1
|
Wu H, Wang Q, Dong M, Liu X, Tang Y. pH-responsive dual-emission carbon dots for the ratiometric detection of organophosphorus pesticides in Brassica chinensis and Hg 2+ in water. Food Chem 2024; 454:139755. [PMID: 38810445 DOI: 10.1016/j.foodchem.2024.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Accurate and rapid monitoring of organophosphorus pesticides (OPs) residues is crucial for regulating food safety. Herein, dual-emission carbon dots (de-CDs) were fabricated for the ratiometric detection of OPs and Hg2+. The de-CDs exhibited two emission peaks at 678 and 485 nm when excited with visible light. Interestingly, the fluorescence at 678 nm was significantly quenched by Hg2+ mainly because of the static quenching effect, whereas that at 485 nm exhibited a slight change. More significantly, the quenched fluorescence of the de-CDs recovered remarkably after introducing omethoate, diazinon and malathion. Accordingly, the ratiometric detection of the three OPs and Hg2+ was achieved with high selectivity and robust performance. In addition, the OPs residues assay in Brassica chinensis was successfully performed with satisfactory results. This study not only provides an attractive tool for the simple and rapid assay of OPs but also offers new insights into the fabrication of multi-functional carbon dots.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Qiqi Wang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Miaochen Dong
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xinyue Liu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Wang R, Xu ZY, Li T, Li NB, Luo HQ. Mediating sequential turn-on and turn-off fluorescence signals for discriminative detection of Ag + and Hg 2+ via readily available CdSe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124288. [PMID: 38636427 DOI: 10.1016/j.saa.2024.124288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Realizing the accurate recognition and quantification of heavy metal ions is pivotal but challenging in the environmental, biological, and physiological science fields. In this work, orange fluorescence emitting quantum dots (OQDs) have been facilely synthesized by one-step method. The participation of silver ion (Ag+) can evoke the unique aggregation-induced emission (AIE) of OQDs, resulting in prominent fluorescence enhancement, which is scarcely reported previously. Moreover, the Ag+-triggered turn-on fluorescence can be continuously shut down by mercury ion (Hg2+). This intriguing sequential fluorescence variation exhibits great sensing potency for discrimination and quantification of Ag+ and Hg2+. Meanwhile, our OQDs also exhibit good selectivity, sensitivity, and rapid response toward Ag+ and Hg2+ detection. Due to their high performance, OQDs have been applied to the determination of Ag+ and Hg2+ levels in daily necessities and water samples with satisfactory results. Moreover, a portable smartphone-assisted sensing platform based on chromatic change has been constructed, facilitating the real-time and naked-eye visualization in the resource-confined scene. We anticipate that the discovery of these OQDs would be advantageous for exploring novel QDs materials for fluorescence detection.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ting Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
4
|
Zhao X, Li Q, Li H, Wang Y, Xiao F, Yang D, Xia Q, Yang Y. SERS detection of Hg 2+ and aflatoxin B 1 through on-off strategy of oxidase-like Au@HgNPs/carbon dots. Food Chem 2023; 424:136443. [PMID: 37245470 DOI: 10.1016/j.foodchem.2023.136443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/30/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
In this work, cerium-doped carbon dots (Ce-CDs) both as a reducing agent and template hybrid gold nanoparticles (AuNPs) with weak oxidase-like (OXD) activity was synthesized for the detection of Hg2+ and aflatoxin B1 (AFB1). The AuNPs can catalyze efficiently mercury ion (Hg2+) reduction to the metallic (Hg0) to form Au-Hg amalgam (Au@HgNPs). The obtained Au@HgNPs with strong OXD-like activity oxidize without Raman-active leucomalachite green (LMG) into the Raman-active malachite green (MG) and simultaneously as the SERS substrates by the formed Raman "hot spot" through MG-induced Au@HgNPs aggregation. While AFB1 was introduced resulting in the SERS intensity decreasing due to Hg2+ with AFB1 via carbonyl group to inhibit the aggregation of Au@HgNPs. The work paves a new path for the design of a nanozyme-based SERS protocol for tracing Hg2+ and AFB1 residues in foodstuff analysis.
