levels, and pulmonary function. RESULTS Our results show that m/p-xylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene were key contributors to FEV1/FVC and significantly predicted FEV1/FVC < 90% (AUC = 0.66; 95% CI: 0.53 to 0.79). These VOCs were also linked to major road areas within a 300 m buffer around children's homes. CONCLUSIONS This study fills a research gap on low-level outdoor VOC exposure and pediatric respiratory health, examining 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and m/p-xylene as potential biomarkers for impaired pulmonary function in children.
Collapse
Affiliation(s)
- Bo-Yu Hsiao
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chun-Sheng Huang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
| | - Chang-Fu Wu
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Kuo-Liong Chien
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiao-Yu Yang
- Population Health Research Center, National Taiwan University, Taipei 10055, Taiwan; (B.-Y.H.); (C.-F.W.); (K.-L.C.)
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Community and Family Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| |
Collapse
|
4
|
Yilun W, Yaojing Z, Hongcan S. Nanoparticle trends and hotspots in lung cancer diagnosis from 2006-2023: a bibliometric analysis. Front Oncol 2024; 14:1453021. [PMID: 39759141 PMCID: PMC11695240 DOI: 10.3389/fonc.2024.1453021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Background Lung cancer possesses the highest incidence and mortality rates among malignancies globally. Despite substantial advancements in oncology, it is frequently diagnosed at an advanced stage, resulting in a poor prognosis. Over recent decades, the swift progress of nanotechnology has precipitated the extensive utilization of nanomaterials as carriers in cancer diagnosis and therapy. The deployment of nanoparticles as an innovative diagnostic strategy aspires to enable the earlier detection of lung cancer, thereby permitting earlier intervention and enhancing prognosis. This study endeavors to deepen our understanding of this domain through a comprehensive analysis employing bibliometric tools. Method Related articles were retrieved from the Web of Science Core Collection from January 1st, 2006, to December 14st, 2023. Thereaf CiteSpace, VOSviewer and the online platform of bibliometrics (http://bibliometric.com/) were utilized to visually analyze Author/Country/Institutions/Cited Journals/Keyword, et al. Results A total of 966 articles were retrieved for this study. The analysis unveils a progressive increase in annual publications within this field, with China at the forefront in publication volume, followed by the United States and India. Moreover, Chinese research institutions, notably the Chinese Academy of Sciences and Shanghai Jiao Tong University, prevail in publication output. Upon exclusion of irrelevant search terms, keywords clustering analysis highlights that "biomarkers", "sensors", "gold nanoparticles", and "silver nanoparticles" are predominant research focuses. Conclusion This bibliometric study furnishes a quantitative perspective on the extant literature, serving scholars in related fields. Furthermore, it anticipates future research trend concerning nanoparticles and lung cancer diagnosis, thereby aiding in the formulation of project planning and the design of experiments.
Collapse
Affiliation(s)
- Wang Yilun
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhang Yaojing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shi Hongcan
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Thoracic and Cardiovascular Surgery, Northern Jiangsu Peoples Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Lv W, Shi W, Zhang Z, Ru L, Feng W, Tang H, Wang X. Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study. Anal Biochem 2024; 690:115527. [PMID: 38565333 DOI: 10.1016/j.ab.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.
Collapse
Affiliation(s)
- Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiangqi Wang
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Pranee P, Kongwutthivech J, Chaicham C, Pudhom K, Tuntulani T, Tomapatanaget B. Fluorescent-based micellar incorporated hydrogel materials for selective determination of long-chain aldehydes. Mikrochim Acta 2024; 191:372. [PMID: 38839678 DOI: 10.1007/s00604-024-06433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
A highly sensitive micelle-induced sensory has been developed for detection of long-chain aldehydes as potential biomarkers of respiratory cancers. The micelle-like sensor was fabricated through the partial self-assembly of CTAB and S2 surfactants, containing a fluorescent hydrazine-functionalized dye (Naph-NH2). In principle, long-chain aldehydes with amphiphilic character act as the induced-fit surfactants to form well-entrapped micellar particles, as well as react with Naph-NH2 to form hydrazone derivatives resulting in fluorescent enhancement. The limit of detection (LOD) of micellar Naph-NH2/CTAB/S2 platform was calculated to be ∼ 64.09-80.98 µM for detection of long-chain aldehydes, which showed fluorescent imaging in lung cancer cells (A549). This micellar sensory probe demonstrated practical applicability for long-chain aldehyde sensing in human blood samples with an accepted percent recovery of ~ 94.02-102.4%. Beyond Naph-NH2/CTAB/S2 sensor, the milcellar hybrid sensor was successfully developed by incorporating a micelle-like platform with supramolecular gel regarding to carboxylate-based gelators (Gel1), which showed a tenfold improvement in sensitivity. Expectedly, the determination of long-chain aldehydes through these sensing platforms holds significant promise for point-of-care cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Piyanan Pranee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Jaturong Kongwutthivech
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Chiraporn Chaicham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Boosayarat Tomapatanaget
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
9
|
Moura PC, Ribeiro PA, Raposo M, Vassilenko V. The State of the Art on Graphene-Based Sensors for Human Health Monitoring through Breath Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:9271. [PMID: 38005657 PMCID: PMC10674474 DOI: 10.3390/s23229271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
The field of organic-borne biomarkers has been gaining relevance due to its suitability for diagnosing pathologies and health conditions in a rapid, accurate, non-invasive, painless and low-cost way. Due to the lack of analytical techniques with features capable of analysing such a complex matrix as the human breath, the academic community has focused on developing electronic noses based on arrays of gas sensors. These sensors are assembled considering the excitability, sensitivity and sensing capacities of a specific nanocomposite, graphene. In this way, graphene-based sensors can be employed for a vast range of applications that vary from environmental to medical applications. This review work aims to gather the most relevant published papers under the scope of "Graphene sensors" and "Biomarkers" in order to assess the state of the art in the field of graphene sensors for the purposes of biomarker identification. During the bibliographic search, a total of six pathologies were identified as the focus of the work. They were lung cancer, gastric cancer, chronic kidney diseases, respiratory diseases that involve inflammatory processes of the airways, like asthma and chronic obstructive pulmonary disease, sleep apnoea and diabetes. The achieved results, current development of the sensing sensors, and main limitations or challenges of the field of graphene sensors are discussed throughout the paper, as well as the features of the experiments addressed.
