1
|
Ma Y, Wang S, Sun W, Zhou L, Deng Y, Zhao Q. Nitrogen-Doped Carbon Dots Prepared via Microchannel Method for Visual Detection of Copper Ions. LUMINESCENCE 2025; 40:e70113. [PMID: 39887639 DOI: 10.1002/bio.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Copper ions (Cu2+) play a crucial role in biological processes; however, excessive intake can result in severe health problems. Current methods for detecting copper ions are both expensive and complex. Therefore, there is a need for efficient and straightforward visual detection methods. In this study, novel nitrogen-doped carbon dots (N-CDs) were synthesized via a microchannel method using diethylenetriamine and citric acid as precursors and were characterized by TEM, XRD, and IR, among others. The N-CDs demonstrated high selectivity and strong fluorescence, showing a linear quenching response to copper ions with a detection limit of 46 nM, whereas other common metal ions, such as Ca2+ and Mg2+, exhibited negligible interference even at higher concentrations. These N-CDs were subsequently applied to test paper, allowing for on-site visual and quantitative detection of copper ions via a colorimetric method. This approach provides a novel solution for the rapid detection of copper ions, with significant potential in environmental monitoring, public health, and industrial applications.
Collapse
Affiliation(s)
- Yunfei Ma
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Songtao Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Wei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Longlong Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhang Y, Li J, Zhou Y, Zhang X, Liu X. Artificial Intelligence-Based Microfluidic Platform for Detecting Contaminants in Water: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4350. [PMID: 39001129 PMCID: PMC11243966 DOI: 10.3390/s24134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Water pollution greatly impacts humans and ecosystems, so a series of policies have been enacted to control it. The first step in performing pollution control is to detect contaminants in the water. Various methods have been proposed for water quality testing, such as spectroscopy, chromatography, and electrochemical techniques. However, traditional testing methods require the utilization of laboratory equipment, which is large and not suitable for real-time testing in the field. Microfluidic devices can overcome the limitations of traditional testing instruments and have become an efficient and convenient tool for water quality analysis. At the same time, artificial intelligence is an ideal means of recognizing, classifying, and predicting data obtained from microfluidic systems. Microfluidic devices based on artificial intelligence and machine learning are being developed with great significance for the next generation of water quality monitoring systems. This review begins with a brief introduction to the algorithms involved in artificial intelligence and the materials used in the fabrication and detection techniques of microfluidic platforms. Then, the latest research development of combining the two for pollutant detection in water bodies, including heavy metals, pesticides, micro- and nanoplastics, and microalgae, is mainly introduced. Finally, the challenges encountered and the future directions of detection methods based on industrial intelligence and microfluidic chips are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.Z.); (J.L.); (Y.Z.); (X.Z.)
| |
Collapse
|
3
|
Yucel M, Onbas R, Arslan Yildiz A, Yildiz UH. The Soft Nanodots as Fluorescent Probes for Cell Imaging: Analysis of Cell and Spheroid Penetration Behavior of Single Chain Polymer Dots. Macromol Biosci 2024; 24:e2300402. [PMID: 38102867 DOI: 10.1002/mabi.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
This study describes the formation, size control, and penetration behavior of polymer nanodots (Pdots) consisting of single or few chain polythiophene-based conjugated polyelectrolytes (CPEs) via nanophase separation between good solvent and poor solvent of CPE. Though the chain singularity may be associated with dilution nanophase separation suggests that molecules of a good solvent create a thermodynamically driven solvation layer surrounding the CPEs and thereby separating the single chains even in their poor solvents. This statement is therefore corroborated with emission intensity/lifetime, particle size, and scattering intensity of polyelectrolyte in good and poor solvents. Regarding the augmented features, Pdots are implemented into cell imaging studies to understand the nuclear penetration and to differentiate the invasive characteristics of breast cancer cells. The python based red, green, blue (RGB) color analysis depicts that Pdots have more nuclear penetration ability in triple negative breast cancer cells due to the different nuclear morphology in shape and composition and Pdots have penetrated cell membrane as well as extracellular matrix in spheroid models. The current Pdot protocol and its utilization in cancer cell imaging are holding great promise for gene/drug delivery to target cancer cells by explicitly achieving the very first priority of nuclear intake.