Collapse
Affiliation(s)
- Xiaorong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Agricultural University, Kunming 650201, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qinghai Xia
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
5
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
6
|
Meng A, Zhang Y, Wang X, Xu Q, Li Z, Sheng L, Yan L. Fluorescence probe based on boron-doped carbon quantum dots for high selectivity “on-off-on” mercury ion sensing and cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Song X, Chen X, Liang Z, Xu D, Liang Y. Colorimetric determination of Hg(II) ions based on core/shell Au@MnO2 nanoparticles with oxidase-like activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J. Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 2022; 54:1399-1415. [PMID: 36018260 DOI: 10.1080/10408347.2022.2115287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heavy metals ions as metallic pollutants are a growing global issue due to their adverse effects on the aquatic ecosystem, and human health. Unfortunately, conventional detection methods such as atomic absorption spectrometry exhibit a relatively low limit of detection and hold numerous disadvantages, and therefore, the development of an efficient method for in-situ and real-time detection of heavy metal residues is of great importance. The aptamer-based sensors offer distinct advantages over antibodies and emerged as a robust sensing platform against various heavy metals due to their high sensitivity, ease of production, simple operations, excellent specificity, better stability, low immunogenicity, and cost-effectiveness. The nucleic acid aptamers in conjugation with nanomaterials can bind to the metal ions with good specificity/selectivity and can be used for on-site monitoring of metal ion residues. This review aimed to provide background information about nanomaterials-based aptasensor, recent advancements in aptamer conjunction on nanomaterials surface, the role of nanomaterials in improving signal transduction, recent progress of nanomaterials-based aptasening procedures (from 2010 to 2022), and future perspectives toward the practical applications of nanomaterials-based aptasensors against hazardous metal ions for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Salim Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zahid Hussain
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Edward Kamya
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Shah Mehmood
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| |
Collapse
|
9
|
Wang S, Zhao Y, Ma R, Wang W, Zhang L, Li J, Sun J, Mao nvestigation X. Aptasensing a class of small molecules based on split aptamers and hybridization chain reaction-assisted AuNPs nanozyme. Food Chem 2022; 401:134053. [DOI: 10.1016/j.foodchem.2022.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
10
|
Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. BIOSENSORS 2022; 12:bios12070477. [PMID: 35884280 PMCID: PMC9312806 DOI: 10.3390/bios12070477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Aptamers are a particular class of functional recognition ligands with high specificity and affinity to their targets. As the candidate recognition layer of biosensors, aptamers can be used to sense biomolecules. Aptasensors, aptamer-based biosensors, have been demonstrated to be specific, sensitive, and cost-effective. Furthermore, smartphone-based devices have shown their advantages in binding to aptasensors for point-of-care testing (POCT), which offers an immediate or spontaneous responding time for biological testing. This review describes smartphone-based aptasensors to detect various targets such as metal ions, nucleic acids, proteins, and cells. Additionally, the focus is also on aptasensors-related technologies and configurations.
Collapse
Affiliation(s)
- Ying Lan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| |
Collapse
|
11
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
12
|
He Y, Wang Y, Mao G, Liang C, Fan M. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal Chim Acta 2022; 1191:339251. [PMID: 35033275 DOI: 10.1016/j.aca.2021.339251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Owing to the high risk to human and environmental health, heavy metal pollution has become a global problem. Rapid, accurate and multiplexed determination of heavy metal ions is critical. In this work, we reported a promising approach to designing ratiometric fluorescent nanoprobes for multiplexed determination of Hg2+, Cu2+, and Ag+ ions. The nanoprobes (CDs-QDx) were designed by mixing the CDs and multicolor CdTe QDs without the involvement of recognition elements. The CDs were insensitive to heavy metal ions while CdTe QDs showed the size-dependent fluorescence response to different heavy metal ions, thereby establishing a ratiometric detection scheme by measuring the fluorescence intensity ratios of CDs-QDx systems. By evaluating the detection performance, the CDs-QDx (x = 570, 650, and 702) were successfully used for differentiation and quantification of Hg2+, Cu2+, and Ag+ ions. In addition, we also carried out the detection of heavy metal ions in actual samples with acceptable results. We believed that this work offers new insight into the design of ratiometric fluorescent nanoprobe for multiplexed determination of not only heavy metals but also some other analytes by combining the CDs with CdTe QDs with fine-tuned sizes.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Gennian Mao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Min Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
13
|
Yang J, Chen SW, Zhang B, Tu Q, Wang J, Yuan MS. Non-biological fluorescent chemosensors for pesticides detection. Talanta 2022; 240:123200. [PMID: 35030438 DOI: 10.1016/j.talanta.2021.123200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
The ongoing poisoning of agricultural products has pushed the security problem to become an important issue. Among them, exceeding the standard rate of pesticide residues is the main factor influencing the quality and security of agricultural products. Moreover, the abuse of pesticides has introduced a large amount of residues in soil and drinking water, which will enter the food chain to the human body, leading to neurological disorders and cancer. Therefore, great efforts have been devoted to developing fluorescent sensors for detecting pesticide in a facile, quickly, sensitive, selective, accurate manner, which exhibit greater advantages than some traditional methods. In this review, we mainly focus on summarizing the non-biological fluorescent probes for organic pesticides detection with the detection limit of micromole to nanomole, including organic functional small molecules, calixarenes and pillararenes, metal organic framework systems, and nanomaterials. Meanwhile, we described the different sensing mechanisms for pesticides detection of these mentioned fluorescent sensors, the detection limit of each pesticide, the application in detecting actual samples, as well as their respective advantages and development prospects associated with present non-biological fluorescent sensors.