Collapse
Affiliation(s)
| | | | | | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-NOVA), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-NOVA, 2829-516 Caparica, Portugal; (P.C.M.); (P.A.R.); (M.R.)
| |
Collapse
|
10
|
Prakasham K, Gurrani S, Wu CF, Wu MT, Hsieh TJ, Peng CY, Huang PC, Krishnan A, Tsai PC, Lin YC, Tsai B, Lin YC, Ponnusamy VK. Rapid identification and monitoring of cooking oil fume-based toxic volatile organic aldehydes in lung tissue for predicting exposure level and cancer risks. CHEMOSPHERE 2023; 339:139704. [PMID: 37536542 DOI: 10.1016/j.chemosphere.2023.139704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Cooking oil fumes (COFs) comprised of a mixture of cancer-causing volatile organic aldehydes (VOAs), particularly trans, trans-2,4-decadienal (t,t-DDE), 4-hydroxy-hexenal (4-HHE), and 4-hydroxy-nonenal (4-HNE). Monitoring toxic VOAs levels in people exposed to different cooking conditions is vital to predicting the cancer risk. For this purpose, we developed a fast tissue extraction (FaTEx) technique combined with UHPLC-MS/MS to monitor three toxic VOAs in mice lung tissue samples. FaTEx pre-treatment protocol was developed by combining two syringes for extraction and clean-up process. The various procedural steps affecting the FaTEx sample pre-treatment process were optimized to enhance the target VOAs' extraction efficiency from the sample matrix. Under the optimal experimental conditions, results exhibit good correlation coefficient values > 0.99, detection limits were between 0.5-3 ng/g, quantification limits were between 1-10 ng/g, and the matrix effect was <18.1%. Furthermore, the extraction recovery values of the spiked tissue exhibited between 88.9-109.6% with <8.6% of RSD. Cooking oil fume (containing t,t-DDE) treated mice at various time durations were sacrificed to validate the developed technique, and it was found that t,t-DDE concentrations were from 14.8 to 33.8 μg/g. The obtained results were found to be a fast, reliable, and semi-automated sample pre-treatment technique with good extraction efficiency, trace level detection limit, and less matrix effect. Therefore, this method can be applied as a potential analytical method to determine the VOAs in humans exposed to long-term cooking oil fumes.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; International Master Program of Translational Medicine, College of Engineering and Science, National United University, Miaoli, Taiwan.
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chiung-Yu Peng
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Anbarasu Krishnan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Pei-Chien Tsai
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Bongee Tsai
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
11
|
Almalki AH. Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer. Metabolites 2023; 13:1037. [PMID: 37887362 PMCID: PMC10609104 DOI: 10.3390/metabo13101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Metabolic reprogramming is a fundamental trait associated with lung cancer development that fuels tumor proliferation and survival. Monitoring such metabolic pathways and their intermediate metabolites can provide new avenues concerning treatment strategies, and the identification of prognostic biomarkers that could be utilized to monitor drug responses in clinical practice. In this review, recent trends in the analytical techniques used for metabolome mapping of lung cancer are capitalized. These techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and imaging mass spectrometry (MSI). The advantages and limitations of the application of each technique for monitoring the metabolite class or type are also highlighted. Moreover, their potential applications in the analysis of many biological samples will be evaluated.
Collapse
Affiliation(s)
- Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
12
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
13
|
Tan SY, Ma Q, Li F, Jiang H, Peng XY, Dong J, Ye X, Wang QL, You FM, Fu X, Ren YF. Does the last 20 years paradigm of clinical research using volatile organic compounds to non-invasively diagnose cancer need to change? Challenges and future direction. J Cancer Res Clin Oncol 2023; 149:10377-10386. [PMID: 37273109 DOI: 10.1007/s00432-023-04940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Volatile organic compounds (VOCs) have shown great potential as novel biomarkers for cancer detection; however, comprehensive quantitative analysis is lacking. In this study, we performed a bibliometric analysis of non-invasive cancer diagnosis using VOCs to better characterise international trends and to predict future hotspots in this field, and then we focussed on human studies to analyse clinical characteristics for presenting the current controversies and future perspectives of further clinical work. METHODS Publications, from 2002 to 2022, were retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer were used to generate network maps and identify the annual publications, top countries, authors, institutions, journals, references, and keywords. Then, we further screened clinical trials, and the key information was extracted into Microsoft Excel for further systematical analysis. RESULTS Six hundred and forty-one articles were identified to evaluate research trends, of which 301 clinical trials were selected for further systematical analysis. Overall, the annual publications in this area increased, with an overall upward trend, while the quality of clinical research remains remarkably uneven. CONCLUSION The study of non-invasive cancer diagnosis using VOCs would continue to be an active field. However, without stringent clinical design criteria, most suitable acquisition and analysis devices and statistical approaches, a list of exclusive, specific, reliable and reproducible VOCs to identify a disease and these VOCs appearing in a breath at detectable levels at early stage disease, the clinical utility of VOC tests will be difficult to have any breakthroughs.