Collapse
Affiliation(s)
- Muge Yucel
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Rabia Onbas
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir, 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| |
Collapse
|
4
|
Phan QH, Dinh QT, Pan YC, Huang YT, Hong ZH, Lu TS. Decomposition Mueller matrix polarimetry for enhanced miRNA detection with antimonene-based surface plasmon resonance sensor and DNA-linked gold nanoparticle signal amplification. Talanta 2024; 270:125611. [PMID: 38181598 DOI: 10.1016/j.talanta.2023.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
A decomposition Mueller matrix method is proposed for detection of miRNA and enhanced by using a surface plasmon resonance (SPR). In the proposed approach, a Mueller matrix decomposition method is employed to extract the linear birefringence (LB) and circular dichroism (CD) properties of the miRNA sample. The accuracy of the LB and CD measurements is enhanced through the use of a high-resolution antimonene-based SPR prism coupler with DNA-linked gold nanoparticles (AuNPs). The feasibility of the proposed method is demonstrated by measuring the LB orientation angle (α) and CD property (R) of two miRNA aqueous solutions (hsa-miR-125-5p and hsa-miR-21-5p) over the concentration range of 0∼1000 fM in both cases. The results show that, for both samples, α and R vary linearly with the change in the miRNA concentration. Furthermore, the values of α and R obtained for the two samples are quantifiably different, and hence the selectivity of the proposed SPR sensor is confirmed. Overall, the results highlight the potential of the proposed sensor as a valuable tool for miRNA detection with prospective applications in cancer diagnosis.
Collapse
Affiliation(s)
- Quoc-Hung Phan
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan.
| | - Quoc-Thinh Dinh
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Yi-Cheng Pan
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Yi-Ting Huang
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Zi-Hao Hong
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Tzu-Shiang Lu
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| |
Collapse
|
5
|
Jin B, Ma C, Zhang C, Yin H, Zhao G, Hu J, Li Z. Point-of-care detection of Monkeypox virus clades using high-performance upconversion nanoparticle-based lateral flow assay. Mikrochim Acta 2024; 191:177. [PMID: 38441684 DOI: 10.1007/s00604-024-06241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
There is an urgent need for a point-of-care testing (POCT) method in developing and underserved regions to distinguish between two Monkeypox virus (MPXV) clades, given their varying transmissibility and clinical manifestations. In this paper, we target the specific complement protein gene fragment of two MPXV clades and construct a high-performance upconversion nanoparticles-based lateral flow assay (UCNPs-based LFA) with double T-lines and a shared C-line. This enables qualitative and quantitative dual-mode detection when combined with a smartphone and a benchtop fluorescence analyzer. The developed LFA exhibits stable performance, convenient operation, rapid readout (within 8 min), and a much lower limit of detection (LOD) (~ pM level) compared to existing POCT methods. The proposed detection platform demonstrates significant potential for pathogen diagnosis using a POCT approach.
Collapse
Affiliation(s)
- Birui Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chuan Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Chuyao Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Huiling Yin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guoxu Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology, Suzhou, 215129, People's Republic of China.
| | - Zedong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
6
|
Asa TA, Kumar P, Seo YJ. Dual amplification-based ultrasensitive and highly selective colorimetric detection of miRNA. Talanta 2024; 268:125269. [PMID: 37839321 DOI: 10.1016/j.talanta.2023.125269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
In this study, we combined a Pradeep Kumar (PK)-probe with a ligation-transcription-ramified RCA (LTR) dual-amplification system for the isothermal colorimetric detection of miRNA 25-3P, where the PK-probe transformed from its pink color to colorless in the presence of the amplification byproduct pyrophosphate (PPi), thereby allowing the simple naked-eye qualitative detection of the miRNA. Through this double-amplification strategy, the limit of detection reached as low as 91.4 aM-quite extraordinary sensitivity for a colorimetric miRNA detection system based on absorbance readings. Our detection system also operated with high specificity, the result of using two different target-selective ligation steps (linear DNA ligation and circular DNA ligation) mediated by SplintR ligase, and so could discriminate single-mismatched from perfectly matched target sequences. We suspect that this ultrasensitive and selective PK-probe/LTR dual-amplification system should be a great colorimetric diagnostic for the detection of any miRNA with high efficiency.
