1
|
Li Y, Li J, Jia X, Yang J, Cai L, Wu Y, Pei W, Le G, Chen J. A lipoprotein complex conjugated mesoporous silica as potent antibiotic adjuvant for synergistic antibacterial therapy of MRSA. Colloids Surf B Biointerfaces 2025; 251:114602. [PMID: 40048969 DOI: 10.1016/j.colsurfb.2025.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Nowadays, the emergence of antibiotic-resistant bacteria has posed a global threat to public health. However, the deployment of alternative antibiotics is lagging far behind the fast evolving antibiotic resistance, which demands effective strategies to restore drug-resistance sensitivity to available antibiotics. Here, a well-known antitumor lipoprotein complex consisted of bovine α-lactalbumin and oleic acid (BAMLET) was electrostatically adsorbed on the surface of mesoporous silica nanomaterials (MSN), forming an antibiotic adjuvant to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) to aminoglycoside antibiotics. It was found MSN of distinctive particle size may cause conformational changes of bound lipoprotein complex affecting the bactericidal performance of formed BAMLET@MSN conjugates (BMSN). Moreover, MSN was loaded with curcumin to endow obtained BMSN improved bioavailability and antioxidant capacity. The mechanistic studies revealed that antibacterial activities of BMSN originated from bacterial cell membrane disruption and biofilm inhibition, which promoted antibiotic entry and restored antibiotic bactericidal efficacy in the cell. Finally, transcriptomic analysis of MRSA indicated that BMSN interfered with bacterial amino acid metabolism, carbohydrate synthesis, and ATP translocation in bacteria. Therefore, the constructed BMSN/curcumin as potent antibiotic adjuvant provided a manipulable nanoplatform to tackle the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Yuqing Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinhuan Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
He Y, Zhang D, Wu Q, Du G, Liu R, Zhou X, Zhang Y. Highly sensitive fluorescent aptasensor based on magnetic metal-organic framework for aflatoxin B1 detection. Talanta 2025; 287:127620. [PMID: 39874794 DOI: 10.1016/j.talanta.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Aflatoxin B1 (AFB1) has strong carcinogenicity, mutagenicity, and teratogenicity even at low concentrations, presenting a major risk to food safety and human health, hence, it is crucial to develop a sensitive detection technique for AFB1. Consequently, cadmium telluride (CdTe) quantum dots conjugated with AFB1 aptamers serve as fluorescent signal probes, whereas Fe3O4@UiO-66-NH2 nanocomplexes are employed as magnetic carriers and fluorescence quenchers. Fe3O4@UiO-66-NH2 reduces background signal interference, thereby enhancing detection sensitivity and Förster Resonance Energy Transfer (FRET) efficiency. We have developed a highly sensitive and selective magnetron fluorescence aptasensor based on FRET for the specific detection of AFB1. Under the ideal experimental conditions, the linear range of AFB1 is 0.001-200 ng/mL, with a linear equation of y = 0.16x+0.65 (R2 = 0.996), and the detection limit is 0.012 ng/mL. The aptasensor demonstrated superior selectivity, reproducibility, and stability for AFB1, the recoveries for real samples of corn and wheat ranged from 95 % to 103 %, demonstrating the feasibility and practicality of the sensor. Furthermore, the accuracy of the aptasensor was verified by comparison with the results of high performance liquid chromatography, indicating that the aptasensor holds significant potential for practical detection applications.
Collapse
Affiliation(s)
- Yanfei He
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Gengan Du
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Ruoting Liu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Xianqing Zhou
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Jia Y, Han B, Zhou G, Li Z, Xue M, Liang B, Liu P, Cheng Y. Light-activated aptasensor for plug-and-play detection of Aflatoxin B1 in food samples. Anal Chim Acta 2025; 1346:343786. [PMID: 40021332 DOI: 10.1016/j.aca.2025.343786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AFB1 contamination in food samples is a global concern, threatening food safety and human health. Numerous assays have been developed for AFB1 detection. Among them, fluorescent aptasensors are of great interest due to their simplicity of operation, easy to read signal output. Nevertheless, these aptasensors are "passive-type", means the target AFB1 bind with the aptamer directly and cause fluorescent signal response. They are "always active", may result in undesired signal generation and the process is hard to control. Generally, the "activable-type" aptasensor would avoid these defects. RESULTS Here we demonstrate a light activated aptasensor for plug-and-play detection of AFB1. The aptasensor is constructed by integrating an AFB1-specific aptamer with a complementary DNA strand (PC-strand) that incorporates a photocleavable o-nitrobenzyl group. The AFB1 aptamer is locked by PC-strand preventing it binding to target AFB1. With ultraviolet (UV) light irradiation, the o-nitrobenzyl group cleaves and releases the PC-strand to two short DNA fragments. This fragmentation reduces the hybridization stability with AFB1 aptamer, allowing target AFB1 to bind efficiently to AFB1 aptamer and accompanied by increasing in fluorescence signal. The aptasensor could be activated at desired time, provides a sensitive (0.074 ng/mL) and specific method for AFB1 detection. It has been demonstrated to be a reliable tool for the analysis of AFB1 in food samples (rice, corn, and soybean), yielding satisfactory results. SIGNIFICANCE AND NOVELTY The aptasensor is insert to the target AFB1, while its activity could be restored in a time-resolved manner by cleaving the PC-strand to two short strands using UV light irradiation. This approach provides a promising platform for the rapid screening of AFB1 contamination in food samples, contributing to food safety and quality control.
