1
|
He J, Wu M, Wang X, Xu R, Zhang S, Zhao X. Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples. Polymers (Basel) 2025; 17:160. [PMID: 39861233 PMCID: PMC11768265 DOI: 10.3390/polym17020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized. The adsorption conditions, including adsorption solvent, solvent pH, and detection time, were studied in detailed. Based on its excellent selectivity and fast response, a photonic crystal sensor detection method for the quantitative analysis of sulfamethazine was established, which achieved good linearity, ranging from 10-4 mg/L to 10 mg/L, a limit detection of 1.16 μg/L, and spiked recoveries of 80.56% to 103.59%, with a relative standard deviation (RSD) <6.41%. More importantly, the detection process could be completed within 3 min. This method provides an alternative for the rapid screening of sulfamethazine in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolei Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Xin J, Meng Z, Qiao Y, Zhang Y. Molecularly imprinted 2D photonic crystal hydrogel sensor for sodium dichloroisocyanurate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7366-7371. [PMID: 39344510 DOI: 10.1039/d4ay01393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sodium dichloroisocyanurate (SDIC) is an efficient, safe and convenient halogen disinfectant that is widely used for hospital, tableware and swimming pool disinfection. In order to ensure its effective use and safety, especially in clinical settings, effective identification methods are necessary. The effective chlorine content is one of the quality standards for chlorine-containing disinfectants, but its complex experimental operation as well as poor specificity and portability limit its application. In contrast, testing based on molecularly imprinted photonic crystal sensors provides excellent performance. Therefore, it is of great significance to establish a new and simple SDIC recognition method. We prepared a novel molecularly imprinted two-dimensional (2D) photonic crystal hydrogel (MIPH) for sensitive and label-free recognition of SDIC. The response performance of the resultant MIPH sensor was determined by monitoring particle spacing changes in the polystyrene (PS) 2D photonic crystals embedded in the hydrogel. Particle spacing changes were recorded by measuring changes in the diameter of the Debye diffraction ring of the MIPH sensor. As the concentration of SDIC in solution increased from 1 × 10-2 to 1.0 mmol L-1, the diameter of the Debye diffraction ring increased by 6 mm, and the corresponding photonic crystal particle spacing decreased by 56 nm. The particle spacing changes in the MIPH sensor showed a linear relationship with the SDIC concentration in the range of 1 × 10-2-1.0 mmol L-1, and the limit of detection (S/N = 3) was found to be 3 × 10-3 mmol L-1. The constructed hydrogel sensor was successfully used to detect SDIC in sodium dichloroisocyanurate disinfectant powder, demonstrating recoveries of 96-100% and RSD of 7.2-7.6%. Our molecularly imprinted SDIC photonic crystal hydrogel provides a universal strategy for designing sensors for other clinical disinfectants.
Collapse
Affiliation(s)
- Jianwei Xin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- College of Medicine, Yan'an University, Yan'an 716000, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy, Bejing Institute of Technology, Jiaxing, 314000, China.
| | - Yu Qiao
- School of Art and Design, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuqi Zhang
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| |
Collapse
|
3
|
Zhou J, Li D, Nan J, Zhang N, Zhao H, Xia H, Chang Z, Sai N. Beetle-inspired AuNPs semi-embedded colloidal crystal chips for the highly sensitive and colored detection of chloramphenicol in foods. Food Chem 2024; 454:139650. [PMID: 38788478 DOI: 10.1016/j.foodchem.2024.139650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Inspired by the desert beetle, a novel biomimetic chip was developed to detect chloramphenicol (CP). The chip was characterized by a periodic array in which hydrophobic Au nanoparticles (AuNPs) were semi-embedded on hydrophilic polymethyl methacrylate (PMMA) spheres. Among them, the AuNPs exhibited both a localized surface plasmon resonance effect to amplify the reflected signal and a synergistic effect with PMMA spheres to create a significant hydrophilic-hydrophobic interface, which facilitated the enrichment of target CP molecules and improved sensitivity. After optimization, the chip showed direct, ultrasensitive (as low as 0.2 ng/mL), fast (5 min), and selective detection of CP with a wide concentration range extending from 0.2 ng/mL to 1000 ng/mL. During detection, color changes of the chip were observed by naked eyes without any color display equipment. The recovery of CP was between 94.65 % and 108.70 % in chicken and milk samples.