Collapse
Affiliation(s)
- Tasnima Alam Asa
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Pradeep Kumar
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
7
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. BIOSENSORS 2023; 13:732. [PMID: 37504131 PMCID: PMC10377012 DOI: 10.3390/bios13070732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zepeng Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yezhan Zeng
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
9
|
Yuwen Z, Zeng Q, Ye Q, Zhao Y, Zhu J, Chen K, Liu H, Yang R. A Quencher-Based Blood-Autofluorescence-Suppression Strategy Enables the Quantification of Trace Analytes in Whole Blood. Angew Chem Int Ed Engl 2023; 62:e202302957. [PMID: 37102382 DOI: 10.1002/anie.202302957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600-700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2 S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2 S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2 S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qiaozhen Ye
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Jingxuan Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Kang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| |
Collapse
|
10
|
Nguyen TN, Phung VD, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. BIOSENSORS 2023; 13:586. [PMID: 37366951 DOI: 10.3390/bios13060586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, virus pandemics have become a major burden seriously affecting human health and social and economic development. Thus, the design and fabrication of effective and low-cost techniques for early and accurate virus detection have been given priority for prevention and control of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising technology to resolve the major drawbacks and problems of the current detection methods. Discovering and applying advanced materials have offered opportunities to develop and commercialize biosensor devices for effectively controlling pandemics. Along with various well-known materials such as gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene, conjugated polymer (CPs) have become one of the most promising candidates for preparation and construction of excellent biosensors with high sensitivity and specificity to different virus analytes owing to their unique π orbital structure and chain conformation alterations, solution processability, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies attracting great interest from the community for early diagnosis of COVID-19 as well as other virus pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus detection, this review aims to give a critical overview of the recent research related to use of CPs in fabrication of virus biosensors. We emphasize structures and interesting characteristics of different CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) based on CPs are also summarized and presented.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
11
|
Jiang K, Wu J, Kim JE, An S, Nam JM, Peng YK, Lee JH. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection. NANO LETTERS 2023; 23:3897-3903. [PMID: 37083438 DOI: 10.1021/acs.nanolett.3c00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Simple, low-cost, and accurate nucleic acid assay platforms hold great promise for point-of-care (POC) pathogen detection, disease surveillance, and control. Plasmonic photothermal polymerase chain reaction (PPT-PCR) is a powerful and efficient nucleic acid amplification technique, but it lacks a simple and convenient analysis method for POC applications. Herein, we propose a novel plasmonic cross-linking colorimetric PCR (PPT-ccPCR) assay by integrating plasmonic magnetic nanoparticle (PMN)-based PPT-PCR with gold nanoparticle (AuNP)-based cross-linking colorimetry. AuNPs form assembled structures with the PMNs in the presence of amplicons and collect in a magnetic field, resulting in color changes to the supernatant. Target DNA with concentrations as low as 5 copies/μL can be visually detected within 40 min. The achieved limit of detection was 1.8 copies/μL based on the absorption signals. This simple and sensitive strategy needs no expensive instrumentation and demonstrates high potential for POC detection while enabling further applications in clinical diagnostics.
Collapse
Affiliation(s)
- Kunlun Jiang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Jingrui Wu
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ji-Eun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sujin An
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
12
|
Colorimetric Assaying of Exosomal Metabolic Biomarkers. Molecules 2023; 28:molecules28041909. [PMID: 36838895 PMCID: PMC9962048 DOI: 10.3390/molecules28041909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes released into the extracellular matrix have been reported to contain metabolic biomarkers of various diseases. These intraluminal vesicles are typically found in blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. Analysis of exosomal content with specific profiles of DNA, microRNA, proteins, and lipids can mirror their cellular origin and physiological state. Therefore, exosomal cargos may reflect the physiological processes at cellular level and can potentially be used as biomarkers. Herein, we report an optical detection method for assaying exosomal biomarkers that supersedes the state-of-the-art time consuming and laborious assays such as ELISA and NTA. The proposed assay monitors the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy) propyltriethylammonium bromide) upon interacting with aptamers/peptide nucleic acids in the presence or absence of target biomarkers. As a proof of concept, this study demonstrates facile assaying of microRNA, DNA, and advanced glycation end products in exosomes isolated from human plasma with detection levels of ~1.2, 0.04, and 0.35 fM/exosome, respectively. Thus, the obtained results illustrate that the proposed methodology is applicable for rapid and facile detection of generic exosomal biomarkers for facilitating diseases diagnosis.