Collapse
Affiliation(s)
- Yongmei Jia
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China; Guangdong Engineering Technology Research Center of Tropical Characteristic Plant Resource Development, Zhanjiang, China
| | - Bing Han
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Guohua Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Zhiguo Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Mingyue Xue
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Bo Liang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China.
| | - Yong Cheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
4
|
Cheng Y, Wang C, Chang X, Jia X, Liu Z, Liu B, Gao Z, Zhou H. Development of a colorimetric/fluorescence dual-mode immunoassay for aflatoxin B1 based on streptavidin-induced gold nanoparticle aggregation. Mikrochim Acta 2024; 192:11. [PMID: 39643724 DOI: 10.1007/s00604-024-06843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
A dual-mode immunoassay method was developed for colorimetric and fluorescence detection of aflatoxin B1 (AFB1) based on streptavidin-induced gold nanoparticle aggregation (AuNP@SA). AuNP-modified streptavidin-biotin labeling AFB1 complete antigen aggregations (AuNP@SA@Bio-BSA-AFB1) were synthesized as the competitive binding and dual-mode probe. AuNP@SA@Bio-BSA-AFB1 aggregations possessed high colorimetric and fluorescence quenching intensities. AFB1 antibodies modified immunomagnetic microspheres were used as the capture probe. The competitive binding between AFB1 and AuNP@SA@Bio-BSA-AFB1 leads to changes in color and fluorescence intensity. The detection limit of the colorimetric method is 6.95 ng·mL-1, while that of the fluorescence method is 0.07 ng·mL-1. The practicality of the proposed strategy was demonstrated by determining AFB1 in spiked peanut samples.
Collapse
Affiliation(s)
- Yaqian Cheng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenxi Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Xueyu Chang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Zesheng Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China
| | - Baolin Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Science, Tianjin, 300050, China.
| |
Collapse
|
5
|
Zheng H, Feng L, Huang Z, Zou Z, Ma X, Pan Z, Li J, Wu J, Li M, Su Z. Establishment of an amplification strategy - specific binding - convenient processing integrated aflatoxin B1 detection method based on Fe 3O 4-NH 4/AuNPs/apt-S1. Food Chem X 2024; 23:101605. [PMID: 39071922 PMCID: PMC11282949 DOI: 10.1016/j.fochx.2024.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a potent toxin in food, necessitating rapid, instant, and sensitive detection. We have engineered an electrochemical sensor to monitor AFB1 using a system composed of Fe3O4-NH4/AuNPs/apt-S1. The aptamer specifically recognizes AFB1, while 'S1' is functionalized with methylene blue to enhance the current. The RecJf exonuclease promotes the formation of the electrochemical strategy. The Fe3O4 component, with its magnet properties, enables a rapid separation of solids and liquids without the need for instrumentation. The sensor exhibits a linear range for AFB1 ranging from 1 ng to 10 μg. The regression equation is I(nA) = 446.8 × logc+2085 (where I and c represent the peak current and AFB1 concentration, respectively). The correlation coefficient is 0.9508, and the detection limit is 3.447 nM. The relative standard deviation of AFB1 in peanut oil ranges from 4.80% to 6.80%. These results demonstrate that the sensor has high sensitivity, stability, repeatability, and specificity for AFB1 detection.
Collapse
Affiliation(s)
- Hua Zheng
- Institute of Life Sciences, Guangxi Medical University, Nanning 530021, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Liuzhou People’s Hospital afliated to Guangxi Medical University, Liuzhou 545006, Guangxi, China
| | - Zheng Huang
- Guangxi Nanning First People's Hospital, Nanning 530016, China
| | - Ziwei Zou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xiaolong Ma
- Institute of Life Sciences, Guangxi Medical University, Nanning 530021, China
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Jinfeng Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Mei Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning 530021, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Zhang L, Jin H, Zhang Z, Bai T, Wei M, He B, Zhao R, Suo Z. Triple-helix molecular-switch-actuated rolling circle amplification and catalytic hairpin assembly multistage signal amplified fluorescent aptasensor for detection of aflatoxin B1. Anal Chim Acta 2024; 1323:343072. [PMID: 39182973 DOI: 10.1016/j.aca.2024.343072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Mycotoxins, a class of secondary metabolites produced by molds, are widely distributed in nature and are very common in food contamination. Aflatoxin B1 (AFB1) is a highly stable natural mycotoxin, and many agricultural products are easily contaminated by AFB1, it is important to establish a sensitive and efficient AFB1 detection method for food safety. The fluorescence aptamer sensor has shown satisfactory performance in AFB1 detection, but most of the fluorescence aptasensors are not sensitive enough, so improving the sensitivity of the aptasensor becomes the focus of this work. RESULTS Herein, an innovative fluorescent aptasensor for AFB1 detection which is based on catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) driven by triple helix molecular switch (THMS) is proposed. A functional single-strand with an AFB1 aptamer, here called an APF, is first designed to lock onto the signal transduction probe (STP), which separates from THMS when target AFB1 is present. Subsequently, STP initiates the RCA reaction along the circular probe, syntheses macro-molecular mass products through repeated triggering sequences, triggers the CHA reaction to produce a large number of H1-H2 structures, which causes FAM to move away from BHQ-1 and recover its fluorescence signal. The fluorescence signal from FAM at 520 nm was collected as the signal output of aptasensor in this work. With high amplification efficiency of RCA and CHA of the fluorescence sensor, resulting in a low LOD value of 2.95 pg mL-1(S/N = 3). SIGNIFICANCE The successful establishment of the sensor designed in this work shows that the cascade amplification reaction is perfectly applied in the fluorescent aptamer sensor, and the signal amplification through the reaction between DNA strands is a simple and efficient method. In addition, it's also important to remember that the aptasensor can detect other targets only by changing the sequence of the aptamer, without redesigning other DNA sequences in the reaction system.
