1
|
Liu X, Zhang J, Hua K, Cui Y. Both aerosol and primer dimer breakdown for straightforward genotyping based on an integrated immunochromatographic biosensor. Talanta 2025; 285:127300. [PMID: 39616759 DOI: 10.1016/j.talanta.2024.127300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
Straightforward genotyping can provide timely diagnostic information for diseases prevention and treatment. Taking advantages of speediness and convenience, although numerous genotyping strategies combined loop-mediated isothermal amplification (LAMP) and lateral flow have been reported to satisfy the demand of point-of-care test, the false positive result caused by aerosol and primer dimer as an innate conflict seriously limits their practical application. In this study, both aerosol and primer dimer as extrinsic and intrinsic inducements respectively are first broken through at one stroke based on an integrated immunochromatographic biosensor. By introducing digoxigenin labeled dUTP into LAMP, not only the amplicon can be analyzed through naked eye, but also the aerosol contamination can be eliminated thoroughly by uracil DNA glycosylase ignoring the open vessel. Primer dimer, the significant drawback in lateral flow-based strategies, has been overcome due to the bio-labeled deoxyribonucleotide and oligonucleotide cannot couple for signal generation even under the high primer concentration. Instead of colloidal gold, the gold magnetic nanoparticle is synthesized and assembled into this biosensor as a nanoprobe, which enables the result to be quantified by the magnetic signal for subjective bias elimination. The polymorphism of C677T in methylenetetrahydrofolate reductase, a crucial genetic code related to folate metabolism, is genotyped using saliva as noninvasive specimen dispense with DNA purification. Only 1 ng genomic DNA can provide accurate result within 25 min by a simple heater, which proves the potential of this biosensor to facilitate precision medicine.
Collapse
Affiliation(s)
- Xiaonan Liu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, China; College of Life Sciences, Northwest University, Xi'an, 710069, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, China.
| | - Jiaxing Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kai Hua
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yali Cui
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Fry J, Lee JYH, McAuley JL, Porter JL, Monk IR, Martin ST, Collins DJ, Barbante GJ, Fitzgerald NJ, Stinear TP. Optimization of Reverse Transcription Loop-Mediated Isothermal Amplification for In Situ Detection of SARS-CoV-2 in a Micro-Air-Filtration Device Format. ACS OMEGA 2024; 9:40832-40840. [PMID: 39372017 PMCID: PMC11447726 DOI: 10.1021/acsomega.4c05784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has supercharged innovation in the field of molecular diagnostics and led to the exploration of systems that permit the autonomous identification of airborne infectious agents. Airborne virus detection is an emerging approach for determining exposure risk, although current methods limit intervention timeliness. Here, we explore reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for one-pot detection of Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) (SCV2) run on membrane filters suitable for micro-air-filtration of airborne viruses. We use a design of experiments statistical framework to establish the optimal additive composition for running RT-LAMP on membrane filters. Using SCV2 liquid spike-in experiments and fluorescence detection, we show that single-pot RT-LAMP on glass fiber filters reliably detected 0.10 50% tissue culture infectious dose (TCID50) SCV2 per reaction (3600 E-gene copies) and is an order of magnitude more sensitive than conventional RT-LAMP.