Collapse
|
13
|
Current Trends and Challenges in Point-of-care Urinalysis of Biomarkers in Trace Amounts. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Sinsinbar G, Gudlur S, Liedberg B. Rapid Detection of Escherichia coli: Optimized Peptide-Polythiophene Interactions Help Reduce Assay Time and Improve Naked-Eye Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31541-31550. [PMID: 35797225 DOI: 10.1021/acsami.2c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent improvements in methods for rapid detection of microbial contamination in food and water samples have aided in the development of on-site and point-of-care testing. Early detection, made possible via on-site testing, can help limit the spread of food and waterborne illnesses. Recently, we reported a novel fluorescence-based Omptin-Polythiophene assay (the assay) to detect Escherichia coli in contaminated water samples. The assay targets OmpT─an E. coli outer membrane protease─and exploits the protease's ability to cleave at dibasic sites within a peptide. By combining a peptide substrate optimized for OmpT with a conjugated polythiophene reporter molecule whose optical properties vary upon interaction with the intact or cleaved peptide, we demonstrated the detection of 1-10 CFU/mL and 105 CFU/mL E. coli in 5.5 and 1 h, respectively. In comparison, most microbial detection methods that rely on culturing and plating techniques take anywhere between 8 and 24 h to report their results. Herein we report significant improvements in the assay which include reducing the assay time from an already short 1 h to a mere 10 min for detecting E. coli in highly contaminated samples and augmenting the assay with colorimetric sensing capability for naked eye discernment under normal visible light or under UV-A light. These improvements were made possible by characterizing the optical changes resulting from the interaction of the peptide with five carboxylate-functionalized polythiophene variants carrying different 3- side chain carboxylic acids and by identifying preferential peptide substrates via the screening of ten peptide sequence variants for OmpT activity.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Sushanth Gudlur
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
15
|
Goyal G, Sharma A, Tok AIY, Palaniappan A, Liedberg B. Affimer sandwich probes for stable and robust lateral flow assaying. Anal Bioanal Chem 2022; 414:4245-4254. [DOI: 10.1007/s00216-022-04078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/01/2022]
|
16
|
Pan R, Liu J, Wang P, Wu D, Chen J, Wu Y, Li G. Ultrasensitive CRISPR/Cas12a-Driven SERS Biosensor for On-Site Nucleic Acid Detection and Its Application to Milk Authenticity Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4484-4491. [PMID: 35380812 DOI: 10.1021/acs.jafc.1c08262] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasensitive surface-enhanced Raman scattering (SERS) biosensor driven by CRISPR/Cas12a was proposed for on-site nucleic acid detection. We tactfully modified single-strand DNA (ssDNA) with a target-responsive Prussian blue (PB) nanolabel to form a probe and fastened it in the microplate. Attributed to the specific base pairing and highly efficient trans-cleavage ability of the CRISPR/Cas12a effector, precise target DNA recognition and signal amplification can be achieved, respectively. In the presence of target DNA, trans-cleavage towards the probe was activated, leading to the release of a certain number of PB nanoparticles (NPs). Then, these free PB NPs would be removed. Under alkali treatment, the breakdown of the remaining PB NPs in the microplate was triggered, producing massive ferricyanide anions (Fe(CN)64-), which could exhibit a unique characteristic Raman peak that was located in the "biological Raman-silent region". By mixing the alkali-treated solution with the SERS substrate, Au@Ag core-shell NP, the concentration of the target DNA was finally exhibited as SERS signals with undisturbed background, which can be detected by a portable Raman spectrometer. Importantly, this strategy could display an ultralow detection limit of 224 aM for target DNA. Furthermore, by targeting cow milk as the adulterated ingredient in goat milk, the proposed biosensor was successfully applied to milk authenticity detection.