Collapse
Affiliation(s)
- Liuyi Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhen Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Tian Bai
- Henan Province Food Inspection Research Institute, Zhengzhou, 450008, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Ding X, Ahmad W, Rong Y, Wu J, Ouyang Q, Chen Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem 2024; 442:138417. [PMID: 38237297 DOI: 10.1016/j.foodchem.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Trace detection of ofloxacin (OFL) with high sensitivity, reliability, and visual clarity is challenging. To address this, a novel dual-modal aptasensor with fluorescence-colorimetric capabilities was designed that exploit the target-induced release of 3,3',5,5'-tetramethylbenzidine (TMB) molecules from aptamer-gated mesoporous silica nanoparticles (MSNs), the oxidase-like activity of iron alkoxide (IA) nanozyme, and the fluorescence attributes of core-shell upconversion nanoparticles. Therefore, the study reports a dual mode detection, with a fluorescence detection range for OFL spanning from 0.1 μg/kg to 1000 μg/kg (and a detection limit of 0.048 μg/kg). Additionally, the colorimetric method offered a linear detection range of 0.3 μg/kg to 1000 μg/kg, with a detection limit of 0.165 μg/kg. The proposed biosensor had been successfully applied to the determination of OFL content in real samples with satisfactory recoveries (78.24-96.14 %).
Collapse
Affiliation(s)
- Xiaodan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
8
|
Shayesteh OH, Derakhshandeh K, Ranjbar A, Mahjub R, Farmany A. Development of a label-free, sensitive gold nanoparticles-poly(adenine) aptasensing platform for colorimetric determination of aflatoxin B1 in corn. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682263 DOI: 10.1039/d4ay00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.
Collapse
Affiliation(s)
- Omid Heydari Shayesteh
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Maulana MY, Raissa R, Nurrudin A, Andreani AS, Angelina M, Septiani NLW, Yuliarto B, Jenie SNA. An ultra-sensitive SARS-CoV-2 antigen optical biosensor based on angiotensin converting enzyme 2 (ACE-2) functionalized magnetic-fluorescent silica nanoparticles. NANOTECHNOLOGY 2024; 35:205702. [PMID: 38330490 DOI: 10.1088/1361-6528/ad27aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
This work reports on the design and synthesis of an angiotensin-converting enzyme 2 (ACE-2) functionalized magnetic fluorescent silica nanoparticles (Fe-FSNP) as a biosensing platform to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Iron oxide (Fe3O4) nanoparticles were synthesized via ultrasonic-assisted coprecipitation and then coated with fluorescent silica nanoparticles (FSNP) through thesol-gelmethod forming the Fe-FSNP samples. Silica obtained from local geothermal powerplant was used in this work and Rhodamine B was chosen as the incorporated fluorescent dye, hence this reports for the first time ACE-2 was immobilized on the natural silica surface. The Fe-FSNP nanoparticle consists of a 18-25 nm magnetic core and a silica shell with a thickness of 30 nm as confirmed from the transmission electron microscopy image. Successful surface functionalization of the Fe-FSNP with ACE-2 as bioreceptor was conducted through hydrosylilation reaction and confirmed through the Fourier transform infrared spectroscopy. The detection of SARS-Cov-2 antigen by Fe-FSNP/ACE2 was measured through the change in its maximum fluorescence intensity at 588 nm where fluorescence- quenching had occurred. The biosensing platform showed a rapid response at 30 min with a linear range of 10-6to 10-2μg ml-1. The magnetic-fluorescent properties of the nanoparticle enables an ultra-sensitive detection of SARS-Cov-2 antigen with the limit of detection as low as 2 fg ml-1.