Collapse
Affiliation(s)
- Jacob Fry
- ARC
Centre of Excellence in Exciton Science, The School of Chemistry, The University of Melbourne, Masson Rd, Parkville, Victoria 3010, Australia
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Jean Y. H. Lee
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Julie L. McAuley
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Jessica L. Porter
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Ian R. Monk
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Samuel T. Martin
- Department
of Biomedical Engineering, The University
of Melbourne, Building
261/203 Bouverie St, Carlton, Victoria 3053, Australia
| | - David J. Collins
- Department
of Biomedical Engineering, The University
of Melbourne, Building
261/203 Bouverie St, Carlton, Victoria 3053, Australia
- Graeme
Clarke Institute, The University of Melbourne, Chemical Engineering 2 Building
167, Parkville, Victoria 3010, Australia
| | - Gregory J. Barbante
- Defence
Science and Technology Group, Australian
Department of Defence, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia
| | - Nicholas J. Fitzgerald
- Defence
Science and Technology Group, Australian
Department of Defence, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia
| | - Timothy P. Stinear
- Department
of Microbiology and Immunology, The Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Prompunt E, Thongkum W, Sumphanapai T, Kamseng P, Saoin S, Kloypan C, Tayapiwatana C, Nangola S. Integrating loop-mediated isothermal amplification with lateral flow assay to achieve a highly sensitive method for detecting Streptococcus suis Genome in raw pork. Heliyon 2024; 10:e36942. [PMID: 39281572 PMCID: PMC11402220 DOI: 10.1016/j.heliyon.2024.e36942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
Streptococcus suis (S.suis), a zoonotic foodborne pathogen prevalent in Southeast Asia, poses a substantial threat to human and animal health because of its ability to cause severe and life-threatening illnesses. To address this challenge, a rapid and highly sensitive detection platform for S. suis in raw pork was developed by integrating loop-mediated isothermal amplification (LAMP) and a lateral flow assay (LFA), S. suis LAMP-LFA. LAMP reactions targeting the S. suis glutamate dehydrogenase (gdh) gene were optimized for specific detection of S. suis within 45 min at an isothermal temperature of 65 °C. The assay exhibited marked sensitivity, with a detection limit of 100 fg for genomic DNA extracted from S. suis cultures. Notably, this method showed no cross-reactivity with other bacterial contaminants commonly found in raw pork. The resulting LAMP amplicons were effectively detected using LFA, with a test limit of 101 CFU per 25 g of raw pork. S. suis LAMP-LFA proved to be highly specific and reliable, with no false-positives detected in spiked pork samples or pork samples containing other bacterial contaminants. Due to its high sensitivity, specificity, and rapid turnaround time, the proposed technique has immense potential as a field-deployable screening test for S. suis detection in raw pork, contributing to enhanced food safety and public health protection.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Division of Clinical Microbiology and Medical Parasitology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Weeraya Thongkum
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitima Sumphanapai
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Parin Kamseng
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Somphot Saoin
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chirapat Kloypan
- School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
4
|
Sen A, Masetty M, Weerakoon S, Morris C, Yadav JS, Apewokin S, Trannguyen J, Broom M, Priye A. Paper-based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens Bioelectron 2024; 257:116292. [PMID: 38653014 DOI: 10.1016/j.bios.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/μL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.
Collapse
Affiliation(s)
- Anindita Sen
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Manaswini Masetty
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Sasanka Weerakoon
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Calum Morris
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Jagjit S Yadav
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Senu Apewokin
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jennifer Trannguyen
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Murray Broom
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand.
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA; Digital Futures, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
5
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024; 65:2214-2235. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
6
|
Warmt C, Nagaba J, Henkel J. Comparison of pre-labelled primers and nucleotides as DNA labelling method for lateral flow detection of Legionella pneumophila amplicons. Sci Rep 2024; 14:5018. [PMID: 38424185 PMCID: PMC10904838 DOI: 10.1038/s41598-024-55703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Labelling of nucleic acid amplicons during polymerase chain reaction (PCR) or isothermal techniques is possible by using both labelled primers and labelled nucleotides. While the former is the widely used method, the latter can offer significant advantages in terms of signal enhancement and improving the detection limit of an assay. Advantages and disadvantages of both methods depend on different factors, including amplification method, detection method and amplicon length. In this study, both methods for labelling PCR products for lateral flow assay (LFA) analysis (LFA-PCR) were analysed and compared. It was shown that labelling by means of nucleotides results in an increase in label incorporation rates. Nonetheless, this advantage is negated by the need for post-processing and competitive interactions. In the end, it was possible to achieve a detection limit of 3 cell equivalents for the detection of the Legionella-DNA used here via primer labelling. Labelling via nucleotides required genomic DNA of at least 3000 cell equivalents as starting material as well as an increased personnel and experimental effort.
Collapse
Affiliation(s)
- Christian Warmt
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany.