Collapse
Affiliation(s)
- Jiayue Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Dongmei Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Nan
- Clinical Laboratory, Tianjin Xiqing Hospital, 300380 Tianjin, People's Republic of China
| | - Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hongwei Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhuxin Chang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Na Sai
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Recent advances in photonic crystal-based chemical sensors. Chem Commun (Camb) 2024; 60:9177-9193. [PMID: 39099372 DOI: 10.1039/d4cc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The increasing attention towards environmental quality, food safety, public security and medical diagnosis demands high requirements and standards for chemical sensors with merits of rapid response, high precision, long-term stability and reusability. In this case, a prominent innovation in sensory materials holds potential to realize new generations of chemical sensor technologies. Specifically, photonic crystals (PCs) as structured dielectric materials with spatially periodic ordered arrangements offer unique advantages in improving the sensing performance of chemical sensors. Consequently, the promising properties of PCs promote research on their implementation as an integral part of chemical sensors. This review highlights the integration of PCs into chemical sensors including a range of building blocks for the construction of PCs with versatile opal or opal inverse structural architectures and a delicate choice of surface functionality with associated sensing interfaces for target recognition and signal transduction. Subsequently, based on their synthesis and functionality, we focus on introducing the sensing principles of recent advances in PC-based chemical sensors, such as reflection spectra-based sensing, visual colorimetric sensing, fluorescence sensing, surface-enhanced Raman spectroscopy (SERS)-based sensing and other integrated sensing. Finally, the future prospects and challenges are discussed for the further improvement of PC-based chemical sensors.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
5
|
Tian R, Sun J, Ye Y, Lu X, Wang W, Sun X. Ultrasensitive Aptasensor for α-Amatoxin Detection Based on the DNA Tetrahedral Nanostructure Triggering Rolling Circle Amplification and Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10046-10054. [PMID: 38648503 DOI: 10.1021/acs.jafc.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Poisonous mushrooms containing α-amatoxin can be lethal, making it imperative to develop a rapid and sensitive detection method for α-amatoxin. Utilizing the DNA tetrahedral structure as its foundation, the aptamer allows controlled density and orientation. Consequently, we designed aptamer tetrahedral functionalized magnetic beads that specifically target α-amanitin to release complementary DNA (C-DNA) strands. These strands were then employed as primers to initiate rolling circle amplification (RCA) with fluorescent dyes. The combination of SYBR Green I detection probes facilitated the amplification of the detection signal, enhancing the detection sensitivity of the aptasensor. The calculated detection limit was determined to be 3 ng/mL, a magnitude lower than that of other aptasensors by 2 orders of magnitude. The aptasensor integrates the advantages of high sensitivity and specificity, offering a simple and reliable rapid detection method for α-amanitin analysis.
Collapse
Affiliation(s)
- Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Xin Lu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
6
|
Gao J, Peng Z, Song Y, Zhang J, Han Q. Colorimetric assay for α-amanitin based on inhibition of carbon dots/AuNPs nanoenzyme activity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1390-1398. [PMID: 38353054 DOI: 10.1039/d3ay02065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Accidental ingestion of poisonous mushrooms leading to poisoning is a global issue. The most important and lethal toxin causing mushroom poisoning is α-amanitin, with a lethal dose of about 0.1 mg kg-1. Rapid detection of wild mushrooms before consumption or rapid identification of toxins after poisoning can effectively reduce the occurrence of fatalities. This study established a method for detecting α-amanitin using carbon dots/AuNPs nanoenzymes (D-Glu-CDs/AuNPs) with robust peroxidase-like activity. This nanoenzyme was prepared employing glucose carbon dots and sodium citrate as reducing and stabilizing agents, respectively. It could oxidize the substrate TMB (tetramethylbenzidine) to produce blue o-TMB. When α-amanitin specifically bound to the active site of the nanoenzyme, a resultant decrease was observed in catalytic activity and the absorbance value at 652 nm. The regression equation Y = -0.06083x + 0.9643, with an R2 value of 0.996, was obtained. The limit of detection was determined to be 48.03 ng mL-1, and the recoveries in urine ranged from 91.2% to 97.6%. This method enabled the visualization of α-amanitin, and the whole detection process was completed within 20 min. The approach holds promise for the quantitative and qualitative determination of α-amanitin in urine samples.