Collapse
Affiliation(s)
- Shi-Yan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xiao-Yun Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Jing Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xin Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiao-Ling Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
14
|
Moura PC, Raposo M, Vassilenko V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed J 2023; 46:100623. [PMID: 37336362 PMCID: PMC10339195 DOI: 10.1016/j.bj.2023.100623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Normal and abnormal/pathological status of physiological processes in the human organism can be characterized through Volatile Organic Compounds (VOCs) emitted in breath. Recently, a wide range of volatile analytes has risen as biomarkers. These compounds have been addressed in the scientific and medical communities as an extremely valuable metabolic window. Once collected and analysed, VOCs can represent a tool for a rapid, accurate, non-invasive, and painless diagnosis of several diseases and health conditions. These biomarkers are released by exhaled breath, urine, faeces, skin, and several other ways, at trace concentration levels, usually in the ppbv (μg/L) range. For this reason, the analytical techniques applied for detecting and clinically exploiting the VOCs are extremely important. The present work reviews the most promising results in the field of breath biomarkers and the most common methods of detection of VOCs. A total of 16 pathologies and the respective database of compounds are addressed. An updated version of the VOCs biomarkers database can be consulted at: https://neomeditec.com/VOCdatabase/.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| |
Collapse
|
15
|
Yi Z, Dong S, Wang X, Xu M, Li Y, Xie L. Exploratory study on noninvasive biomarker of silicosis in exhaled breath by solid-phase microextraction-gas chromatography-mass spectrometry analysis. Int Arch Occup Environ Health 2023:10.1007/s00420-023-01971-y. [PMID: 37067574 DOI: 10.1007/s00420-023-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND As a chronic occupational disease, silicosis could cause irreversible and incurable impair to the lung. The current diagnosis of silicosis relies on imaging of X-ray or CT, but these methods cannot detect lung lesions in the early stage of silicosis. OBJECTIVE To establish a regular screening and early diagnosis methods for silicosis, which could be helpful for the prevention and treatment of silicosis. METHODS A total of 161 subjects were enrolled in the study, including 69 patients with silicosis (SILs) and 92 healthy controls. The exhaled breath samples of the subjects were collected with breath sampler and Tedlar bag. The analysis of volatile organic compounds (VOCs) in exhaled breath was performed by solid-phase microextraction (SPME) combined with gas chromatography mass spectrometry (GC-MS). RESULTS After excluding the pollutants from sampling bags and instruments, 86 VOCs have been identified in the exhaled breath. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was employed for the screening of potential biomarkers of silicosis. Those components that related to smoking were also excluded from the biomarkers. Finally, nine possible biomarkers for silicosis were screened out, including 2,3-butanedione, ethyl acetate, chlorobenzene, o-cymene, 4-ethylhex-2-ynal, 3,5-dimethyl-3-heptanol, hydroquinone, phthalic anhydride and 5-(2-methylpropyl)nonane. Based on these biomarkers screened, a predicted model for silicosis was generated with the accuracy of 89.61%. CONCLUSION The nine biomarkers in exhaled breath were preliminarily screened out for the early diagnosis of silicosis, which can be helpful to the establishment of a noninvasive screening method for silicosis. Follow-up studies should be conducted to further verify these markers.
Collapse
Affiliation(s)
- Zonghui Yi
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Simin Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu, 610066, China
| | - Mucen Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Xie Z, Morris JD, Mattingly SJ, Sutaria SR, Huang J, Nantz MH, Fu XA. Analysis of a Broad Range of Carbonyl Metabolites in Exhaled Breath by UHPLC-MS. Anal Chem 2023; 95:4344-4352. [PMID: 36815760 PMCID: PMC10521381 DOI: 10.1021/acs.analchem.2c04604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | - James D. Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | | | - Saurin R. Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Michael H. Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
17
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Zhou W, Tan Y, Ma J, Wang X, Yang L, Li Z, Liu C, Wu H, Sun L, Deng W. Ultrasensitive NO Sensor Based on a Nickel Single-Atom Electrocatalyst for Preliminary Screening of COVID-19. ACS Sens 2022; 7:3422-3429. [PMID: 36315489 DOI: 10.1021/acssensors.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new coronavirus, SARS-CoV-2, has caused the coronavirus disease-2019 (COVID-19) epidemic. A rapid and economical method for preliminary screening of COVID-19 may help to control the COVID-19 pandemic. Here, we report a nickel single-atom electrocatalyst that can be printed on a paper-printing sensor for preliminary screening of COVID-19 suspects by efficient detection of fractional exhaled nitric oxide (FeNO). The FeNO value is confirmed to be related to COVID-19 in our exploratory clinical study, and a machine learning model that can accurately classify healthy subjects and COVID-19 patients is established based on FeNO and other features. The nickel single-atom electrocatalyst consists of a single nickel atom with N2O2 coordination embedded in porous acetylene black (named Ni-N2O2/AB). A paper-printed sensor was fabricated with the material and showed ultrasensitive response to NO in the range of 0.3-180 ppb. This ultrasensitive sensor could be applied to preliminary screening of COVID-19 in everyday life.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Yi Tan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Jing Ma
- Department of Critical Care Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430070, Hubei, China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Zhen Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| |
Collapse
|
20
|
Zhang JD, Le MN, Hill KJ, Cooper AA, Stuetz RM, Donald WA. Identifying robust and reliable volatile organic compounds in human sebum for biomarker discovery. Anal Chim Acta 2022; 1233:340506. [DOI: 10.1016/j.aca.2022.340506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
21
|
Li J, Zhang Y, Chen Q, Pan Z, Chen J, Sun M, Wang J, Li Y, Ye Q. Development and validation of a screening model for lung cancer using machine learning: A large-scale, multi-center study of biomarkers in breath. Front Oncol 2022; 12:975563. [PMID: 36203414 PMCID: PMC9531270 DOI: 10.3389/fonc.2022.975563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Lung cancer (LC) is the largest single cause of death from cancer worldwide, and the lack of effective screening methods for early detection currently results in unsatisfactory curative treatments. We herein aimed to use breath analysis, a noninvasive and very simple method, to identify and validate biomarkers in breath for the screening of lung cancer. Materials and methods We enrolled a total of 2308 participants from two centers for online breath analyses using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). The derivation cohort included 1007 patients with primary LC and 1036 healthy controls, and the external validation cohort included 158 LC patients and 107 healthy controls. We used eXtreme Gradient Boosting (XGBoost) to create a panel of predictive features and derived a prediction model to identify LC. The optimal number of features was determined by the greatest area under the receiver‐operating characteristic (ROC) curve (AUC). Results Six features were defined as a breath-biomarkers panel for the detection of LC. In the training dataset, the model had an AUC of 0.963 (95% CI, 0.941–0.982), and a sensitivity of 87.1% and specificity of 93.5% at a positivity threshold of 0.5. Our model was tested on the independent validation dataset and achieved an AUC of 0.771 (0.718–0.823), and sensitivity of 67.7% and specificity of 73.0%. Conclusion Our results suggested that breath analysis may serve as a valid method in screening lung cancer in a borderline population prior to hospital visits. Although our breath-biomarker panel is noninvasive, quick, and simple to use, it will require further calibration and validation in a prospective study within a primary care setting.
