1
|
Huo H, Zhang H, Liu H, Ma J, Zhang Q, Zhao Y, Zheng J, Tu P, Song Y, Li J. In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry. Chin Med 2025; 20:26. [PMID: 40016837 PMCID: PMC11866864 DOI: 10.1186/s13020-025-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.
Collapse
Affiliation(s)
- Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Hang Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Huiting Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jiale Ma
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| |
Collapse
|
2
|
Lu Y, Qin Q, Pan J, Deng S, Wang S, Li Q, Cao J. Advanced applications of two-dimensional liquid chromatography in quantitative analysis of natural products. J Chromatogr A 2025; 1743:465662. [PMID: 39808906 DOI: 10.1016/j.chroma.2025.465662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Two-dimensional liquid chromatography (2D-LC) separation systems, based on two independent columns with different separation mechanisms, have exhibited strong resolving power for complex samples. Therefore, in recent years, the exceptional resolution of 2D-LC has significantly advanced the chemical separation of natural products, such as complex herbs, greatly facilitating their qualitative and quantitative analysis. This paper aims to review the latest strategies of 2D-LC in the quantitative analysis of complex chemical compositions in natural products. To this end, the major advantages and disadvantages of various column couplings in 2D-LC are discussed based on specific studies, along with suggested solutions to address the identified drawbacks. Moreover, the applications of different detectors combined with the latest chemometrics in 2D-LC for accurate quantitative analysis of natural products are reviewed and discussed.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qiubing Qin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Juan Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shuqi Deng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
3
|
Zhang S, Chen J, Gao F, Su W, Li T, Wang Y. Foodomics as a Tool for Evaluating Food Authenticity and Safety from Field to Table: A Review. Foods 2024; 14:15. [PMID: 39796305 PMCID: PMC11719641 DOI: 10.3390/foods14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
The globalization of the food industry chain and the increasing complexity of the food supply chain present significant challenges for food authenticity and raw material processing. Food authenticity identification now extends beyond mere adulteration recognition to include quality evaluation, label compliance, traceability determination, and other quality-related aspects. Consequently, the development of high-throughput, accurate, and rapid analytical techniques is essential to meet these diversified needs. Foodomics, an innovative technology emerging from advancements in food science, enables both a qualitative judgment and a quantitative analysis of food authenticity and safety. This review also addresses crucial aspects of fully processing food, such as verifying the origin, processing techniques, label authenticity, and detecting adulterants, by summarizing the omics technologies of proteomics, lipidomics, flavoromics, metabolomics, genomics, and their analytical methodologies, recent developments, and limitations. Additionally, we analyze the advantages and application prospects of multi-omics strategies. This review offers a comprehensive perspective on the food chain, food safety, and food processing from field to table through omics approaches, thereby promoting the stable and sustained development of the food industry.
Collapse
Affiliation(s)
- Shuchen Zhang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Jianan Chen
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Fanhui Gao
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Yuxiao Wang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Wang S, Zou Y, Zhang M, Xu X, Wang H, Jiang M, Hu Y, Cheng H, Li X, Guo D, Yang W. Online Comprehensive Two-Dimensional Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolic Profiling and Comparison Enabling the Characterization of 1146 Ginsenosides and More Explicit Differentiation of Ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24866-24878. [PMID: 39439127 DOI: 10.1021/acs.jafc.4c06793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work was designed for the in-depth characterization and holistic comparison of up to 12 ginseng varieties, which can benefit the development of functional foods and ensure their authenticity in the food industry. An online comprehensive two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry (2D-LC/QTOF-MS) approach was established by configurating the XCharge C18 and HSS Cyano columns. Under the optimal conditions, we characterized a total of 1146 ginsenosides (including 876 potentially new compounds) from 12 ginseng varieties by reference to an in-house library of 573 known ginsenosides and 70 reference compounds. The online 2D-LC/QTOF-MS-based untargeted metabolomics workflows were developed, by which 126 potential ginsenoside markers were unveiled and utilized to establish the key identification points for each ginseng species. Compared with the conventional liquid chromatography/mass spectrometry metabolomics, our multidimensional chromatography approach performed better in discriminating multiple ginseng varieties. This work demonstrates a potent and practical methodology to identify easily confused functional plants.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Huizhen Cheng
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
5
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2024; 43:936-976. [PMID: 37056215 DOI: 10.1002/mas.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
6
|
Li Z, Liu B. Two-dimensional high performance liquid chromatography purification of underivatized urinary prednisone and prednisolone for compound-specific stable carbon isotope analysis. Analyst 2024. [PMID: 39101749 DOI: 10.1039/d4an00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS) confirmation procedure for prednisone (PS) and prednisolone (PSL) is still a great challenge for the doping control laboratory due to the many structurally similar steroids present in urinary matrices. This study aims to establish an innovative online two-dimensional high performance liquid chromatography (2D-HPLC) purification method for measuring the carbon isotope ratios (CIRs) and achieving the identification of the synthetic forms of these two endogenous anabolic androgenic steroids (EAASs). Initially, the one-dimensional chromatographic column was used to separate and purify endogenous reference compounds (ERCs), and the co-elution fluids containing PS and PSL were switched to a two-dimensional chromatographic column for further purification through an online transfer system. Then the purified compounds were analyzed using GC/C/IRMS after sample pretreatments. The results showed that the minimum detection concentration of PS and PSL reached 30 ng mL-1, and no isotope fractionation occurred during the entire collection and preparation process. This method has been validated with the WADA technical document and showed good sensitivity and selectivity, demonstrating its practical applicability for urine samples in doping control laboratories.