Collapse
Affiliation(s)
- Muhammad Yovinanda Maulana
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Raissa Raissa
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Chemistry, Universitas Pertamina, Jakarta 12200, Indonesia
| | - Ahmad Nurrudin
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agustina Sus Andreani
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Marissa Angelina
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center (CSC), Bogor, West Java 16911, Indonesia
| | - Ni Luh Wulan Septiani
- Research Centre for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Brian Yuliarto
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| |
Collapse
|
10
|
Rios TB, Maximiano MR, Feitosa GC, Malmsten M, Franco OL. Nanosensors for animal infectious disease detection. SENSING AND BIO-SENSING RESEARCH 2024; 43:100622. [DOI: 10.1016/j.sbsr.2024.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
11
|
Li Y, Cai M, Zhang W, Liu Y, Yuan X, Han N, Li J, Jin S, Ding C. Cas12a-based direct visualization of nanoparticle-stabilized fluorescence signal for multiplex detection of DNA methylation biomarkers. Biosens Bioelectron 2024; 244:115810. [PMID: 37924654 DOI: 10.1016/j.bios.2023.115810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The CRISPR-Cas12a RNA-guided complexes hold immense promise for nucleic acid detection. However, limitations arise from their specificity in detecting off-targets and the stability of the signal molecules. Here, we have developed a platform that integrates multiplex amplification and nanomolecular-reporting signals, allowing us to detect various clinically relevant nucleic acid targets with enhanced stability, sensitivity, and visual interpretation. Through the electrostatic co-assembly of the Oligo reporter with oppositely charged nanoparticles, we observed a significant enhancement in its stability in low-pollution environments, reaching up to a threefold increase compared to the original version. Additionally, the fluorescence efficiency was expanded by three orders of magnitude, broadening the detection range considerably. Utilizing a multiplex strategy, this assay can accomplish simultaneous detection of multiple targets and single-point indication detection of nine specific targets. This significant advancement heightened the sensitivity of disease screening and improved the accuracy of diagnosing disease-related changes. We tested this assay in a colorectal cancer model, demonstrating that it can identify DNA methylation features at the aM-level within 40-60 min. Validation using clinical samples yielded consistent results with qPCR and bisulfite sequencing, affirming the assay's reliability and potential for clinical applications.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miaomiao Cai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoqing Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Na Han
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Li
- Yinchuan Hospital of Traditional Chinese Medicine, Ningxia, 750001, China
| | - Shengnan Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunming Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
12
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
13
|
Ullah N, Noureen B, Zahra QUA, Aziz T, Shehzadi S, Alfaifif MY, Elbehairif SEI, Thebo KH, Ullah A, Iqbal H. A Novel Fluorescent Aptasensor Based on Mesoporous Silica Nanoparticles
for Selective and Sensitive Detection of Saxitoxin in Shellfish. CURR ANAL CHEM 2023; 19:677-684. [DOI: 10.2174/0115734110269897231020065609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 07/25/2024]
Abstract
Background:
Saxitoxin (STX) stands as one of the most potent marine biotoxins, exhibiting
high lethality. Despite its severity, current treatments remain ineffective, and existing detection
techniques are limited due to ethical concerns and technical constraints.
Methods:
Herein, an innovative approach was constructed for STX detection, utilizing mesoporous
silica nanoparticles (MSN) as a foundation. This innovative, easy, and label-free aptamer (Apt)-
sensor was fabricated. Apts were employed as molecular identification probes and "gated molecules,"
while rhodamine 6G was encapsulated within particles to serve as a signal probe. In a lack of
STX, Apts immobilized on an MSN surface kept a "gate" closed, preventing signal probe leakage.
Upon the presence of STX, the "gate" opened, allowing a particular binding of Apts to STX and a
subsequent release of a signal probe.
Results:
Experimental results demonstrated a positive correlation between fluorescence intensity and
concentrations of STX within a range of 1 to 80 nM, with an exceptional limit of detection of 0.12
nM. Furthermore, the selectivity and stability of a biosensor were rigorously evaluated, validating its
reliability.
Conclusion:
This newly developed sensing strategy exhibits remarkable performance in STX detection.
Its success holds significant promise for advancing portable STX detection equipment, thereby
addressing a pressing need for efficient and ethical detection methods in combating marine biotoxin
contamination.
Collapse
Affiliation(s)
- Najeeb Ullah
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering, Shaanxi
Normal University, Xi’an, 710119, China
- Department of Chemical Engineering, University of Tennessee, Chattanooga,
Tennessee 37403, United States
| | - Beenish Noureen
- Department of Biophysics, Institute of Medical Engineering, School of Basic Medical
Science, Xi’an Jiaotong University Health Center, Xi’an, Shaanxi, 710061, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center,
University of Science and Technology of China (USTC), Hefei, China
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics,
Jiangsu University, Zhenjiang, 212013, China
| | - Somia Shehzadi
- University Institute of Medical Laboratory Technology, The University
of Lahore, Lahore, 54000, Pakistan
| | - Mohammad Y. Alfaifif
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004,
Saudi Arabia
| | | | | | - Asmat Ullah
- Clinical Research Institute, Zhejiang
Provincial People’s Hospital, Hangzhou, 310014, Zhejiang, China
| | - Haroon Iqbal
- Zhejiang Cancer Hospital,
Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
14
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
15
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
16
|
Guo Z, Gao L, Yin L, Arslan M, El-Seedi HR, Zou X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem 2023; 403:134384. [DOI: 10.1016/j.foodchem.2022.134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
|
17
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
18
|
Wu Z, Sun DW, Pu H, Wei Q. A dual signal-on biosensor based on dual-gated locked mesoporous silica nanoparticles for the detection of Aflatoxin B1. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Subodh, Ravina, Priyanka, Narang J, Mohan H. Biosensors for phytohormone Abscisic acid and its role in humans: A review. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
20
|
Guo Z, Gao L, Jiang S, El-Seedi HR, El-Garawani IM, Zou X. Sensitive determination of Patulin by aptamer functionalized magnetic surface enhanced Raman spectroscopy (SERS) sensor. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Jia T, Luo Y, Sheng X, Fang J, Merlin D, Iyer SS. Palladium encapsulated mesoporous silica nanoparticles for the rapid detection of analytes. Analyst 2023; 148:2064-2072. [PMID: 36988972 DOI: 10.1039/d3an00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We designed a simple, inexpensive, and user-friendly assay using mesoporous silica nanoparticles to detect analytes.