Collapse
Affiliation(s)
- Jing Li
- Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuwei Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin, China
| | - Qing Chen
- Departmentof Cardio-Pulmonary Function, National Clinical Research Center for Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meixiu Sun
- Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- *Correspondence: Meixiu Sun, ; Junfeng Wang,
| | - Junfeng Wang
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Meixiu Sun, ; Junfeng Wang,
| | - Yingxin Li
- Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Liu H, Duan L, Xia K, Chen Y, Li Y, Deng S, Xu J, Hou Z. Microwave Synthesized 2D WO 3 Nanosheets for VOCs Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183211. [PMID: 36144999 PMCID: PMC9506399 DOI: 10.3390/nano12183211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 05/20/2023]
Abstract
As an n-type semiconductor material, tungsten oxide (WO3) has good application prospects in the field of gas sensing. Herein, using oxalic acid (OA), citric acid (CA) and tartaric acid (TA) as auxiliary agents, three homogeneous tungsten oxide nanosheets were prepared by the rapid microwave-assisted hydrothermal method. The potential exhaled gases of various diseases were screened for the gas sensitivity test. Compared with WO3-OA and WO3-TA, WO3-CA exhibits significant sensitivity to formaldehyde, acetone and various alkanes. Photoluminescence (PL) chromatography and photoelectric properties show that its excellent gas sensitivity is due to its abundant oxygen vacancies and high surface charge migration rate, which can provide more preferential reaction sites with gas molecules. The experiment is of great significance for the sensor selection of the large disease exhaled gas sensor array.
Collapse
Affiliation(s)
- He Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingyao Duan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kedong Xia
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yang Chen
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yunling Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shaoxin Deng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhenyu Hou
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence:
| |
Collapse
|
23
|
Gasparri R, Capuano R, Guaglio A, Caminiti V, Canini F, Catini A, Sedda G, Paolesse R, Di Natale C, Spaggiari L. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer. J Breath Res 2022; 16. [PMID: 35952625 DOI: 10.1088/1752-7163/ac88ec] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Nowadays in clinical practice there is a pressing need for potential biomarkers that can identify lung cancer at early stage before becoming symptomatic or detectable by conventional means. Several researchers have independently pointed out that the volatile organic compounds (VOCs) profile can be considered as a lung cancer fingerprint useful for diagnosis. In particular, 16% of volatiles contributing to the human volatilome are found in urine, which is therefore an ideal sample medium. Its analysis through non-invasive, relatively low-cost and straightforward techniques could offer great potential for the early diagnosis of lung cancer. In this study, urinary VOCs were analysed with a gas chromatography-ion mobility spectrometer (GC-IMS) and an electronic nose (e-nose) made by a matrix of twelve quartz microbalances (QMBs) complemented by a photoionization detector (PID). This clinical prospective study involved 127 individuals, divided into two groups: 46 with lung cancer stage I-II-III confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy), and 81 healthy controls. Both instruments provided a multivariate signal which, after being analysed by a machine learning algorithm, identified eight VOCs that could distinguish lung cancer patients from healthy ones. The eight VOCs are 2-pentanone, 2-hexenal, 2-hexen-1-ol, hept-4-en-2-ol, 2-heptanone, 3-octen-2-one, 4-methylpentanol, 4-methyl-octane. Results show that GC-IMS identifies lung cancer with respect to the control group with a diagnostic accuracy of 88%. Sensitivity resulted as being 85%, and specificity was 90% - Area Under the Receiver Operating Characteristics (AUROC): 0.91. The contribution made by the e-nose was also important, even though the results were slightly less sensitive with an accuracy of 71.6%. Moreover, of the eight VOCs identified as potential biomarkers, five VOCs had a high sensitivity (p≤ 0.06) for early stage (stage I) lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Rosamaria Capuano
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alessandra Guaglio
- General toracic surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Milano, Lombardia, 20141, ITALY
| | - Valentina Caminiti
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Federico Canini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alexandro Catini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Giulia Sedda
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Roberto Paolesse
- Department of Chemical Science and Technology, Via della Ricerca Scientifica, University of Rome 'Tor Vergata', Rome, Rome, 00133, ITALY
| | - Corrado Di Natale
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Lorenzo Spaggiari
- Division of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, Milano, Lombardia, 20141, ITALY
| |
Collapse
|
24
|
Kabir KM, Baker MJ, Donald WA. Micro- and nanoscale sensing of volatile organic compounds for early-stage cancer diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: A comparison of gas-phase and droplet-bound components. Anal Chim Acta 2022; 1203:339671. [DOI: 10.1016/j.aca.2022.339671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/25/2023]
|
26
|
Effect of household air pollutants on the composition of exhaled breath characterized by solid-phase microextraction and needle-trap devices. Anal Bioanal Chem 2022; 414:5573-5583. [PMID: 35274153 DOI: 10.1007/s00216-022-03997-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Abstract
Exposure to household air pollutants is becoming a serious environmental health risk. Various methods can be applied to assess humans' exposure status to indoor pollutants, with breath monitoring being among the best options. Breath sampling is fast and non-invasive, and contains compounds that can be used as markers for evaluating exposure length and estimating internal concentrations of pollutants. However, the distribution of compounds between gas and droplets in breath samples represents one of the key challenges associated with this analytical method. In this work, a needle-trap device (NTD) was prepared by packing the needle with a porous filter, divinyl benzene, and Carboxen to enable the exhaustive capture of both droplet-bound and gaseous components. Furthermore, fiber-based solid-phase microextraction (SPME) was also applied to extract compounds from only the gas phase to distinguish this portion of analytes from the total concentration in the sample. Dynamic, real-time breath sampling was enabled via a new sampling tube equipped with 2 one-way valves, which was specially designed for this work. Both methods provided satisfactory reproducibility, repeatability, and sensitivity, with detection limits as low as 0.05 ng mL-1. To investigate the real-world applicability of the proposed devices, breath samples were obtained from volunteers who had been exposed to candle and incense smoke and aerosol sprays, or had smoked cannabis. The results revealed the high concentration of organic air pollutants in inhaled air (maximum of 215 ng mL-1) and exhaled breath (maximum of 14.4 ng mL-1) and a correlation between the components in inhaled air and exhaled breath. Significantly, the findings further revealed that the developed NTD has enhanced breath-sample determinations, especially for polar compounds, which tend to remain trapped in breath droplets.