Collapse
Affiliation(s)
- Zhongquan Li
- Research Institute for Doping Control, Shanghai University of Sport, 900 Jiangwancheng Road, Shanghai 200438, China.
| | - Bing Liu
- Research Institute for Doping Control, Shanghai University of Sport, 900 Jiangwancheng Road, Shanghai 200438, China.
| |
Collapse
|
7
|
Caruso SJ, Acquaviva A, Müller JL, Castells CB. Simultaneous analysis of cannabinoids and terpenes in Cannabis sativa inflorescence using full comprehensive two-dimensional liquid chromatography coupled to smart active modulation. J Chromatogr A 2024; 1720:464810. [PMID: 38471299 DOI: 10.1016/j.chroma.2024.464810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Nowadays, the higher peak capacity achievable by comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of vegetal samples is well-recognized. In addition, numerous compounds may be present in very different amounts. Cannabinoids and terpenes represent the main components of Cannabis sativa inflorescence samples, whose quantities are relevant for many application purposes. The analyses of both families are performed by different methods, at least two different separation methodologies, mainly according to their chemical characteristics and concentration levels. In this work, concentration differences and sample complexity issues were addressed using an LC×LC method that incorporates an optimized modulation strategy, namely smart active modulation, for the simultaneous analysis of cannabinoids and terpenes. The system was built by interposing an active flow splitter pump between both dimensions. This set up aimed to exploit the known advantages of LC×LC. In addition, here we proposed to use the splitter pump for online control over the splitting ratio to facilitate the selective dilution of different eluted fractions containing compounds with highly different concentrations. This work represents the first application and demonstration of smart active modulation (SAM) in LC×LC to simultaneously determine analytes with significant differences in concentration levels present in complex samples. The proposed method was tested with eight different strains, from which fingerprints were taken, and numerous cannabinoids and terpenes were identified in these samples. With this strategy, between 49 and 54 peaks were obtained in the LC×LC chromatograms corresponding to different strains. THCA-A was the main component in six strains, while CBDA was the main component in the other two strains. The main terpenes found were myrcene (in five strains), limonene (in two strains), and humulene (in one strain). Additionally, numerous other cannabinoids and terpenes were identified in these samples, providing valuable compositional information for growers, as well as medical and recreational users. The SAM strategy here proposed is simple and it can be extended to other complex matrices.
Collapse
Affiliation(s)
- Sebastián J Caruso
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina
| | - Agustín Acquaviva
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina.
| | | | - Cecilia B Castells
- LIDMA (Laboratorio de Investigación y Desarrollo de Métodos Analíticos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 49 y 115, (1900), La Plata, Argentina.
| |
Collapse
|
8
|
Liu M, Zhao Y, Li X, Zhang T, Xu X, Jiang M, Tian X, Zhang P, Wu H, Gao X, Li X, Wang H, Yang W. Two Multidimensional Chromatography/High-Resolution Mass Spectrometry Approaches Enabling the In-Depth Metabolite Characterization Simultaneously from Three Glycyrrhiza Species: Method Development, Comparison, and Integration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1339-1353. [PMID: 38183657 DOI: 10.1021/acs.jafc.3c07496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.