Collapse
Affiliation(s)
- Tianwei Jia
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Ying Luo
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Xiaolin Sheng
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Jieqiong Fang
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Didier Merlin
- 790 Petit Science Center, Institute of Biomedical Science, Georgia State University and Atlanta Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
22
|
Tang J, Zheng X, Jiang S, Cao M, Wang S, Zhou Z, Nie X, Fang Y, Le T. Dual fluorescent aptasensor for simultanous and quantitative detection of sulfadimethoxine and oxytetracycin residues in animal-derived foods tissues based on mesoporous silica. Front Nutr 2022; 9:1077893. [PMID: 36618689 PMCID: PMC9811004 DOI: 10.3389/fnut.2022.1077893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Herein, we developed a dual fluorescent aptasensor based on mesoporous silica to simultaneously detect sulfadimethoxine (SDM) and oxytetracycline (OTC) in animal-derived foods. We immobilized two types of aptamers modified with FAM and CY5 on the silica surface by base complementary pairing reaction with the cDNA modified with a carboxyl group and finally formed the aptasensor detection platform. Under optimal conditions, the detection range of the aptasensor for SDM and OTC was 3-150 ng/mL (R 2 = 0.9831) and 5-220 ng/mL (R 2 = 0.9884), respectively. The limits of detection for SDM and OTC were 2.2 and 1.23 ng/mL, respectively. The limits of quantification for SDM and OTC were 7.3 and 4.1 ng/mL, respectively. Additionally, the aptasensor was used to analyze spiked samples. The average recovery rates ranged from 91.75 to 114.65% for SDM and 89.66 to 108.94% for OTC, and all coefficients of variation were below 15%. Finally, the performance and practicability of our aptasensor were confirmed by HPLC, demonstrating good consistency. In summary, this study was the first to use the mesoporous silica-mediated fluorescence aptasensor for simultaneous detection of SDM and OTC, offering a new possibility to analyze other antibiotics, biotoxins, and biomolecules.
Collapse
Affiliation(s)
- Jiaming Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuang Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Mingdong Cao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Sixian Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhaoyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yu Fang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
23
|
Hou X, Song Y, Zhou H, Guo L, Li G, Tao Q. Chitosan coated fluorescent mesoporous silica for the sensitive and selective detection of H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121661. [PMID: 35926287 DOI: 10.1016/j.saa.2022.121661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A novel turn-on fluorescent sensor for hydrogen peroxide (H2O2) was prepared from chitosan (CS) coating mesoporous silica nanoparticles (MSNs) loaded with 1-(4-Aminophenyl)-1,2,2-triphenylethene (TPE-NH2) and silver nanoparticles (AgNCs). The surface of MSNs was coated by CS as the gatekeeper and the template for loading of AgNCs. Because of the surface plasmon-enhanced energy transfer (SPEET), AgNCs effectively quenched the fluorescence emission of nanoparticles. In the presence of H2O2, AgNCs can be oxidized to Ag+, resulting in the recovery of fluorescence. This fluorescent sensor was characterized with respect to its chemical composition, morphological features and optical properties by means of FTIR, XRD, TGA, SEM, TEM, XPS, UV-Vis and fluorescence spectroscopy. The MSN/TPE-CS@Ag nanoparticles showed good sensitivity and selectivity for H2O2 even with various interfering ions and agents. Under optimized conditions, the detection limit for H2O2 was 0.64 μM in the rage of 1-300 μM. The feasibility of the practical application of this probe was confirmed by accurate quantitative of H2O2 in practical samples.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Hengquan Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
24
|
Nanda Kumar D, Freidman I, Sionov E, Shtenberg G. Porous Silicon Fabry-Pérot Interferometer Designed for Sensitive Detection of Aflatoxin B1 in Field Crops. Food Chem 2022; 405:134980. [DOI: 10.1016/j.foodchem.2022.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
25
|
Zhang M, Guo X. Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
27
|
Yue Q, Li X, Fang J, Li M, Zhang J, Zhao G, Cao W, Wei Q. Oxygen Free Radical Scavenger PtPd@PDA as a Dual-Mode Quencher of Electrochemiluminescence Immunosensor for the Detection of AFB1. Anal Chem 2022; 94:11476-11482. [PMID: 35950288 DOI: 10.1021/acs.analchem.2c00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, a dual-mode quenched electrochemiluminescence (ECL) immunosensor based on PtPd@PDA was proposed. Among them, nitrogen-doped hydrazide conjugated carbon dots (NHCDs), as an ECL emitter and a donor of resonance energy transfer, were quenched by PtPd@PDA (receptor). At the same time, PDA in PtPd@PDA, as an oxygen radical scavenger, completed the further quenching of the ECL signal by consuming O2•- generated by the decomposition of co-reactant H2O2. The dual-mode quenching from the above two channels was achieved. In addition, compared with the traditional carbon quantum dots, NHCDs as ECL emitters had lower excitation potential. Moreover, a large number of amino groups provided by aminated MWCNTs could capture more antibodies while connecting with NHCDs. Under the optimum experimental conditions, taking aflatoxin B1 as the target, the proposed sensor with good specificity, stability, and reproducibility had good linearity when the concentration of AFB1 was 0.01-100 ng/mL, with the detection limit of 2.63 pg/mL (S/N = 3). This strategy provided more possibilities for the application of dopamine metal nanocomposites in electrochemiluminescence analysis and offered a new approach to detect AFB1.