Collapse
Affiliation(s)
- Ruiyuan Pan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
17
|
Sinsinbar G, Palaniappan A, Yildiz UH, Liedberg B. A Perspective on Polythiophenes as Conformation Dependent Optical Reporters for Label-Free Bioanalytics. ACS Sens 2022; 7:686-703. [PMID: 35226461 DOI: 10.1021/acssensors.1c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(3-alkylthiophene) (PT)-based conjugated polyelectrolytes (CPEs) constitute an important class of responsive polymers with excellent optical properties. The electrostatic interactions between PTs and target analytes trigger complexation and concomitant conformational changes of the PT backbones that produce distinct optical responses. These conformation-induced optical responses of the PTs enable them to be utilized as reporters for detection of various analytes by employing simple UV-vis spectrophotometry or the naked eye. Numerous PTs with unique pendant groups have been synthesized to tailor their interactions with analytes such as nucleotides, ions, surfactants, proteins, and bacterial and viral pathogens. In this perspective, we discuss PT-target analyte complexation for bioanalytical applications and highlight recent advancements in point-of-care and field deployable assays. Subsequently, we highlight a few areas of critical importance for future applications of PTs as reporters, including (i) design and synthesis of specific PTs to advance the understanding of the mechanisms of interaction with target analytes, (ii) using arrays of PTs and linear discriminant analysis for selective and specific detection of target analytes, (iii) translation of conventional homogeneous solution-based assays into heterogeneous membrane-based assay formats, and finally (iv) the potential of using PT as an alternative to conjugated polymer nanoparticles and dots in bioimaging.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Alagappan Palaniappan
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Photonic Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| |
Collapse
|
18
|
Ammanath G, Delachi CG, Karabacak S, Ali Y, Boehm BO, Yildiz UH, Alagappan P, Liedberg B. Colorimetric and Fluorometric Profiling of Advanced Glycation End Products. ACS APPLIED MATERIALS & INTERFACES 2022; 14:94-103. [PMID: 34964349 DOI: 10.1021/acsami.1c16261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Profiling of advanced glycation end products (AGEs) is an emerging area of clinical significance for disease diagnosis and prognosis. Typically, concentrations of AGEs are estimated in laboratories by trained personnel using sophisticated equipment. Herein, a facile approach for colorimetric and fluorometric profiling of AGEs is reported for rapid and on-site analysis. The concentrations of AGE levels in plasma are estimated via changes in optical properties of polythiophenes (PTs) upon interaction with aptamers (Apts) in the presence and in the absence of AGEs. To validate the proposed approach, glyceraldehyde-derived AGEs (AGE class 1 [AGE1]), the biomarker associated with cardiovascular diseases and diabetes, are used as a model system. Colorimetric analysis yielded linear responses for AGE1 for clinically relevant concentration ranges between 1.5 and 300 μg/mL with a limit of detection (LOD) of ∼1.3 μg/mL. Subsequently, an approach utilizing PTs with four different pendant groups in conjunction with four different Apts is demonstrated for qualitative colorimetric profiling and for quantitative fluorometric profiling of up to four AGEs in clinical matrices. Principal component analysis (PCA) of fluorometric responses of AGE-spiked samples yielded distinct responses for the different AGEs tested. Thus, the proposed approach ascertains rapid profiling of spiked AGEs in plasma samples without the requirement of preanalytical processing and advanced instrumentation, thereby facilitating on-site diagnosis.
Collapse
Affiliation(s)
- Gopal Ammanath
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Carla Giorgia Delachi
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Soner Karabacak
- Department of Chemistry, Izmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore, Singapore
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore, Singapore
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Palaniappan Alagappan
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| |
Collapse
|
19
|
Shen YM, Gao MY, Chen X, Shen AG, Hu JM. Fine synthesis of Prussian-blue analogue coated gold nanoparticles (Au@PBA NPs) for sorting specific cancer cell subtypes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119566. [PMID: 33607489 DOI: 10.1016/j.saa.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 05/23/2023]
Abstract
Multiplex surface-enhanced Raman scattering (SERS) detection of markers without background in tumor biosystems has its superiority over other optical methods. Herein, we reported a strategy of quantitative discrimination of two breast cancer cell subtypes. Based on our previous studies, two kinds of Prussian blue analogue coated gold nanoparticles (Au@PBA NPs) were designed and synthesized by the replacement of Fe2+ with Pb2+ or Cu2+. Therefore, two distinct SERS emissions of C≡N bonds at 2122 cm-1 and 2176 cm-1 have been acquired. When modified with aptamers of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), which are both expressed in MCF-7 and MDA-MB-231 cell lines but in different levels, the SERS nanoprobes simultaneously identified the relative expression of these biomarkers on the cell surface, providing a good example for ratiometric detection in biosystems without any interference. Each surface marker of tumor cells corresponds to a single SERS emission. Thus, each subtype could be described in a molecular profiling way through duplex C≡N bonds-based SERS emission, which is more advanced than traditional flow cytometry method.