Collapse
Affiliation(s)
- Jiale Gao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Zhongmei Peng
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
7
|
Mohamed AG, Elsayed HA, Sabra W, Aly AH, Mehaney A. A combination of angle insensitive stopband/passband filters based on one-dimensional hyperbolic metamaterial quasiperiodic photonic crystals. RSC Adv 2023; 13:18238-18252. [PMID: 37346952 PMCID: PMC10280045 DOI: 10.1039/d3ra02303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
In the present work, we demonstrate the transmittance properties of one dimensional (1D) quasi-periodic photonic crystals that contain a superconductor material and a hyperbolic metamaterial (HMM). A HMM layer is engineered by the subwavelength undoped and doped Indium Arsenide (InAs) multilayers. Many resonance peaks with angle stability are obtained from the proposed Fibonacci sequence structure using the transfer matrix method (TMM). In this case, the Fibonacci sequence serves as the mainstay in the design of our structure. The permittivity of the utilized superconductor and the HMM are also analyzed, respectively. The numerical findings showed that the incident angle has no effect on the wavelength positions of the resonance peaks. The effects of many parameters such as the superconductor material thickness, Fibonacci sequence number, and sequence type are discussed for the proposed structure. At various operating temperatures and superconductor material types, the transmittance characteristics of the proposed structure were also examined. The designed structure can serve as a combination of pass/stop band filters for near-infrared (NIR) applications.
Collapse
Affiliation(s)
- Aliaa G Mohamed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| | - Hussein A Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| | - Walied Sabra
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| | - Ahmed Mehaney
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| |
Collapse
|
8
|
Dai S, Li Q, Li W, Zhang Y, Dou M, Xu R, Wang T, Lu X, Wang F, Li J. Advances in functional photonic crystal materials for the analysis of chemical hazards in food. Compr Rev Food Sci Food Saf 2022; 21:4900-4920. [PMID: 36117270 DOI: 10.1111/1541-4337.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
Chemical contaminants in food generally include natural toxins (mycotoxins, animal toxins, and phytotoxins), pesticides, veterinary drugs, environmental pollutants, heavy metals, and illegal additives. Developing a low-cost, simple, and rapid detection technology for harmful substances in food is urgently needed. Analytical methods based on different advanced materials have been developed into rapid detection methods for food samples. In particular, photonic crystal (PC) materials have a unique surface periodic structure, structural color, a large surface area, easy integration with photoelectronic and magnetic devices which have great advantages in the development of rapid, low-cost, and highly sensitive analytical methods. This review focuses on the PC materials in the view of their fabrication processes, functionalized recognition components for the specific recognition of hazardous substances, and applications in the separation, enrichment, and detection of chemical hazards in real samples. Suspension array based on three-dimensional PC microspheres by droplet-based microfluidic assembly is a great promising and powerful platform for food safety detection fields. For the PCs selective analysis, biological antibodies, aptamers, and molecularly imprinted polymers (MIPs) could be modified for specific recognition of target substances, particularly MIPs because of their low-cost and easy mass production. Based on these functional PCs, various toxic and hazardous substances can be selectively enriched or recognized in real samples and further quantified in combination of liquid chromatography method or optical detection methods including fluorescence, chemiluminescence, and Raman spectroscopy.