Collapse
|
27
|
Haince JF, Joubert P, Bach H, Ahmed Bux R, Tappia PS, Ramjiawan B. Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. Int J Mol Sci 2022; 23:ijms23031215. [PMID: 35163138 PMCID: PMC8835988 DOI: 10.3390/ijms23031215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
The five-year survival rate of lung cancer patients is very low, mainly because most newly diagnosed patients present with locally advanced or metastatic disease. Therefore, early diagnosis is key to the successful treatment and management of lung cancer. Unfortunately, early detection methods of lung cancer are not ideal. In this brief review, we described early detection methods such as chest X-rays followed by bronchoscopy, sputum analysis followed by cytological analysis, and low-dose computed tomography (LDCT). In addition, we discussed the potential of metabolomic fingerprinting, compared to that of other biomarkers, including molecular targets, as a low-cost, high-throughput blood-based test that is both feasible and affordable for early-stage lung cancer screening of at-risk populations. Accordingly, we proposed a paradigm shift to metabolomics as an alternative to molecular and proteomic-based markers in lung cancer screening, which will enable blood-based routine testing and be accessible to those patients at the highest risk for lung cancer.
Collapse
Affiliation(s)
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Pathology, Laval University, Quebec, QC G1V 4G5, Canada;
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Rashid Ahmed Bux
- BioMark Diagnostics Inc., Richmond, BC V6X 2W8, Canada; (J.-F.H.); (R.A.B.)
| | - Paramjit S. Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Correspondence: ; Tel.: +1-204-258-1230
| | - Bram Ramjiawan
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
28
|
Rankin-Turner S, McMeniman CJ. A headspace collection chamber for whole body volatilomics. Analyst 2022; 147:5210-5222. [DOI: 10.1039/d2an01227h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human body secretes a complex blend of volatile organic compounds (VOCs) via the skin, breath and bodily fluids. In this study, we have developed a headspace collection chamber for whole body volatilome profiling.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J. McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Gbaoui L, Fachet M, Lüno M, Meyer-Lotz G, Frodl T, Hoeschen C. Breathomics profiling of metabolic pathways affected by major depression: Possibilities and limitations. Front Psychiatry 2022; 13:1061326. [PMID: 36590606 PMCID: PMC9795849 DOI: 10.3389/fpsyt.2022.1061326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD. METHODS Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis. RESULTS A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96). CONCLUSION According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.
Collapse
Affiliation(s)
- Laila Gbaoui
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Marian Lüno
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Gabriele Meyer-Lotz
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Christoph Hoeschen
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
30
|
Soufi G, Bagher H, Yeganeh Rad L, Minaeian S. Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath. Anal Chim Acta 2022; 1198:339550. [DOI: 10.1016/j.aca.2022.339550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
31
|
Zhang ZJ, Li PW, Liu LP, Ru LH, Tang HX, Feng WS. Amine-functionalized UiO-66 as a fluorescent sensor for highly selective detecting volatile organic compound biomarker of lung cancer. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Kohn E, Barchel D, Golik A, Lougassi M, Wainstock T, Berkovitch M, Schwartsburd F. Analysis of 10 Urinary BTEX Metabolites by Liquid Chromatography Tandem Mass Spectrometry. Biomed Chromatogr 2021; 36:e5302. [PMID: 34935165 DOI: 10.1002/bmc.5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Abstract
Benzene, toluene, ethylbenzene and xylene (BTEX) are a group of volatile organic compounds that are ubiquitous in the environment due to the numerous anthropogenic sources. Exposure to BTEX pose a health risk by increasing probability for damage to multiple organs, neurocognitive impairment and birth defects. Urinary BTEX metabolites are useful biomarkers for evaluation of BTEX exposure, because of easiness of sampling and their longer physiological half-lives compared with parent compounds. A method that utilizes liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed and validated for simultaneously monitoring ten urinary BTEX metabolites. During the sample preparation an aliquot of urine was diluted by the equal volume of 1% formic acid, internal standards solution was added, then the sample was centrifuged and analyzed. The analytes were separated on the Kinetex-F5 column by applying a linear gradient, consisting of 0.1 % formic acid and methanol. The method was validated according to the FDA Bioanalytical Method Validation Guidance for Industry. The mean method's accuracies of the spiked matrix were 81-122%; the interday precision ranged from 4% to 20%; limits of quantitation were 0.5-2 μg/L. The method was used for evaluation of baseline levels of urinary BTEX metabolites in 87 firefighters.
Collapse
Affiliation(s)
- Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel
| | - Dana Barchel
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel
| | - Ahuva Golik
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel
| | - Frieda Schwartsburd
- National Residue Control Laboratory, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| |
Collapse
|
33
|
Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated functionalized graphene materials to create highly sensitive sensors for volatile organic compounds (VOCs) such as formaldehyde, methanol, ethanol, acetone, and isopropanol. First, we prepared VOC-sensitive films consisting of mechanically exfoliated graphene (eG) and chemical graphene oxide (GO), which have different concentrations of structural defects. We deposited the films on silver interdigitated electrodes on Kapton substrate and submitted them to thermal treatment. Next, we measured the sensitive properties of the resulting sensors towards specific VOCs by impedance spectroscopy. We obtained the eG- and GO-based electronic nose composed of two eG films- and four GO film-based sensors with variable sensitivity to individual VOCs. The smallest relative change in impedance was 5% for the sensor based on eG film annealed at 180 °C toward 10 ppm formaldehyde, whereas the highest relative change was 257% for the sensor based on two-layers deposited GO film annealed at 200 °C toward 80 ppm ethanol. At 10 ppm VOC, the GO film-based sensors were sensitive enough to distinguish between individual VOCs, which implied excellent selectivity, as confirmed by Principle Component Analysis (PCA). According to a PCA-Support Vector Machine-based signal processing method, the electronic nose provided identification accuracy of 100% for individual VOCs. The proposed electronic nose can be used to detect multiple VOCs selectively because each sensor is sensitive to VOCs and has significant cross-selectivity to others.