Collapse
Affiliation(s)
- Ya-Min Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China
| | - Meng-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China.
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
20
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
21
|
Yucel M, Koc A, Ulgenalp A, Akkoc GD, Ceyhan M, Yildiz UH. PCR-Free Methodology for Detection of Single-Nucleotide Polymorphism with a Cationic Polythiophene Reporter. ACS Sens 2021; 6:950-957. [PMID: 33621051 DOI: 10.1021/acssensors.0c02130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study presents a nonamplification-based nucleic acid assay for the detection of single-nucleotide polymorphism (SNP) associated with familial Mediterranean fever (FMF) besides polymerase chain reaction (PCR)-based methodologies. The major objective is to show the potential of the proposed assay for rapid screening of FMF in a Mediterranean region of 400 million population. The assay relies on binding difference of specially designed wild and mutant primers to the target genomic DNA, followed by determination of unbound primers by quick titration of a cationic polythiophene reporter. The fluorescent reporter exhibits signal transition from 525 to 580 nm in the presence of unbound primers, and it correlates the binding affinity of label-free primers to the homozygous wild and mutant genomes. As a proof of concept, 26 real samples are studied relying on the ON and OFF fluorescence signals of the cationic polythiophene reporter. The results are analyzed by principal component analysis (PCA), which provides clear separation of healthy and patient individuals. The further analysis by support vector machine (SVM) classification has revealed that our assay converges to 96% overall accuracy. These results support that the PCR-free nucleic acid assay has a significant potential for rapid and cost-effective screening of familial Mediterranean fever.
Collapse
Affiliation(s)
- Muge Yucel
- Department of Bioengineering and Biotechnology, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Altug Koc
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| | - Ayfer Ulgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35330, Turkey
| | - Gun Deniz Akkoc
- Department of Chemistry, Izmir Institute of Technology, İzmir 35430, Turkey
| | - Metin Ceyhan
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Photonic Science and Engineering, Izmir Institute of Technology, Izmir 35430, Turkey
| |
Collapse
|
22
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Goyal G, Ammanath G, Palaniappan A, Liedberg B. Stoichiometric Tuning of PNA Probes to Au 0.8Ag 0.2 Alloy Nanoparticles for Visual Detection of Nucleic Acids in Plasma. ACS Sens 2020; 5:2476-2485. [PMID: 32700531 DOI: 10.1021/acssensors.0c00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Standard detection methods for nucleic acids, an important class of diagnostic biomarkers, are often laborious and cumbersome. In need for development of facile methodologies, localized surface plasmon resonance (LSPR) assays have been widely explored for both spectroscopic and visual detection of nucleic acids. Our sensing approach is based on monitoring changes in the LSPR band due to interaction between peptide nucleic acid (PNA) and plasmonic nanoparticles (NPs) in the presence/absence of target nucleic acid. We have investigated the importance of tuning the stoichiometry of PNA to NPs to enable "naked-eye" detection of nucleic acids at clinically relevant concentration ranges. Assaying in plasma is achieved by incorporation of silver in gold NPs (AuNPs) via an alloying process. The synthesized gold/silver alloy NPs reduce nonspecific adsorption of proteinaceous interferents in plasma. Furthermore, the gold/silver alloy NPs absorb in the most sensitive cyan to green transition zone (∼500 nm) yielding highly competitive visual limits of detection (LODs). The visual LOD (calculated objectively using the ΔE algorithm) for a model microRNA (mir21) using a productive combination of stoichiometric tuning of the PNA to NP ratio and compositional tuning of the NPs in buffer and plasma extract equals 200 pM (∼250 times lower than existing reports) and 3 nM, respectively. We envision that the proposed LSPR assay based on Au0.8Ag0.2NPs offers an avenue for rapid and sensitive on-site detection of nucleic acids in complex matrixes in combination with efficient target extraction kits.