| | - Jette Nagaba
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| |
Collapse
|
7
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
8
|
Kim SH, Lee SY, Kim U, Oh SW. Diverse methods of reducing and confirming false-positive results of loop-mediated isothermal amplification assays: A review. Anal Chim Acta 2023; 1280:341693. [PMID: 37858542 DOI: 10.1016/j.aca.2023.341693] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023]
Abstract
Loop-mediated isothermal amplification (LAMP), a rapid and sensitive isothermal nucleic acid amplification method, is a promising alternative to other molecular amplification techniques due to its superior specificity and sensitivity. However, due to primer dimerization, LAMP results in nonspecific and nontemplate amplification. And during the amplification confirmation process, there is carry-over contamination. These factors can result in false-positive results that overestimate the amount of DNA, preventing accurate detection. This review outlined several techniques for reducing false-positive LAMP results before amplification and confirming false-positive results after amplification. Before the amplification step, DNA polymerase activity can be decreased with organic additives such as dimethyl sulfoxide, betaine, and pullulan to prevent nonspecific amplification. The enzyme uracil-DNA-glycosylase (UDG) can eliminate false-positive results caused by carry-over contamination, and the hot-start effect with gold nanoparticles can reduce nonspecific amplification. When confirming false-positive results using clustered regularly interspaced short palindromic repeats, guide RNA accurately detects LAMP amplification, allowing differentiation from nonspecific amplification. By confirming amplification, the colorimetric change in the deoxyribozyme (DNAzyme) formed by the reaction of the G-quadruplex sequence of the LAMP amplicon and hemin can distinguish false-positive results. Lateral flow immunoassay can distinguish false-positive results by accurately recognizing hybridized probes to LAMP amplicons.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
10
|
Kaur M, Ayarnah K, Duanis-Assaf D, Alkan N, Eltzov E. Paper-based colorimetric loop-mediated isothermal amplification (LAMP) assay for the identification of latent Colletotrichum in harvested fruit. Anal Chim Acta 2023; 1267:341394. [PMID: 37257967 DOI: 10.1016/j.aca.2023.341394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Paper-based analytical devices (PADs) have gained enormous attention because of their low-cost, simple fabrication, and portability. Here, we propose a paper-based device for performing reverse transcription loop-mediated isothermal amplification (RT-LAMP) with real-time simultaneous detection of C. gloeosporioides latent infections in tomatoes. RT-LAMP-based PAD platform comprises a paper substrate on which the DNA amplification reaction occurs. Among different types of tested papers, cellulose membrane (grade 4) enabled effective visualization of the amplification result. The assay was found highly selective for the latent stage of C. gloeosporioides with lower limit of detection (LOD) of 0.5 pg of total extracted RNA. The developed assay generated the results within 40 min and hence can be efficiently employed for identifying C. gloeosporioides in resource-limited settings.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Khadijah Ayarnah
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Danielle Duanis-Assaf
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noam Alkan
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan, 50250, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
11
|
Kubo S, Niimi H, Kitajima I. Loop-mediated isothermal amplification assay for fluorescence analysis and lateral flow detection of male DNA. Anal Biochem 2023; 664:115029. [PMID: 36572215 DOI: 10.1016/j.ab.2022.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Male DNA screening is important in forensic investigations, such as sexual assault cases. Although quantitative real-time PCR is a robust method for detection of male DNA, it is time-consuming and labor-intensive. We herein report the development of a male DNA-targeted loop-mediated isothermal amplification (LAMP) assay that can be used for both laboratory-based fluorescence analysis and on-site lateral flow detection. The two detection systems are independent, but we streamlined the reaction before the detection by introducing a fluorescence probe and biotin-labeled primer into a single reaction. This allowed the evaluation of fluorescence signal followed by lateral flow detection. Both the fluorescence and lateral flow analyses detected as low as 10 pg of male DNA. We also integrated an alkaline lysis method with our LAMP assay. The direct assay successfully detected male DNA from forensic samples without purification. The workflow requires only <40 min for fluorescence analysis and <45 min for lateral flow detection. Furthermore, when combined with a lateral flow strip, this workflow does not require any sophisticated instruments. These findings suggest that our assay is a promising strategy for on-site male DNA screening as well as laboratory-based testing.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa, 920-8553, Japan.
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Isao Kitajima
- Administrative office, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
12
|
Sun Z, Qi J, Shen Y, Yang N, Liu S, Wang A, Wang C, Tang J. Collection, nucleic acid release, amplification, and visualization platform for rapid field detection of rice false smut. LAB ON A CHIP 2023; 23:542-552. [PMID: 36647749 DOI: 10.1039/d2lc01166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rice false smut (RFS) has brought serious food safety problems to the world. Reliable diagnostic tools are needed for the field detection of RFS. Traditional polymerase chain reaction (PCR) is inefficient due to sample transport and preparation, which cannot adapt to the needs of field detection. Herein, we successfully developed a simple, portable microfluidic test platform to rapidly detect RFS. To simplify the operation, we integrated spore purification, nucleic acid release, and amplification into one chip. A micro air pump was used to separate the spores from the impurities and complete the collection of the spores through the airflow. We rapidly lysed spores and released nucleic acids by the benzyl chloride method. The loop-mediated isothermal amplification (LAMP) products could be combined with SYBR Green I to observe the results visually. On-chip sample tests showed that the spore collection efficiency was approximately 78%. By providing on-chip detection results, the chip had 100% specificity and a detection limit of 100 copies/reaction. At the same time, the stability (CV < 5%) and quantitative ability (R2 = 0.989) of the chip were also guaranteed. Through the visual detection of large samples, the on-chip detection results were highly concordant with the classical RT-PCR detection results, and the detection timeliness was greatly enhanced. Compared with RT-PCR, the single-sample detection time was shortened by about twenty minutes. The proposed micro-diagnostic tool did not require any large end-point detection instruments and avoided the complicated operation of nucleic acid extraction. As a result, in the future, our microfluidic chip could be used for rapid and real-time monitoring and early warning of rice false smut spores in rice paddies.