Collapse
Affiliation(s)
- Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yaodan Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tingting Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoyue Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Fenying Wang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
10
|
Bolshakov ES, Schemelev IS, Ivanov AV, Kozlov AA. Photonic Crystals and Their Analogues as Tools for Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
A facile approach for constructing molecularly imprinted photonic hydrogels with highly ordered and crack-free inverse-opal structure. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Liang Y, Zhou A, Bever CS, Cheng LW, Yoon JY. Smartphone-based paper microfluidic competitive immunoassay for the detection of α-amanitin from mushrooms. Mikrochim Acta 2022; 189:322. [PMID: 35932340 DOI: 10.1007/s00604-022-05407-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
α-Amanitin is often considered the most poisonous mushroom toxin produced by various mushroom species, which are hard to identify from edible, non-toxic mushrooms. Conventional detection methods require expensive and bulky equipment or fail to meet high analytical sensitivity. We developed a smartphone-based fluorescence microscope platform to detect α-amanitin from dry mushroom tissues. Antibody-nanoparticle conjugates were captured by immobilized antigen-hapten conjugates while competing with the free analytes in the sample. Captured fluorescent nanoparticles were excited at 460 nm and imaged at 500 nm. The pixel numbers of such nanoparticles in the test zone were counted, showing a decreasing trend with increasing analyte concentration. The detection method exhibited a low detection limit (1 pg/mL), high specificity, and selectivity, allowing us to utilize a simple rinsing for toxin extraction and avoiding the need for high-speed centrifugation. In addition, this assay's short response time and portable features enable field detection of α-amanitin from amanitin-producing mushrooms.
Collapse
Affiliation(s)
- Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Avory Zhou
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Candace S Bever
- Foodborne Toxin Detection and Prevention Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, USA
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, USA
| | - Jeong-Yeol Yoon
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA. .,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Ultrasensitive paper sensor for simultaneous detection of alpha-amanitin and beta-amanitin by the production of monoclonal antibodies. Food Chem 2022; 396:133660. [PMID: 35839720 DOI: 10.1016/j.foodchem.2022.133660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Amanitin (AMA) is responsible for human fatalities after ingestion of poisonous mushrooms, thus, a rapid and accurate detection method is urgently needed. Here, gold nanoparticle-based immunosensor with monoclonal antibody against AMA was constructed for rapid detection of alpha- and beta-amanitin (α- and β-AMA) in mushroom, serum and urine samples. Under optimized conditions, the visual limits of detection (vLOD) and calculated LOD for α-AMA and β-AMA in mushroom were 10 ng/g, 20 ng/g, and 0.1 ng/g, 0.2 ng/g, respectively. Analysis of wild mushroom samples was also performed using a strip scan reader in the 10 min range. Furthermore, in mushrooms containing amatoxins results were confirmed and compared with those determined by liquid chromatography tandem mass spectrometry. Thus, this immunosensor provided a useful monitoring tool for rapid detection and screening of mushroom samples and in serum and urine from subjects who accidentally consumed AMA-containing mushrooms.
Collapse
|
15
|
Brambila C, Boyd P, Keegan A, Sharma P, Vetter C, Ponnusamy E, Patwardhan SV. A Comparison of Environmental Impact of Various Silicas Using a Green Chemistry Evaluator. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:5288-5298. [PMID: 35493693 PMCID: PMC9044506 DOI: 10.1021/acssuschemeng.2c00519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Indexed: 05/03/2023]
Abstract
To answer questions surrounding the sustainability of silica production, MilliporeSigma's DOZN 2.0 Green Chemistry Evaluator was employed as it provides quantitative values based on the 12 principles of Green Chemistry. As a first study using DOZN 2.0 to evaluate the greenness of nanomaterials, a range of silica types were considered and their greenness scores compared. These included low- and high-value silicas, both commercial and emerging, such as precipitated, gel, fumed, colloidal, mesoporous, and bioinspired silicas. When surveying these different types of silicas, it became clear that while low value silicas have excellent greenness scores, high-value silicas perform poorly on this scale. This highlighted the tension between high-value silicas that are desired for emerging markets and the sustainability of their synthesis. The calculations were able to quantify the issues pertaining to the energy-intensive reactions and subsequent removal of soft templates for the sol-gel processes. The importance of avoiding problematic solvents during processes and particularly releasing them as waste was identified. The calculations were also able to compare the amount of waste generated as well as their hazardous nature. The effects of synthesis conditions on greenness scores were also investigated in order to better understand the relationship between the production process and their sustainability.