Collapse
Affiliation(s)
- Meiyu Liu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaohang Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Tingting Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoxuan Tian
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Peng Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Honghua Wu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiumei Gao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
9
|
Gong X, Chen W, Zhang K, Li T, Song Q. Serially coupled column liquid chromatography: An alternative separation tool. J Chromatogr A 2023; 1706:464278. [PMID: 37572536 DOI: 10.1016/j.chroma.2023.464278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Despite the rapid development of liquid chromatography (LC) in recent decades, it remains a challenge to achieve the desired chromatographic separation of complex matrices using a single column. Multi-column LC techniques, particularly serially coupled column LC (SCC-LC), have emerged as a promising solution to overcome this challenge. While more attention has been focused on heart-cutting or comprehensive two-dimensional LC, reviews specifically focusing on SCC-LC, which offers advantages in terms of precision and facile instrumentation, are scarce. Here, our concerns are devoted to the progress summary regarding the instrumentation and applications of SCC-LC. Emphasis is placed on column selection aiming to enlarge peak capacity, selectivity, or both through the optimization of combination types (e.g. RPLC-RPLC, -RPLC-HILIC, and achiral-chiral LC), connection devices (e.g. zero dead volume connector, tubing, and T-type connector), elution program (i.e. isocratic or gradient) and detectors (e.g. mass spectrometer, ultraviolet detector, and fluorescence detector). The application of SCC-LC in pharmaceutical, biological, environmental, and food fields is also reviewed, and future perspectives and potential directions for SCC-LC are discussed. We envision that the review can give meaningful information to analytical scientists when facing heavy chromatographic separation tasks for complicated matrices.
Collapse
Affiliation(s)
- Xingcheng Gong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ke Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingqing Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
10
|
Oliveira Lago L, Swit P, Moura da Silva M, Telles Biasoto Marques A, Welke J, Montero L, Herrero M. Evolution of anthocyanin content during grape ripening and characterization of the phenolic profile of the resulting wine by comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023; 1704:464131. [PMID: 37315446 DOI: 10.1016/j.chroma.2023.464131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The typical phenolic profile in grapes is characterized by its complexity both in terms of number of diverse chemical structures and their variation during ripening. Besides, the specific phenolic composition of grapes directly influences the presence of those components in the resulting wine. In this contribution, a new method based on the application of comprehensive two-dimensional liquid chromatography coupled to a diode array detector and tandem mass spectrometry has been developed to obtain the typical phenolic profile of Malbec grapes cultivated in Brazil. Moreover, the method has been demonstrated to be useful to study how the phenolic composition in grapes evolved during a 10-week ripening period. Main detected compounds in grapes and in the wine derived from them were anthocyanins, although a good number of polymeric flavan-3-ols were also tentatively identified, among other compounds. Results show how the amount of anthocyanins present in grapes was increased during ripening up to 5-6 weeks and then decreased towards week 9. The two-dimensional approach applied was demonstrated to be useful for the characterization of the complex phenolic profile of these samples, involving more than 40 different structures and has the potential to be further applied to the study of this important fraction is different grapes and wines systematically.
Collapse
Affiliation(s)
- Laura Oliveira Lago
- Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), Zip Code 91501970, Porto Alegre, Brazil
| | - Pawel Swit
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Mairon Moura da Silva
- Department of Agronomy, Academic Unit of Garanhuns, Federal Rural University of Pernambuco (UAG-UFRPE), Garanhuns, PE, Brazil
| | | | - Juliane Welke
- Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), Zip Code 91501970, Porto Alegre, Brazil
| | - Lidia Montero
- Laboratory of Foodomics, Institute of Food Science Research - CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research - CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2023. [PMID: 37010157 DOI: 10.1002/mas.21843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analysed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimisation of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
12
|
Montero L, Ayala-Cabrera JF, Bristy FF, Schmitz OJ. Multi- 2D LC × LC as a Novel and Powerful Implement for the Maximum Separation of Complex Samples. Anal Chem 2023; 95:3398-3405. [PMID: 36721361 DOI: 10.1021/acs.analchem.2c04870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Achieving complete information about the chemical composition of complex samples requires the use of multianalytical platforms able to maximize the acquisition of high-quality data for unequivocal identification. However, this process requires long analysis times and several instruments. Food analysis is one of the analytical fields where the analysis of very complex samples has a huge impact. One of these complex samples is vermouth, a fortified wine based on the maceration of a large number of herbs, fruits, barks, seeds, and leaves. The application of conventional or even advanced analytical techniques like comprehensive two-dimensional (2D) liquid chromatography (LC × LC) does not provide enough separation power to resolve the complete profile of this sample. In this work, a novel 2DLC strategy called multi-2D LC × LC is developed. This new setup consists of the use of two different columns with different separation properties in the second dimension (2D) that can be selected during the LC × LC analysis accordingly to the chemical nature of the compounds eluted from the first dimension (1D). The vermouth sample was analyzed using a 1D-PFP and a combination of HILIC (from 0 to 30 min) and C18 (from 30 to the end) columns in the 2D. This setup increased both the peak capacity and the orthogonality of the analysis in comparison to the use of only one of the columns in the 2D. Multi-2D LC × LC is presented as an integrated 2DLC tool that maximizes the separation capacity for very complex samples.