Collapse
Affiliation(s)
- Qi Yue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuan Li
- Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266000, P. R. China
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Min Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingjing Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
28
|
Tang Y, Zhang D, Lu Y, Liu S, Zhang J, Pu Y, Wei W. Fluorescence imaging of FEN1 activity in living cells based on controlled-release of fluorescence probe from mesoporous silica nanoparticles. Biosens Bioelectron 2022; 214:114529. [DOI: 10.1016/j.bios.2022.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
29
|
A novel fluorescent aptasensor based on mesoporous silica nanoparticles for the selective detection of sulfadiazine in edible tissue. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
|
31
|
Zhang Y, Luo D, Zhou SK, Yang L, Yao WF, Cheng FF, Zhu JJ, Zhang L. Analytical and biomedical applications of nanomaterials in Chinese herbal medicines research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Xiong Y, Li W, Wen Q, Xu D, Ren J, Lin Q. Aptamer-engineered nanomaterials to aid in mycotoxin determination. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Vijitvarasan P, Cheunkar S, Oaew S. A point-of-use lateral flow aptasensor for naked-eye detection of aflatoxin B1. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
35
|
Chen Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:86-96. [PMID: 34897320 DOI: 10.1039/d1ay01714d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 pollution is one of the most critical issues of food safety and has been categorized as a group I carcinogen by the International Agency for Research on Cancer. Aflatoxin B1 exists in various foods and feedstuff products and can be produced and contaminate food products in all processes, including growth, harvest, storage, or processing. Therefore, it is of great value for detecting and on-site monitoring aflatoxin B1. Aptamers are short single-stranded DNA or RNA obtained from the nucleic acid molecular library through SELEX. With advantages of high specificity, large affinity, and easy modification, aptasensors have become popular in a wide range of promising applications. This review focuses on recent advances on fluorescent aptamer sensors for the detection of aflatoxin B1, including their design strategies, working mechanisms, and applications to on-site detection. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Climent E, Rurack K. Streifenschnelltest mit ppt‐Empfindlichkeit durch Kombination von Elektrochemilumineszenz‐Detektion mit Aptamer‐gesteuerter Indikatorfreisetzung aus mesoporösen Nanopartikeln. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Estela Climent
- Fachbereich Chemische und Optische Sensorik Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| | - Knut Rurack
- Fachbereich Chemische und Optische Sensorik Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11 12489 Berlin Deutschland
| |
Collapse
|
37
|
Climent E, Rurack K. Combining Electrochemiluminescence Detection with Aptamer-Gated Indicator Releasing Mesoporous Nanoparticles Enables ppt Sensitivity for Strip-Based Rapid Tests. Angew Chem Int Ed Engl 2021; 60:26287-26297. [PMID: 34595818 PMCID: PMC9298832 DOI: 10.1002/anie.202110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Indexed: 12/11/2022]
Abstract
The combination of electrogenerated chemiluminescence (ECL) and aptamer-gated indicator delivering (gAID) magnetic mesoporous silica nanoparticles embedded into glass fibre paper functionalised with poly(ethyleneglycol) and N-(3-triethoxysilylpropyl)diethanolamine allowed the development of a rapid test that detects penicillin directly in diluted milk down to 50±9 ppt in <5 min. Covalent attachment of the aptamer "cap" to the silica scaffold enabled pore closure through non-covalent electrostatic interactions with surface amino groups, while binding of penicillin led to a folding-up of the aptamer thus releasing the ECL reporter Ru(bpy)32+ previously loaded into the material and letting it be detected after lateral flow by a smartphone camera upon electrochemical excitation with a screen printed electrode inserted into a 3D-printed holder. The approach is simple, generic and presents advantages with respect to sensitivity, measurement uncertainty and robustness compared with conventional fluorescence or electrochemical detection, especially for point-of-need analyses of challenging matrices and analytes at ultra-trace levels.