Collapse
Affiliation(s)
- Carlos Brambila
- Green
Nanomaterials Research Group, Department of Chemical and Biological
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United
Kingdom
| | - Peter Boyd
- Green
Nanomaterials Research Group, Department of Chemical and Biological
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United
Kingdom
| | - Amber Keegan
- Green
Nanomaterials Research Group, Department of Chemical and Biological
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United
Kingdom
| | - Pankaj Sharma
- Sigma-Aldrich
Chemicals Pvt. Ltd. (Merck Group), Tower 2, Electronic City, Bangalore 560100, India
| | - Caleb Vetter
- MilliporeSigma, 545 South Ewing, St. Louis, Missouri 63103, United
States
| | | | - Siddharth V. Patwardhan
- Green
Nanomaterials Research Group, Department of Chemical and Biological
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United
Kingdom
- E-mail:
| |
Collapse
|
16
|
Yang Z, Jin H, Yu A, Yu Z, Shi D, Yan S, Qin L, Liu S, Chen M. Construction of surface molecularly imprinted photonic hydrogel sensors with high sensitivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
|
18
|
Wang Y, Qiu X, Wang F, Li Y, Guo H, Nie L. Single-crystal ordered macroporous metal-organic framework as support for molecularly imprinted polymers and their integration in membrane formant for the specific recognition of zearalenone. J Sep Sci 2021; 44:4190-4199. [PMID: 34543515 DOI: 10.1002/jssc.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/07/2022]
Abstract
Zearalenone is a fungal contaminant that is widely present in grains. Here, a novel molecularly imprinted membrane based on SOM-ZIF-8 was developed for the rapid and highly selective identification of zearalenone in grain samples. The molecularly imprinted membrane was prepared using polyvinylidene fluoride, cyclododecyl 2,4-dihydroxybenzoate as a template and SOM-ZIF-8 as a carrier. The factors influencing the extraction of zearalenone using this membrane, including the solution pH, extraction time, elution solvent, elution time, and elution volume, were studied in detail. The optimized conditions were 5 mL of sample solution at pH 6, extraction time of 45 min, 4 mL of acetonitrile:methanol = 9:1 as elution solvent, and elution time of 20 min. This method displayed a good linear range of 12-120 ng/g (R2 = 0.998) with the limits of detection and quantification of this method are 1.7 and 5.5 ng/g, respectively. In addition, the membrane was used to selectively identify zearalenone in grain samples with percent recoveries ranging from 87.9 to 101.0% and relative standard deviation of less than 6.6%. Overall, this study presents a simple and effective chromatographic pretreatment method for detecting zearalenone in food samples.
Collapse
Affiliation(s)
- Yulin Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Xiuzhen Qiu
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Fuyu Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Yangyang Li
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Huishi Guo
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
19
|
Li ZY, Jing LP, Gu LL, Tong ZH, Du K, Zhang H. Preparation and application of highly sensitive myclobutanil sensor based on molecularly imprinted photonic crystals. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Fan J, Qiu L, Qiao Y, Xue M, Dong X, Meng Z. Recent Advances in Sensing Applications of Molecularly Imprinted Photonic Crystals. Front Chem 2021; 9:665119. [PMID: 34195173 PMCID: PMC8236589 DOI: 10.3389/fchem.2021.665119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Photonic crystals (PhCs) with a brightly colored structure are novel materials and are widely used in chemical and biological sensing. Combining PhCs with molecular imprinting technology (MIT), the molecularly imprinted PhC (MIPC) sensors are fabricated, which can specifically recognize the target molecules. Aside from high sensitivity and selectivity, the MIPC sensors could recognize the naked eye detection because of its optical properties. In this review, an overview of recent advances in sensing applications of MIPC sensors including the responsive mechanisms, application in environmental monitoring, and the application to human health were illustrated. The MIPC sensors all responded to the analytes specifically and also showed high sensitivity in real samples, which provided a method to realize the rapid, convenient, naked eye, and real-time detection. Furthermore, the current limitations and potential future directions of MIPC sensors were also discussed.