Collapse
Affiliation(s)
- Garima Goyal
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Gopal Ammanath
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Alagappan Palaniappan
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Bo Liedberg
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
24
|
Yeasmin S, Ammanath G, Ali Y, Boehm BO, Yildiz UH, Palaniappan A, Liedberg B. Colorimetric Urinalysis for On-Site Detection of Metabolic Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31270-31281. [PMID: 32551533 DOI: 10.1021/acsami.0c09179] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past few decades, colorimetric assays have been developed for cost-effective and rapid on-site urinalysis. Most of these assays were employed for detection of biomarkers such as glucose, uric acid, ions, and albumin that are abundant in urine at micromolar to millimolar levels. In contrast, direct assaying of urinary biomarkers such as glycated proteins, low-molecular-weight reactive oxygen species, and nucleic acids that are present at significantly lower levels (nanomolar to picomolar) remain challenging due to the interferences from the urine sample matrix. State-of-the-art assays for detection of trace amounts of urinary biomarkers typically utilize time-consuming and equipment-dependent sample pretreatment or clean-up protocols prior to assaying, which limits their applicability for on-site analysis. Herein, we report a colorimetric assay for on-site detection of trace amount of generic biomarkers in urine without involving tedious sample pretreatment protocols. The detection strategy is based on monitoring the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy)propyltriethylammonium bromide) upon interacting with an aptamer or a peptide nucleic acid in the presence and absence of target biomarkers of relevance for the diagnosis of metabolic complications and diabetes. As a proof of concept, this study demonstrates facile assaying of advanced glycation end products, 8-hydroxy-2'-deoxyguanosine and hepatitis B virus DNA in urine samples at clinically relevant concentrations, with limits of detection of ∼850 pM, ∼650 pM, and ∼ 1 nM, respectively. These analytes represent three distinct classes of biomarkers: (i) glycated proteins, (ii) low-molecular-weight reactive oxygen species, and (iii) nucleic acids. Hence, the proposed methodology is applicable for rapid detection of generic biomarkers in urine, without involving sophisticated equipment and skilled personnel, thereby enabling on-site urinalysis. At the end of the contribution, we discuss the opportunity to translate the homogeneous assay into a paper-based format.
Collapse
Affiliation(s)
- Sanjida Yeasmin
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Gopal Ammanath
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Alagappan Palaniappan
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
25
|
PNA-Based MicroRNA Detection Methodologies. Molecules 2020; 25:molecules25061296. [PMID: 32178411 PMCID: PMC7144472 DOI: 10.3390/molecules25061296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small noncoding RNAs involved in the fine regulation of post-transcriptional processes in the cell. The physiological levels of these short (20-22-mer) oligonucleotides are important for the homeostasis of the organism, and therefore dysregulation can lead to the onset of cancer and other pathologies. Their importance as biomarkers is constantly growing and, in this context, detection methods based on the hybridization to peptide nucleic acids (PNAs) are gaining their place in the spotlight. After a brief overview of their biogenesis, this review will discuss the significance of targeting miR, providing a wide range of PNA-based approaches to detect them at biologically significant concentrations, based on electrochemical, fluorescence and colorimetric assays.