Collapse
Affiliation(s)
- Lidia Montero
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany
| | - Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany
| | - Fariha F Bristy
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany.,Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141Essen, Germany
| |
Collapse
|
13
|
A multidimensional chromatography/high-resolution mass spectrometry approach for the in-depth metabolites characterization of two Astragalus species. J Chromatogr A 2023; 1688:463718. [PMID: 36565652 DOI: 10.1016/j.chroma.2022.463718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
To address the chemical complexity is indispensable in a number of research fields. Herb metabolome is typically composed by more than one class of structure analogs produced via different biosynthetic pathways. Multidimensional chromatography (MDC), due to the greatly enhanced separation space, offers the potential solution to comprehensive characterization of herbal metabolites. Here, we presented a strategy, by integrating MDC and quadrupole time-of-flight mass spectrometry (QTOF-MS), to accomplish the in-depth herbal metabolites characterization. Using the metabolome of two Astragalus species (A. membranaceus var. mongholicus,AMM; A. membranaceus, AM) as the case, an off-line three-dimensional liquid chromatography (3D-LC) system was established: hydrophilic interaction chromatography using an XAmide column as the first dimension (1D) for fractionating the total extract, on-line reversed-phase × reversed-phase liquid chromatography separately configuring a CSH Fluoro-Phenyl column and a Cosmocore C18 column as the second dimension (2D) and the third dimension (3D) of chromatography to enable the explicit separation of three well fractionated samples. Moreover, the negative-mode collision-induced dissociation by QTOF-MS under the optimized condition could provide diversified fragments that were useful for the structural elucidation of AMM and AM. An in-house library (composed by 247 known compounds) and comparison with 43 reference standards were utilized to assist more reliable characterization. We could characterize 513 compounds from two Astragalus species (344 from AMM and 323 from AM), including 236 flavonoids, 150 triterpenoids, 18 organic acids, and 109 others. Conclusively, the established MDC approach gained excellent performance favoring the analogs-oriented in-depth characterization of herbal metabolites, but received uncompromising analytical efficiency.
Collapse
|
14
|
An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Guillarme D, Rouvière F, Heinisch S. Theoretical and practical comparison of RPLC and RPLC × RPLC: how to consider dilution effects and sensitivity in addition to separation power? Anal Bioanal Chem 2022; 415:2357-2369. [PMID: 36323885 DOI: 10.1007/s00216-022-04385-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
The objective of this work was to provide an unbiased comparison of one-dimensional reversed-phase liquid chromatography (1D-RPLC) and comprehensive two-dimensional RPLC (RPLC × RPLC), through calculations and experimental verifications. For this purpose, various quality descriptors were evaluated, including peak capacity, analysis time, dilution factor, number of runs in the second dimension, and injection volume. The same strategy was applied to small pharmaceuticals and peptides. Whatever the analysis time between 30 and 200 min, short columns of only 30 × 2.1 mm packed with sub-2-µm particles should be selected in both dimensions of the 2D-LC setup to obtain the best compromise in terms of peak capacity and sensitivity. The peak capacity in RPLC × RPLC vs. RPLC was significantly improved for analysis times beyond 5 min. However, extra-column volume located after the second-dimension column was found to be particularly critical for peptides, and up to 50% lower peak capacity was observed with MS vs. UV detection. Contrary to common belief, higher dilution is not always observed in RPLC × RPLC. With adequate analytical conditions, better sensitivity (in theory fivefold and in practice three- to fivefold) could be achieved in RPLC × RPLC compared to 1D-RPLC, regardless of the analysis time.
Collapse
|
16
|
Pérez-Cova M, Platikanov S, Tauler R, Jaumot J. Quantification strategies for two-dimensional liquid chromatography datasets using regions of interest and multivariate curve resolution approaches. Talanta 2022; 247:123586. [PMID: 35671578 DOI: 10.1016/j.talanta.2022.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
In this work, three chemometrics-based approaches are compared for quantification purposes when using two-dimensional liquid chromatography (LC×LC-MS), taking as a study case the quantification of amino acids in commercial drug mixtures. Although the approaches have been already used for one-dimensional gas or liquid chromatography, the main novelty of this work is the demonstration of their applicability to LC×LC-MS datasets. Besides, steps such as peak alignment and modelling, commonly applied in this type of data analysis, are not required with the approaches proposed here. In a first step, regions of interest (ROI) strategy is used for the spectral compression of the LC×LC-MS datasets. Then the first strategy consists of building a calibration curve from the areas obtained in this ROI compression step. Alternatively, the ROI intensity matrices can be used as input for a second analysis step employing the multivariate curve resolution alternating least squares (MCR-ALS) method. The main benefit of MCR-ALS is the resolution of elution and spectral profiles for each of the analytes in the mixture, even in the case of strong coelutions and high signal overlapping. Classical MCR-ALS based calibration curve from the peak areas resolved only applying non-negativity constraints (second strategy) is compared to the results obtained when an area correlation constraint is imposed during the ALS optimization (third strategy). All in all, similar quantification results were achieved by the three approaches but, especially in prediction studies, the more accurate quantification is obtained when the calibration curve is built from the peak areas obtained with MCR-ALS when the area correlation constraint is imposed.