Collapse
Affiliation(s)
- Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Qiao
- School of Design and Arts, Beijing Institute of Technology, Beijing, China
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiao Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
21
|
Cao Y, Liu G, Zheng B, Wang X, Li H, Wang G, Zhao L, Wang Y. A sulfamethoxazole molecularly imprinted two-dimensional photonic crystal hydrogel sensor. SOFT MATTER 2021; 17:4969-4978. [PMID: 33899903 DOI: 10.1039/d1sm00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper, a molecularly imprinted two-dimensional photonic crystal hydrogel sensor (SMZ-MIPCH) for the sensitive and label-free recognition of sulfamethoxazole (SMZ) was prepared. The SMZ-MIPCH sensor response performance was investigated via measuring the diameter of the Debye ring (D). When the SMZ-MIPCH sensor recognized SMZ, the diameter of the Debye ring gradually decreased and the particle spacing (d) of the photonic crystals gradually increased. As the SMZ concentration increased from 0 to 10-4 mol L-1, the diameter decreased by 15.2 mm and the corresponding particle spacing increased by 131 nm. As the diffraction peak wavelength of the sensor gradually red-shifted, the color changed from blue to green and finally to orange-red. A good linear relationship was found between the variation of the particle spacing (Δd) and the value of the logarithm of the SMZ concentration (lg c) in the range from 10-16 mol L-1 to 10-10 mol L-1. The limit of detection of the SMZ-MIPCH sensor is 10-16 mol L-1. In the presence of analogues of SMZ, such as sulfisoxazole, sulfadiazine, and sulfamethazine, the diameter changed only slightly, indicating that the SMZ-MIPCH sensor had specific recognition abilities for SMZ. The SMZ-MIPCH sensor has the advantages of high sensitivity, specific recognition, and naked eye detection, and it can be used for the detection of SMZ in water samples.
Collapse
Affiliation(s)
- Yunlei Cao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Genqi Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Bingqing Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Xinlong Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Lingli Zhao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| |
Collapse
|
22
|
Lin Y, Liu Y, Li S, Rui L, Ou J, Wu Q, He J. Template-directed preparation of three-dimensionally ordered macroporous molecularly imprinted microspheres for selective recognition and separation of quinine from cinchona extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Fan J, Qiu L, Zheng W, Meng Z, Xue M, Qiao Y. Rapid self-assembly preparation of p-nitrophenol-molecular imprinted photonic crystal sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zhaokun Yang, Yu Z, Shi D, Liu S, Chen M. A Better Understanding of How Polymer Composition Affects Sensing Performance of Molecularly Imprinted Photonic Polymer. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Wang C, Xiao F, Chen Q, Wang S, Zhou J, Wu Z. A two-dimensional photonic crystal hydrogel biosensor for colorimetric detection of penicillin G and penicillinase inhibitors. Analyst 2021; 146:502-508. [PMID: 33210667 DOI: 10.1039/d0an01946a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple penicillinase functionalized two-dimensional photonic crystal hydrogel (2DPPCH) biosensor was developed for colorimetric detection of penicillin G and penicillinase inhibitors. The penicillinase can specifically recognize penicillin G and catalyze it to produce penicilloic acid, which decreases the pH of the hydrogel microenvironment and shrinks the pH-sensitive hydrogel. The particle spacing decrease of the 2D photonic crystal array induced by the hydrogel shrinkage further causes a blue-shift in the diffraction wavelength. While the hydrolysis reaction is repressed upon treatment with clavulanate potassium (a kind of penicillinase inhibitor), no significant change in the diffraction wavelength is found. The detection of targets can be achieved by measuring the Debye diffraction ring diameter or observing the structural color change in the visible region. The lowest detectable concentrations for penicillin G and clavulanate potassium are 1 μM and 0.1 μM, respectively. Moreover, the 2DPPCH is proved to exhibit high selectivity and an excellent regeneration property, and it shows satisfactory performance for penicillin G analysis in real water samples.