Collapse
Affiliation(s)
- Estela Climent
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| |
Collapse
|
38
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
39
|
Suo Z, Liang X, Jin H, He B, Wei M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB 1. Anal Bioanal Chem 2021; 413:7587-7595. [PMID: 34748033 DOI: 10.1007/s00216-021-03723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023]
Abstract
The simultaneous detection of multiple mycotoxins is of great significance for food safety and human health. Herein, a simple, convenient and accurate fluorescent aptasensor was designed based on the dual cross DNA nanostructure for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1), in which the stable dual cross DNA nanostructure provided an assay platform using the fluorescent dye-labeled aptamers as a sensing element. Owing to the higher affinity of aptamers for their target, the aptamer probes were released from the assay platform in the presence of OTA and AFB1, resulting in an enhanced fluorescence at 570 nm and 670 nm. This "signal-on" fluorescent aptasensor assay system can effectively avoid background signals and minimize false positive. Furthermore, the designed method can realize the simultaneous detection of OTA and AFB1 during the whole experiment. The limits of detection (LOD) were as low as 0.0058 ng/mL for OTA, ranging from 0.01 to 50 ng/mL and 0.046 ng/mL for AFB1, ranging from 0.05 to 100 ng/mL. The proposed fluorescent aptasensor exhibits excellent performance in practical application and provides a novel approach for the simultaneous detection of multiple mycotoxins by simply changing the aptamers. A "signal-on" fluorescent aptasensor assay system based on the stable dual cross DNA nanostructure was successfully developed for simultaneous detection of OTA and AFB1 with lower detection limits in wider linear ranges.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Xiujun Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
40
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
A Novel Colorimetric Nano Aptasensor for Ultrasensitive Detection of Aflatoxin B1 Based on the Exonuclease III-Assisted Signal Amplification Approach. Foods 2021; 10:foods10112568. [PMID: 34828849 PMCID: PMC8625208 DOI: 10.3390/foods10112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The detection of aflatoxin B1 (AFB1) has recently garnered much attention on the issue of food safety. In this study, a novel and sensitive aptasensor towards AFB1 is proposed using an Exonuclease III (Exo III)-integrated signal amplification strategy. This reported sensing strategy is regulated by aptamer-functionalized nanobeads that can target AFB1; furthermore, complementary DNA (cDNA) strands can lock the immobilized aptamer strands, preventing the signal amplification function of Exo III in the absence of AFB1. The presence of AFB1 triggers the displacement of cDNA, which will then activate the Exo III-integrated signal amplification procedure, resulting in the generation of a guanine (G)-rich sequence to form a G-4/hemin DNAzyme, which can catalyze the substrate of ABTS to produce a green color. Using this method, a practical detection limit of 0.0032 ng/mL and a dynamic range of detection from 0.0032 to 50 ng/mL were obtained. Additionally, the practical application of the established sensing method for AFB1 in complex matrices was demonstrated through recovery experiments. The recovery rate and relative standard deviations (RSD) in three kinds of cereal samples ranged from 93.83% to 111.58%, and 0.82% to 7.20%, respectively, which were comparable with or better than previously reported methods.
Collapse
|
42
|
Huang Q, Lin X, Chen D, Tong QX. Carbon Dots/α-Fe 2O 3-Fe 3O 4 nanocomposite: Efficient synthesis and application as a novel electrochemical aptasensor for the ultrasensitive determination of aflatoxin B1. Food Chem 2021; 373:131415. [PMID: 34710699 DOI: 10.1016/j.foodchem.2021.131415] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Developing an effective method for the detection of aflatoxin B1 (AFB1) remains an arduous task due to the high toxicity of AFB1 to a health concern. In this study, a sensitive and reliable electrochemical aptasensor based on carbon dots/α-Fe2O3-Fe3O4 nanocomposite (CDs/α-Fe2O3-Fe3O4) is constructed for the determination of AFB1. The CDs have good electrical conductivity and large specific surface areas to improve the aptasensor's sensitivity. The α-Fe2O3-Fe3O4 can not only improve the catalytic performance of the aptasensor but also have magnetism, which can realize the recovery of CDs/α-Fe2O3-Fe3O4 to avoid material waste and environmental pollution. This electrochemical aptasensor can achieve a good linear (0.001-100.0 nM) and excellent detection limit (0.5 pM) for the determination of AFB1. In addition, the aptasensor was also applied to determine AFB1 in beer, rice, and peanuts, all results were in good agreement with HPLC, indicating that the electrochemical aptasensor has a broad application prospect.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, School of Medical and Information Engineering, Gannan Medical University, Jiangxi 341000, PR China; Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China
| | - Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, School of Medical and Information Engineering, Gannan Medical University, Jiangxi 341000, PR China; Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China
| | - Dejian Chen
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian 361021, PR China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China.
| |
Collapse
|
43
|
Liu J, Zhou Y, Dong H, Li Q, Zhang Y, Xu M. Disposable Electrochemical Aptasensor for Ultrasensitive Determination of Aflatoxin B1 Using Copper Nanoparticles as Probes. ELECTROANAL 2021. [DOI: 10.1002/elan.202100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiaxiang Liu
- College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 20090 P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Qiaoxia Li
- College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 20090 P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 P. R. China
| |
Collapse
|
44
|
Manhas PK, Quintela IA, Wu VCH. Enhanced Detection of Major Pathogens and Toxins in Poultry and Livestock With Zoonotic Risks Using Nanomaterials-Based Diagnostics. Front Vet Sci 2021; 8:673718. [PMID: 34164454 PMCID: PMC8215196 DOI: 10.3389/fvets.2021.673718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has gained prominence over the recent years in multiple research and application fields, including infectious diseases in healthcare, agriculture, and veterinary science. It remains an attractive and viable option for preventing, diagnosing, and treating diseases in animals and humans. The apparent efficiency of nanomaterials is due to their unique physicochemical properties and biocompatibility. With the persistence of pathogens and toxins in the poultry and livestock industries, rapid diagnostic tools are of utmost importance. Though there are many promising nanomaterials-based diagnostic tests specific to animal disease-causing agents, many have not achieved balanced sensitivity, specificity, reproducibility, and cost-effectiveness. This mini-review explores several types of nanomaterials, which provided enhancement on the sensitivity and specificity of recently reported diagnostic tools related to animal diseases. Recommendations are also provided to facilitate more targeted animal populations into the development of future diagnostic tools specifically for emerging and re-emerging animal diseases posing zoonotic risks.