Collapse
Affiliation(s)
- Miriam Pérez-Cova
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 647, E08028, Barcelona, Spain.
| | - Stefan Platikanov
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034 Barcelona, Spain
| |
Collapse
|
17
|
Aly AA, Górecki T. Green comprehensive two-dimensional liquid chromatography (LC × LC) for the analysis of phenolic compounds in grape juices and wine. Anal Bioanal Chem 2022; 415:2383-2398. [PMID: 35922675 DOI: 10.1007/s00216-022-04241-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Grape juices and wines are rich in numerous groups of polyphenolic compounds which require a dedicated separation technique for such complex samples. LC × LC is considered the best technique for the analysis of such samples as it can achieve better resolution and higher peak capacity compared to 1D LC. The ever-growing demand for protecting the environment necessitates reducing or eliminating hazardous solvents to improve the environmental friendliness of analytical procedures. In this study, propylene carbonate was used as an eco-friendly mobile phase component in comprehensive two-dimensional liquid chromatography to analyze phenolic compounds in grape juices and a dealcoholized wine sample. Novel green RPLC × RPLC-DAD and RPLC × RPLC-MS methods were developed for the first time to identify phenolic compounds in five samples (two red grape juice samples, two white grape juice samples, and one dealcoholized wine sample). Four different RPLC × RPLC systems were developed; three systems were connected to a diode array detector (RPLC × RPLC-DAD), while the fourth system was connected to DAD and MS detectors (RPLC × RPLC-DAD-ESI-MS). Solvent X (propylene carbonate:ethanol, 60:40) was adopted as a green organic modifier in the first dimension (1D) and methanol in the second dimension (2D). The practical peak capacity and the surface coverage were calculated as metrics to measure the separation performance of all proposed systems. The orthogonality values for the setups ranged from 0.64 to 0.92 when calculated by the convex hull method, and from 0.54 to 0.80 when calculated by the asterisk equations method. The practical peak capacity production rate ranged from 14.58 to 22.52 peaks/min. The results revealed that the phenolic compounds were separated efficiently with good coverage of the 2D separation space and high peak capacity. A total of 70 phenolic compounds were detected based on MS data and information from the literature.
Collapse
Affiliation(s)
- Alshymaa A Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.,Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Minia Governorate, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
18
|
Nurani LH, Riswanto FDO, Windarsih A, Edityaningrum CA, Guntarti A, Rohman A. Use of chromatographic-based techniques and chemometrics for halal authentication of food products: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laela Hayu Nurani
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | | | - Any Guntarti
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
20
|
Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS. Anal Bioanal Chem 2022; 414:5445-5459. [PMID: 35301579 PMCID: PMC9242925 DOI: 10.1007/s00216-022-03925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Cannabis is an ancient plant that has been used for therapeutic and recreational purposes. Nowadays, industrial hemp, a variety with low concentration of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and high concentration of non-psychoactive cannabinoids, is getting more and more interest in the food, pharmaceutical, and cosmetic industry. However, cannabis not only contains cannabinoids as bioactive components but also other metabolites like terpenes and phenolic compounds, and the content of these interesting secondary metabolites greatly differs with the genetic variety of the plant. Due to the huge complexity of composition of the cannabis matrix, in this work, a comprehensive two-dimensional liquid chromatography (LC × LC) method has been developed as a very power separation technique coupling a pentafluorophenyl (PFP) and a C18 in the first and second dimensions. Two industrial hemp strains (cookie and gelato) were analyzed to determine the difference in their content of cannabinoids and phenolic compounds. To do this, a new demodulation process was applied for the first time to transform 2D raw data into 1D data which allowed carrying out the chemometric analysis needed to determine the statistical differences between the hemp strains. The cookie strain presented a total of 41 cannabinoid markers, while the gelato strain presented more representative phenolic compounds, in total 24 phenolic compounds were detected as potential markers of this sample. These differences in the chemical composition could determine the industrial destiny of the different hemp strains.