Collapse
Affiliation(s)
- Changping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | |
Collapse
|
27
|
Cao Y, Liu G, Qin X, Li H, Liu C. Preparation and application of 2-chlorophenol molecularly imprinted photonic crystal hydrogel sensor. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1854046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yunlei Cao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Genqi Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Xiatong Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Chenhui Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| |
Collapse
|
28
|
Qiu X, Li Y, Wang Y, Guo H, Nie L. A novel molecularly imprinted nanosensor based on quartz crystal microbalance for specific recognition of α-amanitin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Fan J, Meng Z, Dong X, Xue M, Qiu L, Liu X, Zhong F, He X. Colorimetric screening of nitramine explosives by molecularly imprinted photonic crystal array. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Elsayed HA, Mehaney A. Monitoring of soybean biodiesel based on the one-dimensional photonic crystals comprising porous silicon. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Highly sensitive optical ion sensor with ionic liquid-based colorimetric membrane/photonic crystal hybrid structure. Sci Rep 2020; 10:16739. [PMID: 33028964 PMCID: PMC7542176 DOI: 10.1038/s41598-020-73858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
An ionic liquid-based thin (~ 1 µm) colorimetric membrane (CM) is a key nano-tool for optical ion sensing, and a two-dimensional photonic crystal slab (PCS) is an important nano-platform for ultimate light control. For highly sensitive optical ion sensing, this report proposes a hybrid of these two optical nano-elements, namely, a CM/PCS hybrid. This structure was successfully fabricated by a simple and rapid process using nanoimprinting and spin-coating, which enabled control of the CM thickness. Optical characterization of the hybrid structure was conducted by optical measurement and simulation of the reflection spectrum, indicating that the light confined in the holes of the PCS was drastically absorbed by the CM when the spectrum overlapped with the absorption spectrum of the CM. This optical property obtained by the hybridization of CM and PCS enabled drastic improvement in the absorption sensitivity in Ca ion sensing, by ca. 78 times compared to that without PCS. Experimental and simulated investigation of the relation between the CM thickness and absorption sensitivity enhancement suggested that the controlled light in the PCS enhanced the absorption cross-section of the dye molecules within the CM based on the enhanced local density of states. This highly sensitive optical ion sensor is expected to be applied for micro-scale bio-analysis like cell-dynamics based on reflectometric Ca ion detection.
Collapse
|
32
|
Liu Z, Wang Y, Xu F, Wei X, Chen J, Li H, He X, Zhou Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal Chim Acta 2020; 1129:49-59. [DOI: 10.1016/j.aca.2020.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
|
33
|
Tan L, Li Y, Deng F, Pan X, Yu H, Marina ML, Jiang Z. Highly sensitive determination of amanita toxins in biological samples using β-cyclodextrin collaborated molecularly imprinted polymers coupled with ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1630:461514. [PMID: 32898756 DOI: 10.1016/j.chroma.2020.461514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
In this work, a β-cyclodextrin functional vinyl monomer was synthesized and the common moiety of five amanita toxins was used as the template for preparing molecularly imprinted polymers (MIPs). Chemical calculation was used to evaluate and describe the binding interactions between the template and the functional monomer. The preparation conditions were optimized and the resultant MIPs were characterized and employed as solid-phase extraction (SPE) sorbents. The SPE conditions including the amount of sorbent, extraction solution, and eluting solution were also optimized for the enrichment of the five toxins. Using an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), detection limits ranging from 0.34-0.42 µg/L, 0.16-0.33 µg/L, and 0.035-0.056 µg/kg were achieved for the five toxins in serum, urine and liver samples, respectively. The proposed method was further applied to the determination of the amanita toxins in suspected samples and showed great potential in the diagnosis of mushroom poisoning.
Collapse
Affiliation(s)
- Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yongxian Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hong Yu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Abadla MM, Elsayed HA. Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. APPLIED OPTICS 2020; 59:418-424. [PMID: 32225322 DOI: 10.1364/ao.379041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Believing that the detection of hemoglobin possesses a vital role in the discovery of many diseases, we present in this work a simple method for sensing and detecting hemoglobin based on one-dimensional photonic crystals. Implementing hemoglobin as a defect layer inside the proposed photonic crystal results in a resonant peak evolving within the bandgaps. The strong dependence of these resonant peaks on concentration and the consequent refractive index are the essential bases of the detection process. The role played by these parameters together with the angle of incidence on performance and efficiency of our sensor is demonstrated. In the vicinity of the investigated results, we demonstrate the values of sensitivity, figure of merit (FOM), signal-to-noise ratio (SNR), and resolution to optimize the performance of our sensor. The numerical results show a significant effect of polarization mode on performance of this sensor. For TE polarization with an angle of incidence equal to 45°, we investigated sensitivity of 167nmRIU-1, SNR of 0.23, FOM of 0.63RIU-1, and resolution of 257 nm.
Collapse
|