Collapse
|
34
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
35
|
MOS Sensors Array for the Discrimination of Lung Cancer and At-Risk Subjects with Exhaled Breath Analysis. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is characterized by a tremendously high mortality rate and a low 5-year survival rate when diagnosed at a late stage. Early diagnosis of lung cancer drastically reduces its mortality rate and improves survival. Exhaled breath analysis could offer a tool to clinicians to improve the ability to detect lung cancer at an early stage, thus leading to a reduction in the associated survival rate. In this paper, we present an electronic nose for the automatic analysis of exhaled breath. A total of five a-specific gas sensors were embedded in the electronic nose, making it sensitive to different volatile organic compounds (VOCs) contained in exhaled breath. Nine features were extracted from each gas sensor response to exhaled breath, identifying the subject breathprint. We tested the electronic nose on a cohort of 80 subjects, equally split between lung cancer and at-risk control subjects. Including gas sensor features and clinical features in a classification model, recall, precision, and accuracy of 78%, 80%, and 77% were reached using a fourfold cross-validation approach. The addition of other a-specific gas sensors, or of sensors specific to certain compounds, could improve the classification accuracy, therefore allowing for the development of a clinical tool to be integrated in the clinical pipeline for exhaled breath analysis and lung cancer early diagnosis.
Collapse
|
36
|
Diana Zhang J, Baker MJ, Liu Z, Mohibul Kabir KM, Kolachalama VB, Yates DH, Donald WA. Medical diagnosis at the point-of-care by portable high-field asymmetric waveform ion mobility spectrometry: a systematic review and meta-analysis. J Breath Res 2021; 15:10.1088/1752-7163/ac135e. [PMID: 34252887 PMCID: PMC10422980 DOI: 10.1088/1752-7163/ac135e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Non-invasive medical diagnosis by analysing volatile organic compounds (VOCs) at the point-of-care is becoming feasible owing to recent advances in portable instrumentation. A number of studies have assessed the performance of a state-of-the-art VOC analyser (micro-chip high-field asymmetric waveform ion mobility spectrometry, FAIMS) for medical diagnosis. However, a comprehensive meta-analysis is needed to investigate the overall diagnostic performance of these novel methods across different medical conditions. An electronic search was performed using the CAplus and MEDLINE database through the SciFinder platform. The review identified a total of 23 studies and 2312 individuals. Eighteen studies were used for meta-analysis. A pooled analysis found an overall sensitivity of 80% (95% CI, 74%-85%,I2= 62%), and specificity of 78% (95% CI, 70%-84%,I2= 80%), which corresponds to the overall diagnostic performance of micro-chip FAIMS across many different medical conditions. The diagnostic accuracy was particularly high for coeliac and inflammatory bowel disease (sensitivity and specificity from 74% to 97%). The overall diagnostic performance was similar across breath, urine, and faecal matrices with sparse logistic regression and random forests algorithms resulting in higher diagnostic accuracy. Sources of variability likely arise from differences in sample storage, sampling protocol, method of data analysis, type of disease, sample matrix, and potentially to clinical and disease factors. The results of this meta-analysis indicate that micro-chip FAIMS is a promising candidate for disease screening at the point-of-care, particularly for gastroenterology diseases. This review provides recommendations that should improve the techniques relevant to diagnostic accuracy of future VOC and point-of-care studies.
Collapse
Affiliation(s)
- J Diana Zhang
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Merryn J Baker
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Zhixin Liu
- Stats Central, University of New South Wales, Sydney, Australia
| | - K M Mohibul Kabir
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Computer Science and Faculty of Computing and Data Sciences, Boston University, Boston, MA, United States of America
| | - Deborah H Yates
- Department of Thoracic Medicine, St Vincent’s Hospital and St Vincent’s Clinical School, UNSW Sydney, Sydney, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Liu L, Li W, He Z, Chen W, Liu H, Chen K, Pi X. Detection of lung cancer with electronic nose using a novel ensemble learning framework. J Breath Res 2021; 15. [PMID: 33578407 DOI: 10.1088/1752-7163/abe5c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 02/02/2023]
Abstract
Breath analysis based on electronic nose (e-nose) is a promising new technology for the detection of lung cancer that is non-invasive, simple to operate and cost-effective. Lung cancer screening by e-nose relies on predictive models established using machine learning methods. However, using only a single machine learning method to detect lung cancer has some disadvantages, including low detection accuracy and high false negative rate. To address these problems, groups of individual learning models with excellent performance were selected from classic models, including Support Vector Machine, Decision Tree, Random Forest, Logistic Regression and K-nearest neighbor regression, to build an ensemble learning framework (PCA-SVE). The output result of the PCA-SVE framework was obtained by voting. To test this approach, we analyzed 214 breath samples measured by e-nose with 11 gas sensors of four types using the proposed PCA-SVE framework. Experimental results indicated that the accuracy, sensitivity, and specificity of the proposed framework were 95.75%, 94.78%, and 96.96%, respectively. This framework overcomes the disadvantages of a single model, thereby providing an improved, practical alternative for exhaled breath analysis by e-nose.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China, Chongqing, Chongqing, 400044, CHINA
| | - Wang Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - ZiChun He
- Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing Red Cross Hospital, 168 Hai'er Rd, Chongqing, 400020 , CHINA
| | - Weimin Chen
- Kunming University, No.727 South Jingming Rd, Chenggong District, Kunming, Yunnan, 650500, CHINA
| | - Hongying Liu
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - Ke Chen
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, , Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - Xitian Pi
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, , Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| |
Collapse
|
38
|
Ning J, Ge T, Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y. Early diagnosis of lung cancer: which is the optimal choice? Aging (Albany NY) 2021; 13:6214-6227. [PMID: 33591942 PMCID: PMC7950268 DOI: 10.18632/aging.202504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
The prognosis of lung cancer patients with different clinical stages is significantly different. The 5-year survival of stage IA groups can exceed 90%, while patients with stage IV can be less than 10%. Therefore, early diagnosis is extremely important for lung cancer patients. This research focused on various diagnosis methods of early lung cancer, including imaging screening, bronchoscopy, and emerging potential liquid biopsies, as well as volatile organic compounds, autoantibodies, aiming to improve the early diagnosis rate and explore feasible and effective early diagnosis strategies.