Collapse
|
21
|
Wu X, Hou J, Zhang Z, Chen L, Ni H, Qian Y, Wu W, Long H, Zhang L, Li F, Lei M, Huang Y, Guo D, Wu W. In-depth exploration and comparison of chemical constituents from two Lilium species through offline two-dimensional liquid chromatography combined with multimode acquisition of high-resolution mass spectrometry. J Chromatogr A 2022; 1670:462980. [DOI: 10.1016/j.chroma.2022.462980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
|
22
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: Analytical Opportunities and Challenges. Anal Chem 2022; 94:366-381. [PMID: 34813295 PMCID: PMC8756396 DOI: 10.1021/acs.analchem.1c04678] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| |
Collapse
|
23
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
24
|
Moussa A, Lauer T, Stoll D, Desmet G, Broeckhoven K. Modelling of analyte profiles and band broadening generated by interface loops used in multi-dimensional liquid chromatography. J Chromatogr A 2021; 1659:462578. [PMID: 34700181 DOI: 10.1016/j.chroma.2021.462578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Currently, the shape and variance of the analyte band entering the second dimension column when injected from an open loop interface in two-dimensional liquid chromatography is not fully understood. This is however important as it is connected to several other variables encountered when developing 2D-LC methods, including the first dimension flow rate, the sampling (modulation) time and the loop volume. Both numerical simulation methods and experimental measurements were used to understand and quantify the dispersion occurring in open tubular interface loops. Variables included are the analyte diffusion coefficient (Dmol), loop filling and emptying rates (Ffill & Fempty), loop inner diameter or radius (Rloop) and loop volume (Vloop). For a straight loop capillary, we find that the concentration profile (as measured at the loop outlet) depends only on a single dimensionless parameter tempty*=VloopFempty·DmolRloop2 and the ratio of the filling and emptying flow rates Fempty/Ffill. A model depending only on these two parameters was developed to predict of the peak variance resulting from the filling and emptying of a straight capillary operated in the first-in-last-out (FILO) modulation mode. Comparison of the concentration profiles and the corresponding variances obtained by either numerical simulation or experiments with straight capillaries shows the results generally agree very well. When the straight capillary is replaced by a tightly coiled loop, significantly smaller (20-40%) peak variances are observed compared to straight capillaries. The magnitude of these decreases is not predicted as well by simulations, however the simulation results are still useful in this case, because they represent an upper boundary (i.e., worst-case scenario) on the predicted variance.
Collapse
Affiliation(s)
- Ali Moussa
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Thomas Lauer
- Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN, 56082, USA
| | - Dwight Stoll
- Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN, 56082, USA
| | - Gert Desmet
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
25
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
26
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Cifuentes A. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period February 2019-February 2021. Electrophoresis 2021; 43:37-56. [PMID: 34473359 DOI: 10.1002/elps.202100201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
This work presents a revision of the main applications of capillary electromigration methods in food analysis and Foodomics. Articles that were published during the period February 2019-February 2021 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods. Namely, CE methods have been applied to analyze amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, secondary metabolites, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. The last results on the use of CE for monitoring food interactions and food processing, including recent microchips developments and new applications of CE in Foodomics, are discussed too. The new procedures of CE to investigate food quality and safety, nutritional value, storage and bioactivity are also included in the present review work.
Collapse
|
27
|
Smith CE, Parnell LD, Lai CQ, Rush JE, Freeman LM. Investigation of diets associated with dilated cardiomyopathy in dogs using foodomics analysis. Sci Rep 2021; 11:15881. [PMID: 34354102 PMCID: PMC8342479 DOI: 10.1038/s41598-021-94464-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease of the heart muscle that affects both humans and dogs. Certain canine diets have been associated with DCM, but the diet-disease link is unexplained, and novel methods are needed to elucidate mechanisms. We conducted metabolomic profiling of 9 diets associated with canine DCM, containing ≥ 3 pulses, potatoes, or sweet potatoes as main ingredients, and in the top 16 dog diet brands most frequently associated with canine DCM cases reported to the FDA (3P/FDA diets), and 9 non-3P/FDA diets. We identified 88 named biochemical compounds that were higher in 3P/FDA diets and 23 named compounds that were lower in 3P/FDA diets. Amino acids, amino acid-derived compounds, and xenobiotics/plant compounds were the largest categories of biochemicals that were higher in 3P/FDA diets. Random forest analyses identified the top 30 compounds that distinguished the two diet groups with 100% predictive accuracy. Four diet ingredients distinguished the two diet groups (peas, lentils, chicken/turkey, and rice). Of these ingredients, peas showed the greatest association with higher concentrations of compounds in 3P/FDA diets. Moreover, the current foodomics analyses highlight relationships between diet and DCM in dogs that can identify possible etiologies for understanding diet-disease relationships in dogs and humans.