Collapse
Affiliation(s)
- Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Qi
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ye Shen
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shuhua Liu
- China National Rice Research Institute, Hangzhou 310006, China.
| | - Aiying Wang
- China National Rice Research Institute, Hangzhou 310006, China.
| | - Cilin Wang
- China National Rice Research Institute, Hangzhou 310006, China.
| | - Jian Tang
- China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
13
|
Li M, Ge H, Sun Z, Fu J, Cao L, Feng X, Meng G, Peng Y, Liu Y, Zhao C. A loop-mediated isothermal amplification-enabled analytical assay for the detection of SARS-CoV-2: A review. Front Cell Infect Microbiol 2022; 12:1068015. [PMID: 36619749 PMCID: PMC9816412 DOI: 10.3389/fcimb.2022.1068015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The number of words: 4645, the number of figures: 4, the number of tables: 1The outbreak of COVID-19 in December 2019 caused a global pandemic of acute respiratory disease, and with the increasing virulence of mutant strains and the number of confirmed cases, this has resulted in a tremendous threat to global public health. Therefore, an accurate diagnosis of COVID-19 is urgently needed for rapid control of SARS-CoV-2 transmission. As a new molecular biology technology, loop-mediated isothermal amplification (LAMP) has the advantages of convenient operation, speed, low cost and high sensitivity and specificity. In the past two years, rampant COVID-19 and the continuous variation in the virus strains have demanded higher requirements for the rapid detection of pathogens. Compared with conventional RT-PCR and real-time RT-PCR methods, genotyping RT-LAMP method and LAMP plus peptide nucleic acid (PNA) probe detection methods have been developed to correctly identified SARS-CoV-2 variants, which is also why LAMP technology has attracted much attention. LAMP detection technology combined with lateral flow assay, microfluidic technology and other sensing technologies can effectively enhance signals by nucleic acid amplification and help to give the resulting output in a faster, more convenient and user-friendly way. At present, LAMP plays an important role in the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mingna Li
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Hongjuan Ge
- College of public health, Jilin Medical University, Jilin, China
| | - Zhe Sun
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Jangshan Fu
- College of public health, Jilin Medical University, Jilin, China
| | - Lele Cao
- College of public health, Jilin Medical University, Jilin, China
| | - Xinrui Feng
- College of public health, Jilin Medical University, Jilin, China,Medical college, Yanbian University, Jilin, China
| | - Guixian Meng
- College of medical laboratory, Jilin Medical University, Jilin, China
| | - Yubo Peng
- Business School, The University of Adelaide, Adelaide, SA, Australia
| | - Yan Liu
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| | - Chen Zhao
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| |
Collapse
|
14
|
Tavakoli H, Hirth E, Luo M, Sharma Timilsina S, Dou M, Dominguez DC, Li X. A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases. LAB ON A CHIP 2022; 22:4693-4704. [PMID: 36349548 PMCID: PMC9701502 DOI: 10.1039/d2lc00834c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is one of the major causes of death and disability worldwide. Higher case-fatality rates and short survival times have been reported in developing countries. Hence, a quick, straightforward, and low-cost approach is in great demand for the diagnosis of meningitis. In this research, a microfluidic fully paper-based analytical device (μFPAD) integrated with loop-mediated isothermal amplification (LAMP) and ssDNA-functionalized graphene oxide (GO) nano-biosensors was developed for the first time for a simple, rapid, low-cost, and quantitative detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The results can be successfully read within 1 hour with the limit of detection (LOD) of 6 DNA copies per detection zone. This paper device also offers versatile functions by providing a qualitative diagnostic analysis (i.e., a yes or no answer), confirmatory testing, and quantitative analysis. These features make the presented μFPAD capable of a simple, highly sensitive, and specific diagnosis of N. meningitis. Furthermore, this microfluidic approach has great potential in the rapid detection of a wide variety of different other pathogens in low-resource settings.