Collapse
Affiliation(s)
- Jing Ning
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Tao Ge
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
39
|
Abstract
Volatolomics allows us to elucidate cell metabolic processes in real time. In particular, a volatile organic compound (VOC) excreted from our bodies may be specific for a certain disease, such that measuring this VOC may afford a simple, fast, accessible and safe diagnostic approach. Yet, finding the optimal endogenous volatile marker specific to a pathology is non-trivial because of interlaboratory disparities in sample preparation and analysis, as well as high interindividual variability. These limit the sensitivity and specificity of volatolomics and its applications in biological and clinical fields but have motivated the development of induced volatolomics. This approach aims to overcome issues by measuring VOCs that result not from an endogenous metabolite but, rather, from the pathogen-specific or metabolic-specific enzymatic metabolism of an exogenous biological or chemical probe. In this Review, we introduce volatile-compound-based probes and discuss how they can be exploited to detect and discriminate pathogenic infections, to assess organ function and to diagnose and monitor cancers in real time. We focus on cases in which labelled probes have informed us about metabolic processes and consider the potential and drawbacks of the probes for clinical trials. Beyond diagnostics, VOC-based probes may also be effective tools to explore biological processes more generally.
Collapse
|
40
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|
41
|
Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020; 15:7063-7078. [PMID: 33061368 PMCID: PMC7522408 DOI: 10.2147/ijn.s263238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Armaghan Lohrasbi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
42
|
Deev V, Solovieva S, Andreev E, Protoshchak V, Karpushchenko E, Sleptsov A, Kartsova L, Bessonova E, Legin A, Kirsanov D. Prostate cancer screening using chemometric processing of GC-MS profiles obtained in the headspace above urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122298. [PMID: 32771969 DOI: 10.1016/j.jchromb.2020.122298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The development of screening methods for various types of cancer is of utmost importance as the early diagnostics of these diseases significantly increases the chances for patient's successful medical treatment and recovery. In this study we have developed the procedure for chromatographic profiling of urine samples based on solid-phase microextraction and GC-MS. 50 urine samples (20 from the patients with biopsy conformed prostate cancer and 30 from control group) were studied in the optimized experimental conditions. Application of chemometric classification algorithms such as k-nearest neighbors and partial least squares-discriminant analysis allowed construction of predictive models yielding very high sensitivity, specificity and accuracy values all close to 100%. This gives a good promise for further validation of this approach with a broader sample sets.
Collapse
Affiliation(s)
- Vladislav Deev
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Svetlana Solovieva
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Evgeny Andreev
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Vladimir Protoshchak
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Evgeny Karpushchenko
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Aleksander Sleptsov
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Liudmila Kartsova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Elena Bessonova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Andrey Legin
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Dmitry Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia.
| |
Collapse
|
43
|
Janssens E, van Meerbeeck JP, Lamote K. Volatile organic compounds in human matrices as lung cancer biomarkers: a systematic review. Crit Rev Oncol Hematol 2020; 153:103037. [PMID: 32771940 DOI: 10.1016/j.critrevonc.2020.103037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) have shown potential as non-invasive breath biomarkers for lung cancer, but their unclear biological origin currently limits clinical applications. This systematic review explores headspace analysis of VOCs in patient-derived body fluids and lung cancer cell lines to pinpoint lung cancer-specific VOCs and uncover their biological origin. A search was performed in the databases MEDLINE and Web of Science. Twenty-two articles were included in this systematic review. Since there is no standardised approach to analyse VOCs, a plethora of techniques and matrices/cell lines were explored, which is reflected in the various VOCs identified. However, comparing VOCs in the headspace of urine, blood and pleural effusions from patients and lung cancer cell lines showed some overlapping VOCs, indicating their potential use in lung cancer diagnosis. This review demonstrates that VOCs are promising biomarkers for lung cancer. However, due to lack of inter-matrix consensus, standardised prospective trials will have to be conducted to validate clinically relevant biomarkers.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
44
|
Harshman SW, Pitsch RL, Davidson CN, Lee EM, Scott AM, Hill EM, Mainali P, Brooks ZE, Strayer KE, Schaeublin NM, Wiens TL, Brothers MC, Drummond LA, Yamamoto DP, Martin JA. Evaluation of a standardized collection device for exhaled breath sampling onto thermal desorption tubes. J Breath Res 2020; 14:036004. [PMID: 32155613 DOI: 10.1088/1752-7163/ab7e3b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices. The results, comparing ReCIVA serial numbers #33 and #65, demonstrate that overall statistically insignificant results are obtained via targeted isoprene quantitation (p > 0.05). However, when the data are parsed by the TD tube type used to capture breath volatiles, either Tenax TA or the dual bed Tenax/Carbograph 5TD (5TD), a statistical difference (p < 0.05) among the two different TD tubes was present. These data, comparing the two ReCIVA devices with both Tenax TA and 5TD tubes, are further supported by a global metabolomics analysis yielding 85% of z-scores, comparing ReCIVA devices, below the limit for significance. Experiments to determine the effect of breathing rate on ReCIVA function, using guided breathing for low (7.5 breaths min-1) and high (15 breaths min-1) breathing rates, demonstrate the ReCIVA device shows no statistical difference among breathing rates for quantitated isoprene (p > 0.05). Global metabolomics analysis of the guided breathing rate data shows more than 87% of the z-scores, comparing high and low breathing rates using both the Tenax and the 5TD tubes, are below the level for significance. Finally, data are provided from a single participant who displayed background levels of isoprene while illustrating levels of acetone consistent with the remaining participants. Collectively, these data support the use of multiple ReCIVA devices for exhaled breath collection and provide evidence for an instance where exhaled isoprene is consistent with background levels.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBB, 2510 Fifth Street, Area B, Building 840, Wright-Patterson Air Force Base, OH 45433, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xia Y, Hong Y, Geng R, Li X, Qu A, Zhou Z, Zhang Z. Amine-Functionalized ZIF-8 as a Fluorescent Probe for Breath Volatile Organic Compound Biomarker Detection of Lung Cancer Patients. ACS OMEGA 2020; 5:3478-3486. [PMID: 32118162 PMCID: PMC7045493 DOI: 10.1021/acsomega.9b03793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 05/09/2023]
Abstract
The highly thermally and chemically stable imidazole framework ZIF-8 samples were separately postmodified with amine groups by using N,N'-dimethylethylenediamine (MMEN) and N,N-dimethylaminoethylamine (MAEA), which had the same molecular formula but different structures. The modified ZIF-8 samples (ZIF-8@amine) were thoroughly characterized, including powder X-ray diffractometry, Fourier-transformed infrared spectroscopy, and physical adsorption at 77 K by nitrogen, thermogravimetric analysis, and photophysical characterization. Results showed that after modification, the Brunauer-Emmett-Teller surface area and total pore volume both increased, almost one time higher than those of the original ZIF-8 sample, and followed the order: ZIF-8-MMEN > ZIF-8-MAEA > ZIF-8. Furthermore, the N-H group was successfully grafted into the modified ZIF-8 samples. To examine the sensing properties of the modified ZIF-8@amine samples toward the breath biomarkers of lung cancer, five potential volatile organic compound biomarkers were used as analytes. ZIF-8-MMEN and ZIF-8-MAEA revealed a unique capacity for sensing hexanal, ethylbenzene, and 1-propanol with high efficiency and sensitivity. The three samples all did not show sensing ability toward styrene and isoprene. In addition, ZIF-8, ZIF-8-MMEN, and ZIF-8-MAEA all can sense hexanal with a detection limit as low as 1 ppb.