Collapse
Affiliation(s)
- Caren E Smith
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - John E Rush
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Lisa M Freeman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
28
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2021; 413:3041-3054. [PMID: 33713146 PMCID: PMC8044062 DOI: 10.1007/s00216-021-03239-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (-85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
29
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
30
|
Shang Z, Xu L, Xiao Y, Du W, An R, Ye M, Qiao X. A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: Chemical analysis of a multi-herb Chinese medicine formula as a case study. J Chromatogr A 2021; 1642:462021. [PMID: 33714771 DOI: 10.1016/j.chroma.2021.462021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Although ultraviolet detector or mass spectrometer could be coupled with two-dimensional liquid chromatography (2DLC) to analyze complex constituents, full detection and identification of the compounds are difficult. Suffering from biased UV detection and insufficient MS data interpretation, a number of minor compounds are neglected though they are separated. In this study, we report a global chemical profiling strategy using comprehensive 2DLC coupled with dual-MS platforms, including Orbitrap-MS and QqQ-MS. It was exemplified by an 11-herb Chinese medicine formula Xiaoer-Feire-Kechuan (XFK). Firstly, constituents in XFK were separated on a CSH C18 × Phenyl-Hexyl 2DLC system with a practical peak capacity of 990.5 and an orthogonality of 90.3%. Secondly, untargeted mass spectral data was collected using dd-MS2 scan on an Orbitrap-MS. In total 542 peaks were detected, which was 4 times of that detected by 2DLC/UV (131 peaks). A total of 108 compounds were tentatively identified. Thirdly, targeted mass spectral data was collected for 8 characteristic substructures using neutral loss and precursor ion (NL/PRE) scan on a QqQ-MS. Extracted ion chromatogram was used to recognize minor constituents. An additional of 151 compounds were detected. Our study indicated that comprehensive 2DLC coupled with dd-MS2 and NL/PRE-MS is a powerful technique for the global profiling of multi-component systems.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yao Xiao
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Wei Du
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Rong An
- Agilent Technologies, 3 Wangjing North Road, Beijing 100102, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
31
|
|
32
|
Kaplitz AS, Mostafa ME, Calvez SA, Edwards JL, Grinias JP. Two‐dimensional separation techniques using supercritical fluid chromatography. J Sep Sci 2020; 44:426-437. [DOI: 10.1002/jssc.202000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Samantha A. Calvez
- Department of Chemistry & Biochemistry Rowan University Glassboro NJ USA
| | | | - James P. Grinias
- Department of Chemistry & Biochemistry Rowan University Glassboro NJ USA
| |
Collapse
|
33
|
Grutzmann Arcari S, Arena K, Kolling J, Rocha P, Dugo P, Mondello L, Cacciola F. Polyphenolic compounds with biological activity in guabiroba fruits (
Campomanesia xanthocarpa
Berg.) by comprehensive two‐dimensional liquid chromatography. Electrophoresis 2020; 41:1784-1792. [DOI: 10.1002/elps.202000170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Stefany Grutzmann Arcari
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Katia Arena
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Jeferson Kolling
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Paloma Rocha
- Campus São Miguel do Oeste São Miguel do Oeste Federal Institute of Santa Catarina Santa Catarina Brazil
| | - Paola Dugo
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Luigi Mondello
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Department of Sciences and Technologies for Human and Environment University Campus Bio‐Medico of Rome Rome Italy
- BeSep s.r.l., c/o Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Francesco Cacciola
- Department of Biomedical Dental, Morphological and Functional Imaging Sciences University of Messina Messina Italy
| |
Collapse
|
34
|
Acevedo MSM, Gama MR, Batista AD, Rocha FR. Two-dimensional separation by sequential injection chromatography. J Chromatogr A 2020; 1626:461365. [DOI: 10.1016/j.chroma.2020.461365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
|
35
|
Moussa A, Lauer T, Stoll D, Desmet G, Broeckhoven K. Numerical and experimental investigation of analyte breakthrough from sampling loops used for multi-dimensional liquid chromatography. J Chromatogr A 2020; 1626:461283. [DOI: 10.1016/j.chroma.2020.461283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
|
36
|
Lazzari E, Arena K, Caramão EB, Dugo P, Mondello L, Herrero M. Comprehensive two-dimensional liquid chromatography-based quali-quantitative screening of aqueous phases from pyrolysis bio-oils. Electrophoresis 2020; 42:58-67. [PMID: 32628775 DOI: 10.1002/elps.202000119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
Abstract
Pyrolysis processes are an alternative to minimize the environmental problem associated to agrifood industrial wastes. The main product resulting from these processes is a high-value liquid product, called bio-oil. Recently, the use of comprehensive two-dimensional liquid chromatography (LC × LC) has been demonstrated as a useful tool to improve the characterization of the water-soluble phases of bio-oils, considering their complexity and high water content. However, the precise composition of bio-oils from different agrifood byproducts is still unknown. In the present study, the qualitative and quantitative screening of eight aqueous phases from different biomasses, not yet reported in the literature, using LC × LC is presented. The two-dimensional approach was based on the use of two reverse phase separations. An amide column in the first dimension together with a C18 column in the second dimension were employed. Thanks to the use of diode array and mass spectrometry detection, 28 compounds were identified and quantified in the aqueous phase samples with good figures of merit. Samples showed a distinct quali-quantitative composition and a great predominance of compounds belonging to aldehydes, ketones and phenols, most of them with high polarity.