Collapse
Affiliation(s)
- Priya K Manhas
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
45
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
46
|
Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143129. [PMID: 33121792 DOI: 10.1016/j.scitotenv.2020.143129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Aminoglycoside antibiotics (AAs) have been extensively applied in medical field and animal husbandry owing to desirable broad-spectrum antibacterial activity. Excessive AAs residues in the environment can be accumulated in human body through food chain and cause detrimental effect on human health. The establishment of highly specific, simple and sensitive detection methods for monitoring AAs residues is highly in demand. Aptasensor using aptamer as the biological recognition element is the efficient and promising sensing method for detection of AAs. In this review, we have made a summary of specific aptamers sequences against AAs. Subsequently, we provide a systematical and comprehensive overview of modern techniques in aptasensors for detection of AAs according to optical aptasensors as well as electrochemical aptasensors and further summarize their advantages and disadvantages to compare their applications. In addition, we present an overview of practical applications of aptasensors in sample detection of AAs. Moreover, the current challenges and future trends in this field are also included to reveal a promising perspective for developing novel aptasensors for AAs.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China.
| |
Collapse
|
47
|
Aptasensors for mycotoxin detection: A review. Anal Biochem 2021; 644:114156. [PMID: 33716125 DOI: 10.1016/j.ab.2021.114156] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Mycotoxins are toxic compounds produced by fungi, which represent a risk to the food and feed supply chain, having an impact on health and economies. A high percentage of feed samples have been reported to be contaminated with more than one type of mycotoxin. Systematic, cost-effective and simple tools for testing are critical to achieve a rapid and accurate screening of food and feed quality. In this review, we describe the various aptamers that have been selected against mycotoxins and their incorporation into optical and electrochemical aptasensors, outlining the strategies exploited, highlighting the advantages and disadvantages of each approach. The review also discusses the different materials used and the immobilization methods employed, with the aim of achieving the highest sensitivity and selectivity.
Collapse
|
48
|
Chen H, Han F, Mao B, Gu J, Li Y, Zhao C, Wang Y, Wang D, Zhan J. Rapid and label free detection of aflatoxin B 1 in alcoholic beverages with a microfluid fiber device. APPLIED OPTICS 2021; 60:1924-1929. [PMID: 33690282 DOI: 10.1364/ao.414332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
A rapid and label free aflatoxin B1 (AFB1) microfluid sensor was proposed and tested. The device was fabricated with hollow-core photonics crystal fiber infiltrated with the AFB1 solution. The autofluorescence emitting from the AFB1 molecules was detected. The sensor length was optimized. The AFB1 concentration was tested with a 4 cm long sensor. The best limit of detection was achieved as low as 1.34 ng/ml, which meets the test requirement of the national standards for AFB1 in food. The effectiveness of this sensor being applied in beer solution was also verified to be a little more sensitive than in aqueous solution. Compared with traditional AFB1 detection methods, the proposed single-ended device perfectly satisfies the demand of process control in alcoholic beverages manufacture.
Collapse
|
49
|
Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904022. [PMID: 31643131 DOI: 10.1002/smll.201904022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Indexed: 05/04/2023]
Abstract
Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
50
|
Chen T, Jiang Y, Wang C, Cai Z, Chen H, Zhu J, Tao P, Wu M. The pH-triggered drug release and simultaneous carrier decomposition of effervescent SiO 2-drug-Na 2CO 3 composite nanoparticles: to improve the antitumor activity of hydrophobic drugs. RSC Adv 2021; 11:5335-5347. [PMID: 35423073 PMCID: PMC8694630 DOI: 10.1039/d0ra07896d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
To achieve a better release effect of hydrophobic drugs and spontaneous nanocarrier disintegration by dissolution as well as the CO2 production of Na2CO3 further, improving the therapeutic effect of hydrophobic drugs, and thereby avoiding the accumulation of the nanocarrier in vivo to produce organ toxicity, effervescent SiO2–drug–Na2CO3 composite nanoparticles (ESNs) were prepared in this study using a tetraethyl orthosilicate hydrolysis method. Sodium carbonate was used as the effervescent disintegrant to respond to the acidic microenvironment of the tumor. The properties of ESNs were assessed and TEM images were taken to verify the self-disintegration characteristics of nanocarrier materials. The in vitro anticancer efficacy of ESNs was evaluated in human breast cancer MCF-7 cells. ESNs loaded with hydrophobic drugs were successfully constructed, and showed high entrapment efficiency and drug loading. The nanocarrier successfully achieved self-disintegration in a PBS environment of pH value at 5.0, and showed excellent antitumor effect in vitro. ESNs can effectively load hydrophobic drugs and achieve self-disintegration, while avoiding toxicity from the accumulation of the nanocarrier. These results suggest that ESNs are a promising drug delivery system capable of maximizing the anticancer therapeutic efficacy and minimizing the systemic toxicity. Effervescent SiO2–drug–Na2CO3 composite nanoparticles were prepared in this study using a tetraethyl orthosilicate hydrolysis method to achieve a better release effect of hydrophobic drugs and spontaneous nanocarrier disintegration by dissolution.![]()
Collapse
Affiliation(s)
- Tianyu Chen
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Yichun Jiang
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Changmao Wang
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Zhengxue Cai
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Hui Chen
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Junliang Zhu
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Pinrun Tao
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| | - Min Wu
- School of Pharmacy, Chengdu Medical College No. 783, Xindu Avenue, Xindu District Chengdu Sichuan Province P. R. China +86-28-6230-8653
| |
Collapse
|