Collapse
Affiliation(s)
- Jiao Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Bingwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
14
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
16
|
Mukherjee S, Bhattacharyya S, Ghosh K, Pal S, Halder A, Naseri M, Mohammadniaei M, Sarkar S, Ghosh A, Sun Y, Bhattacharyya N. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Rotake DR, Kumar A, Darji AD, Singh J. Highly selective sensor for the detection of Hg 2+ ions using homocysteine functionalised quartz crystal microbalance with cross-linked pyridinedicarboxylic acid. IET Nanobiotechnol 2020; 14:563-573. [PMID: 33010131 PMCID: PMC8676536 DOI: 10.1049/iet-nbt.2020.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023] Open
Abstract
This study reports an insightful portable vector network analyser (VNA)-based measurement technique for quick and selective detection of Hg2+ ions in nanomolar (nM) range using homocysteine (HCys)-functionalised quartz-crystal-microbalance (QCM) with cross-linked-pyridinedicarboxylic acid (PDCA). The excessive exposure to mercury can cause damage to many human organs, such as the brain, lungs, stomach, and kidneys, etc. Hence, the authors have proposed a portable experimental platform capable of achieving the detection in 20-30 min with a limit of detection (LOD) 0.1 ppb (0.498 nM) and a better dynamic range (0.498 nM-6.74 mM), which perfectly describes its excellent performance over other reported techniques. The detection time for various laboratory-based techniques is generally 12-24 h. The proposed method used the benefits of thin-film, nanoparticles (NPs), and QCM-based technology to overcome the limitation of NPs-based technique and have LOD of 0.1 ppb (0.1 μg/l) for selective Hg2+ ions detection which is many times less than the World Health Organization limit of 6 μg/l. The main advantage of the proposed QCM-based platform is its portability, excellent repeatability, millilitre sample volume requirement, and easy process flow, which makes it suitable as an early warning system for selective detection of mercury ions without any costly measuring instruments.
Collapse
Affiliation(s)
- Dinesh Ramkrushna Rotake
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India.
| | - Ajay Kumar
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| | - Anand D Darji
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Jitendra Singh
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| |
Collapse
|
19
|
Wu H, Tong C. Dual-Emission Fluorescent Probe for the Simultaneous Detection of Nitrite and Mercury(II) in Environmental Water Samples Based on the Tb3+-Modified Carbon Quantum Dot/3-Aminophenylboronic Acid Hybrid. Anal Chem 2020; 92:8859-8866. [DOI: 10.1021/acs.analchem.0c00455] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huifang Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Pan Z, Xu Z, Chen J, Hu L, Li H, Zhang X, Gao X, Wang M, Zhang J. Coumarin Thiourea-Based Fluorescent Turn-on Hg 2+ Probe That Can Be Utilized in a Broad pH Range 1-11. J Fluoresc 2020; 30:505-514. [PMID: 32146649 DOI: 10.1007/s10895-020-02517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
A novel coumarin-thiourea conjugate was synthesized facilely. It served as a fluorescent turn-on chemosensor for selective detection of Hg2+ ion over other common competitive metal ions including Li+, Na+, K+, Ag+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+ ions based on the Hg2+-promoted desulfurization and cyclization reactions. Addition of Hg2+ ion to the sensor solution in 2:8 EtOH/H2O induced a hypsochromic shift of the UV-Vis absorption band from 360 nm to 340 nm accompanying distinct enhancement in the absorption intensity while addition of other metal ions failed to bring about substantial change in the absorption spectra. Addition of Hg2+ to the sensor solution also caused marked increase in the fluorescence emission intensity and most common competitive metal ions did not interfere with the selective sensing of Hg2+ ion by the sensor. The detection limit of Hg2+ ion by the probe was calculated to be 1.46 × 10-7 M and the probe could be utilized for selective detection of Hg2+ ion by fluorescence turn-on mode over a broad pH range of 1-11.
Collapse
Affiliation(s)
- Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co., Ltd, Penglai, 265601, People's Republic of China
| | - Jie Chen
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Luping Hu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Xin Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Xucheng Gao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| |
Collapse
|
21
|
Zhou X, Zhang S, Shi J, Zhao K, Deng A, Li J. An ultrasensitive competitive chemiluminescence immunosensor coupled flow injection cell modified by oxidized graphene-chitosan for the detection of Hg2+. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Khoshbin Z, Housaindokht MR, Izadyar M, Verdian A, Bozorgmehr MR. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion. Anal Chim Acta 2019; 1071:70-77. [PMID: 31128757 DOI: 10.1016/j.aca.2019.04.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
In this study, a simple paper-based aptasensor has been developed for the ultrasensitive detection of lead (Pb2+) ion within about 10 min. The aptasensor has been successfully designed by taking advantages of the Förster Resonance Energy Transfer (FRET) process and the super fluorescence quenching property of graphene oxide (GO) sheet. The sensing mechanism of the aptasensor is based on the conformational switch of the Pb2+-specific aptamer from a random coil to a G-quadruplex structure. An injection of Pb2+ on the paper-based platform induces the release of the specific aptamer from the GO surface that recovers the fluorescence emission. Under the optimal experimental conditions, there is a good linear relationship between the fluorescence recovery and the Pb2+concentration in the ranges of 5-70 pM and 0.07-20 nM. Moreover, the aptasensing array exhibits a high sensitivity to Pb2+ with an ultra-low detection limit of 0.5 pM. The developed aptasensor has been successfully applied to determine Pb2+ in tap water, lake water, milk, and human blood serum. The paper-based aptasensor can be efficiently utilized to detect other metal ions and biological molecules by substituting target specific aptamer.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|