Collapse
Affiliation(s)
- Eliane Lazzari
- Institute of Chemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Katia Arena
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Elina B Caramão
- Institute of Chemistry, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Industrial Biotechnology, Tiradentes University, Sergipe, Brazil
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico, Rome, Italy.,Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico, Rome, Italy.,Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
37
|
Jia W, Dong X, Shi L, Chu X. Discrimination of Milk from Different Animal Species by a Foodomics Approach Based on High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6638-6645. [PMID: 32469210 DOI: 10.1021/acs.jafc.0c02222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An untargeted foodomics strategy based on ultra-high-performance liquid chromatography coupled with quadrupole orbitrap and chemometrics was used to observe subtle differences in the molecule profiles of raw milk from different animal species (cow milk, goat milk, and water buffalo milk), which could prevent the fraud activities in the dairy industry. In data-dependent acquisition (DIA), spectra for all precursor ions facilitated the comprehensive identification of unknown compounds in untargeted foodomics. Chemometrics techniques were used to analyze large amounts of complex data to observe the separation of different sample groups and find the potential markers of sample groups. Finally, five markers were putatively identified by the potential marker identification workflow. The quantification results showed that β-carotene was found only in cow milk; ergocalciferol was found only in water buffalo milk; and the contents of nonanoic acid, decanoic acid, and octanoic acid were higher in goat milk than those in cow milk and water buffalo milk. The quantification of β-carotene enabled the detection of cow milk with a sensitivity threshold of 5% (w/w). This work provided an efficient approach for the discrimination of cow milk, goat milk, and water buffalo milk. Compared with proteomics and genomics, the simpler analytical procedures, lower costs, and higher speed of this work make it of great benefit for routine operations.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuyang Dong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| |
Collapse
|
38
|
Li S, Tian Y, Jiang P, Lin Y, Liu X, Yang H. Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit Rev Food Sci Nutr 2020; 61:1448-1469. [PMID: 32441547 DOI: 10.1080/10408398.2020.1761287] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As one of the omics fields, metabolomics has unique advantages in facilitating the understanding of physiological and pathological activities in biology, physiology, pathology, and food science. In this review, based on developments in analytical chemistry tools, cheminformatics, and bioinformatics methods, we highlight the current applications of metabolomics in food safety, food authenticity and quality, and food traceability. Additionally, the combined use of metabolomics with other omics techniques for "foodomics" is comprehensively described. Finally, the latest developments and advances, practical challenges and limitations, and requirements related to the application of metabolomics are critically discussed, providing new insight into the application of metabolomics in food analysis.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yufeng Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ying Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Arena K, Cacciola F, Rigano F, Dugo P, Mondello L. Evaluation of matrix effect in one‐dimensional and comprehensive two‐dimensional liquid chromatography for the determination of the phenolic fraction in extra virgin olive oils. J Sep Sci 2020; 43:1781-1789. [DOI: 10.1002/jssc.202000169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Katia Arena
- Department of ChemicalBiologicalPharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Francesco Cacciola
- Department of BiomedicalDentalMorphological and Functional Imaging SciencesUniversity of Messina Messina Italy
| | - Francesca Rigano
- Department of ChemicalBiologicalPharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Paola Dugo
- Department of ChemicalBiologicalPharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
- Chromaleont s.r.l.c/o Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Luigi Mondello
- Department of ChemicalBiologicalPharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
- Chromaleont s.r.l.c/o Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
- Department of Sciences and Technologies for Human and EnvironmentUniversity Campus Bio‐Medico of Rome Rome Italy
- BeSep s.r.l.c/o Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| |
Collapse
|