Collapse
Affiliation(s)
- Yuanhan Xia
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Engineering Research Center for Online Source Apportionment
System of Air Pollution, Guangzhou 510632, China
| | - Yi Hong
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Engineering Research Center for Online Source Apportionment
System of Air Pollution, Guangzhou 510632, China
| | - Rongchuang Geng
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou, Henan 450046, China
| | - Xue Li
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Engineering Research Center for Online Source Apportionment
System of Air Pollution, Guangzhou 510632, China
| | - Ailan Qu
- College
of Chemistry and Materials Science, Jinan
University, Guangzhou 510632, China
| | - Zhen Zhou
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Engineering Research Center for Online Source Apportionment
System of Air Pollution, Guangzhou 510632, China
| | - Zhijuan Zhang
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Engineering Research Center for Online Source Apportionment
System of Air Pollution, Guangzhou 510632, China
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou, Henan 450046, China
- E-mail: ,
| |
Collapse
|
46
|
André L, Desbois N, Gros CP, Brandès S. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Trans 2020; 49:15161-15170. [DOI: 10.1039/d0dt02511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overview of the use of porous materials for gas sensing to analyze the exhaled breath of patients for disease identification.
Collapse
Affiliation(s)
- Laurie André
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| |
Collapse
|
47
|
Lange J, Eddhif B, Tarighi M, Garandeau T, Péraudeau E, Clarhaut J, Renoux B, Papot S, Poinot P. Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angew Chem Int Ed Engl 2019; 58:17563-17566. [DOI: 10.1002/anie.201906261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Justin Lange
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Balkis Eddhif
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Mehrad Tarighi
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Théa Garandeau
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Elodie Péraudeau
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- CHU de Poitiers 86021 Poitiers France
| | - Jonathan Clarhaut
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- CHU de Poitiers 86021 Poitiers France
| | - Brigitte Renoux
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- Seekyo SA 4 rue Carol Heitz 86000 Poitiers France
| | - Pauline Poinot
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| |
Collapse
|
48
|
Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc 2019; 4:bpz014. [PMID: 32161807 PMCID: PMC6994028 DOI: 10.1093/biomethods/bpz014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs), produced and emitted through the metabolism of cancer cells or the body's immune system, are considered novel cancer biomarkers for diagnostic purposes. Of late, a large number of work has been done to find a relationship between VOCs' signature of body and cancer. Cancer-related VOCs can be used to detect several types of cancers at the earlier stages which in turn provide a significantly higher chance of survival. Here we aim to provide an updated picture of cancer-related VOCs based on recent findings in this field focusing on cancer odor database.
Collapse
Affiliation(s)
- Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
49
|
Lange J, Eddhif B, Tarighi M, Garandeau T, Péraudeau E, Clarhaut J, Renoux B, Papot S, Poinot P. Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Justin Lange
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Balkis Eddhif
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Mehrad Tarighi
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Théa Garandeau
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Elodie Péraudeau
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- CHU de Poitiers 86021 Poitiers France
| | - Jonathan Clarhaut
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- CHU de Poitiers 86021 Poitiers France
| | - Brigitte Renoux
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe “Systèmes Moléculaires Programmés” rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
- Seekyo SA 4 rue Carol Heitz 86000 Poitiers France
| | - Pauline Poinot
- University of Poitiers, UMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team 4 rue Michel-Brunet, TSA 51106 86073 Poitiers cedex 9 France
| |
Collapse
|
50
|
Longo V, Forleo A, Capone S, Scoditti E, Carluccio MA, Siciliano P, Massaro M. In vitro profiling of endothelial volatile organic compounds under resting and pro-inflammatory conditions. Metabolomics 2019; 15:132. [PMID: 31583479 DOI: 10.1007/s11306-019-1602-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The evaluation of volatile organic compounds(VOCs) emitted by human body offers a unique tool to set up new non-invasive devices for early diagnosis and long-lasting monitoring of most human diseases. However, their cellular origin and metabolic fate have not been completely elucidated yet, thus limiting their clinical application. Endothelium acts as an interface between blood and surrounding tissues. As such, it adapts its physiology in response to different environmental modifications thus playing a role in the pathogenesis of many metabolic and inflammatory diseases. OBJECTIVES Since endothelium specifically reshapes its physiologic functions upon environmental changes the objective of this study was to evaluate if and how pro-inflammatory stimuli affect VOC metabolism in endothelial cell in culture. METHODS Gas chromatography with mass spectrometric detection was applied to profile VOCs in the headspace of cultured endothelial cells (EC) in the absence or presence of the pro-inflammatory stimulus lipopolysaccharide (LPS). RESULTS We observed that, under resting conditions, EC affected the amount of 58 VOCs belonging to aldehyde, alkane and ketone families. Among these, LPS significantly altered the amount of 15 VOCs. ROC curves show a perfect performance (AUC = 1) for 10 metabolites including 1-butanol, 3-methyl-1-butanol and 2-ethyl-1-hexanol. DISCUSSION The emission and uptake of the aforementioned VOCs disclose potential unexplored metabolic pathways for EC that deserve to be investigated. Overall, we identified new candidate VOC potentially exploitable, upon experimental confirm in in vivo model of disease, as potential biomarkers of sepsis and pro-inflammatory clinical settings.
Collapse
Affiliation(s)
- V Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy.
| | - A Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - S Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - E Scoditti
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - M A Carluccio
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - P Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - M Massaro
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|