Collapse
Affiliation(s)
- Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Elisabeth Hirth
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Department of Chemistry, University of Aalen, Beethovenstraße 1, 73430 Aalen, Germany
| | - Man Luo
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Sanjay Sharma Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Delfina C Dominguez
- College of Health Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, El Paso, 79968, USA
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA
| |
Collapse
|
15
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Chen A. Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Liu H, Cao R, Xu W, Ma Y, Li W, Zhang Y, Liu H. A cost-effective method for the rapid detection of chicken adulteration in meat using recombinase polymerase amplification combined with nucleic acid hybridization lateral flow strip. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Colbert AJ, Lee DH, Clayton KN, Wereley ST, Linnes JC, Kinzer-Ursem TL. PD-LAMP smartphone detection of SARS-CoV-2 on chip. Anal Chim Acta 2022; 1203:339702. [PMID: 35361434 PMCID: PMC8905050 DOI: 10.1016/j.aca.2022.339702] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019 the COVID-19 pandemic, caused by SARS-CoV-2, demonstrated the urgent need for rapid, reliable, and portable diagnostics. The COVID-19 pandemic was declared in January 2020 and surges of the outbreak continue to reoccur. It is clear that early identification of infected individuals, especially asymptomatic carriers, plays a huge role in preventing the spread of the disease. The current gold standard diagnostic for SARS-CoV-2 is quantitative reverse transcription polymerase chain reaction (qRT-PCR) test based on the detection of the viral RNA. While RT-PCR is reliable and sensitive, it requires expensive centralized equipment and is time consuming (∼2 h or more); limiting its applicability in low resource areas. The FDA issued Emergency Use Authorizations (EUAs) for several COVID-19 diagnostics with an emphasis on point-of care (PoC) testing. Numerous RT-PCR and serological tests were approved for use at the point of care. Abbott's ID NOW, and Cue Health's COVID-19 test are of particular interest, which use isothermal amplification methods for rapid detection in under 20 min. We look to expand on the range of current PoC testing platforms with a new rapid and portable isothermal nucleic acid detection device. We pair reverse transcription loop mediated isothermal amplification (RT-LAMP) with a particle imaging technique, particle diffusometry (PD), to successfully detect SARS-CoV-2 in only 35 min on a portable chip with integrated heating. A smartphone device is used to image the samples containing fluorescent beads post-RT-LAMP and correlates decreased diffusivity to positive samples. We detect as little as 30 virus particles per μL from a RT-LAMP reaction in a microfluidic chip using a portable heating unit. Further, we can perform RT-LAMP from a diluted unprocessed saliva sample without RNA extraction. Additionally, we lyophilize SARS-CoV-2-specific RT-LAMP reactions that target both the N gene and the ORF1ab gene in the microfluidic chip, eliminating the need for cold storage. Our assay meets specific target product profiles outlined by the World Health Organization: it is specific to SARS-CoV-2, does not require cold storage, is compatible with digital connectivity, and has a detection limit of less than 35 × 104 viral particles per mL in saliva. PD-LAMP is rapid, simple, and attractive for screening and use at the point of care.
Collapse
Affiliation(s)
- Ashlee J Colbert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Huang C, Gu Y. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose. Foods 2022; 11:foods11040602. [PMID: 35206078 PMCID: PMC8870927 DOI: 10.3390/foods11040602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Meat adulteration is a global problem which undermines market fairness and harms people with allergies or certain religious beliefs. In this study, a novel framework in which a one-dimensional convolutional neural network (1DCNN) serves as a backbone and a random forest regressor (RFR) serves as a regressor, named 1DCNN-RFR, is proposed for the quantitative detection of beef adulterated with pork using electronic nose (E-nose) data. The 1DCNN backbone extracted a sufficient number of features from a multichannel input matrix converted from the raw E-nose data. The RFR improved the regression performance due to its strong prediction ability. The effectiveness of the 1DCNN-RFR framework was verified by comparing it with four other models (support vector regression model (SVR), RFR, backpropagation neural network (BPNN), and 1DCNN). The proposed 1DCNN-RFR framework performed best in the quantitative detection of beef adulterated with pork. This study indicated that the proposed 1DCNN-RFR framework could be used as an effective tool for the quantitative detection of meat adulteration.
Collapse
Affiliation(s)
- Changquan Huang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Yu Gu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Guangdong Province Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Department of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|