Collapse
|
26
|
Aydın HB, Cheema JA, Ammanath G, Toklucu C, Yucel M, Özenler S, Palaniappan A, Liedberg B, Yildiz UH. Pixelated colorimetric nucleic acid assay. Talanta 2020; 209:120581. [PMID: 31892020 PMCID: PMC7111824 DOI: 10.1016/j.talanta.2019.120581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Conjugated polyelectrolytes (CPEs) have been widely used as reporters in colorimetric assays targeting nucleic acids. CPEs provide naked eye detection possibility by their superior optical properties however, as concentration of target analytes decrease, trace amounts of nucleic acid typically yield colorimetric responses that are not readily perceivable by naked eye. Herein, we report a pixelated analysis approach for correlating colorimetric responses of CPE with nucleic acid concentrations down to 1 nM, in plasma samples, utilizing a smart phone with an algorithm that can perform analytical testing and data processing. The detection strategy employed relies on conformational transitions between single stranded nucleic acid-cationic CPE duplexes and double stranded nucleic acid-CPE triplexes that yield distinct colorimetric responses for enabling naked eye detection of nucleic acids. Cationic poly[N,N,N-triethyl-3-((4-methylthiophen-3-yl)oxy)propan-1-aminium bromide] is utilized as the CPE reporter deposited on a polyvinylidene fluoride (PVDF) membrane for nucleic acid assay. A smart phone application is developed to capture and digitize the colorimetric response of the individual pixels of the digital images of CPE on the PVDF membrane, followed by an analysis using the algorithm. The proposed pixelated approach enables precise quantification of nucleic acid assay concentrations, thereby eliminating the margin of error involved in conventional methodologies adopted for interpretation of colorimetric responses, for instance, RGB analysis. The obtained results illustrate that a ubiquitous smart phone could be utilized for point of care colorimetric nucleic acids assays in complex matrices without requiring sophisticated software or instrumentation.
Collapse
Affiliation(s)
- Hakan Berk Aydın
- Department of Chemistry, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Jamal Ahmed Cheema
- Center for Biomimetic Sensor Science, Nanyang Technological University, 637553, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Gopal Ammanath
- Center for Biomimetic Sensor Science, Nanyang Technological University, 637553, Singapore; Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, 637553, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Cihan Toklucu
- Department of Computer Engineering, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Muge Yucel
- Department of Bioengineering, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Sezer Özenler
- Department of Chemistry, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Alagappan Palaniappan
- Center for Biomimetic Sensor Science, Nanyang Technological University, 637553, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, Nanyang Technological University, 637553, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
27
|
Chai H, Wang M, Zhang C, Tang Y, Miao P. Highly Sensitive Genosensing Coupling Rolling Circle Amplification with Multiple DNAzyme Cores for DNA Walking. Bioconjug Chem 2020; 31:764-769. [DOI: 10.1021/acs.bioconjchem.9b00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hua Chai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | | | - Chongyu Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan 250103, P.R. China
| | - Yuguo Tang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
28
|
Li L, Meng Y, Li L, Wang S, Ding J, Zhou W. A tetrahedral DNA nanoflare for fluorometric determination of nucleic acids and imaging of microRNA using toehold strands. Mikrochim Acta 2019; 186:824. [PMID: 31754805 DOI: 10.1007/s00604-019-3931-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022]
Abstract
The authors describe a tetrahedral DNA nanostructure loaded with SYBR Green (SG-TDN) for fluorometric determination of nucleic acids. After intercalating into the TDN, fluorescence of SG is enhanced by 260-fold (exc 480 nm, em 524 nm), and the resulting SG-TDN nanoflare displays >7-fold stronger fluorescence than that of FAM-labeled TDN. The SG-TDNs were coupled to magnetic microparticles and polydopamine nanoparticles to construct multi-functional nanoprobes through sequence hybridization using a toehold strand. The method was applied to detect a stretch of microRNA sequence (20 bp) in buffer and in undiluted serum with excellent selectivity, over a wide linear range and with a low limit of detection (0.2 nM). The probe was also applied for visualization of tumor-related microRNA in living cells via fluorescence imaging. Graphical abstract Schematic representation of tetrahedron-based DNA nanoflare for fluorometric nucleic acid determination in undiluted blood serum and living cells.
Collapse
Affiliation(s)
- Liang Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Ling Li
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha, 410013, Hunan, China
| | - Shengfeng Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
29
|
Gao MY, Chen Q, Li W, Shen AG, Hu JM. Combined Surface-Enhanced Raman Scattering Emissions for High-Throughput Optical Labels on Micrometer-Scale Objects. Anal Chem 2019; 91:13866-13873. [DOI: 10.1021/acs.analchem.9b03357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng-Yue Gao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qiao Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fiber and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People’s Republic of China
| | - Ai-Guo Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ji-Ming Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|