1
|
de Sousa Marques V, de Carvalho LMG, de Almeida DA, de Farias RRS, Valente AD, Martins AF, Nakamura C, Muniz EC. Nanofiber Composites of Poly(vinyl alcohol)/Silver-Based Molybdate and Tungstate Oxide Semiconductors for Antimicrobial Applications. ACS OMEGA 2025; 10:2586-2597. [PMID: 39895760 PMCID: PMC11780561 DOI: 10.1021/acsomega.4c07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
In the present study, powders of α-Ag2WO4 (PAW) and β-Ag2MoO4 (PAM) were prepared through the coprecipitation method, while poly(vinyl alcohol) nanofibers (FPVA) and composite nanofibers of PVA/α-Ag2WO4 (FPAW) and PVA/β-Ag2MoO4 (FPAM) were prepared using the electrospinning technique. Several characterization techniques were applied to evaluate the structure of the obtained materials, as well as studies for assessing their antimicrobial properties. The antimicrobial activities of the composites against Pseudomonas aeruginosa and Staphylococcus aureus were investigated through the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Our studies demonstrated that materials exhibit antibacterial activity against P. aeruginosa (MIC/MBC = 0.014/ND mg mL-1 for PAW; MIC/MBC = 1.43/1.43 for PAM; MIC/MBC = 1.35/1.35 mg mL-1 for FPAW; MIC/MBC = 3.68/11.03 mg mL-1 for FPAM and MIC/MBC = 8.78/ND mg mL-1 for FPVA) and S. aureus (MIC/MBC = 0.794/ND mg mL-1 for PAW; MIC/MBC = 1.43/ND for PAM; MIC/MBC = 1.35/1.35 mg mL-1 for FPAW; MIC/MBC = 3.68/3.67 mg mL-1 FPAM and MIC/MBC = 14.63/* mg mL-1 for FPVA). The cytotoxic concentrations (CC50, μg mL-1) against the VERO cells were 21.74 ± 0.04 for PAW, <15 for PAM, 103.70 ± 18.90 for FPAW, 111.22 ± 4.02 for FPAM, and >1000 for FPVA, thus indicating that the immobilization of the semiconductor to the FPVA mats decreases the cytotoxic effect of the materials studied as compared to not immobilized ones. The results suggest that powders and composite polymeric mats displayed antimicrobial action that was attributed to the production of reactive oxygen species (ROS), which are responsible for inducing high local oxidative stress, causing the death of both types of bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessandro Francisco Martins
- Department
of Chemistry, State University of Maringá
(UEM), Maringá, PR 87020-900, Brazil
- Department
of Chemistry, Pittsburgh State University
(PSU), Pittsburgh, Kansas 66762, United States
| | - Celso Nakamura
- Department
of Chemistry, State University of Maringá
(UEM), Maringá, PR 87020-900, Brazil
| | - Edvani Curti Muniz
- Department
of Chemistry, Federal University of Piauí
(UFPI), Teresina, PI 64049-550, Brazil
- Department
of Chemistry, State University of Maringá
(UEM), Maringá, PR 87020-900, Brazil
| |
Collapse
|
2
|
Zheng X, Xie Y, Chen Z, Cao M, Lei X, Le T. A comprehensive review on the pretreatment and detection methods of nitrofurans and their metabolites in animal-derived food and environmental samples. Food Chem X 2024; 24:101928. [PMID: 39539437 PMCID: PMC11558636 DOI: 10.1016/j.fochx.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the residues of nitrofurans (NFs) and their metabolites in animal-derived food and environmental samples have gained widespread attention. The parent drugs and their metabolites have displayed significant toxicity to human health including carcinogenic, mutagenic and teratogenic effects, leading to banned in animal husbandry in many countries. Hence, monitoring the residues of NFs is necessary to guarantee public health and ecological security. This review aims to summarize and assess the structural properties, residue status, sample pretreatment methods (liquid-liquid extraction, solid-phase extraction, Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and field-assisted extraction), and detection methods (chromatographic analysis, immunoassay, and some innovative detection methods) for NFs and their metabolites in animal-derived food and environmental samples. This paper provides a detailed reference and discussion for the analysis of NFs and their metabolites, which can effectively promote the establishment of innovative detection methods for NFs and their metabolites residues.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mingdong Cao
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xianlu Lei
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
Dinçer E, Küçükoğlu N, Kıvanç M, Şahin Y. Electrochemical DNA Sensor Designed Using the Pencil Graphite Electrode to Detect Listeria monocytogenes. Appl Biochem Biotechnol 2024; 196:4679-4698. [PMID: 37773581 DOI: 10.1007/s12010-023-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
In the present work, a novel electrochemical DNA sensor was designed to detect L. monocytogenes. Two different gene fragments were selected for the sensor design. One is a 702 bp long fragment of the hlyA gene, encoding the synthesis of listeriolysin O toxin, which is unique only to pathogenic strains of L. monocytogenes and is essential for pathogenicity. The other is a 209 bp long fragment of the 16 S RNA gene found in all species of the Listeria genus. As the working electrode, the pencil graphite electrode was modified in various ways (activated or covered with polypyrrole), and six different combinations were constituted using three types of the modified working electrode and two different gene fragments. The developed system is based on differential pulse voltammetric transduction of guanine oxidation after hybridization between the selected gene fragment (38 µg/mL) and the selected fragment-specific inosine-modified probe (1.8 µmol/L) immobilized on a pencil graphite electrode surface. The comparison of all combinations demonstrates that the best results are obtained with the combination formed from a polypyrrole-coated pencil graphite electrode (prepared at 2 scans) and 702 bp fragment of the hlyA gene. The analysis time is less than 1 hour, and the necessary DNA concentrations for the analysis have been determined as 8.2 × 10-11 M DNA and 2.7 × 10-10 M DNA respectively, for the hlyA gene and 16 S RNA gene.
Collapse
Affiliation(s)
- Emine Dinçer
- Department of Nutrition and Dietetics, Faculty of Health Science, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Nurçin Küçükoğlu
- Department of Biology, Faculty of Sciences, Eskisehir Teknik University, Eskisehir, Turkey
| | - Merih Kıvanç
- Department of Biology, Faculty of Sciences, Eskisehir Teknik University, Eskisehir, Turkey
| | - Yücel Şahin
- Department of Chemistry, Faculty of Art and Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Vinoth S, Wang SF. Construction of functionalized carbon nanotube@metal oxide nanocomposite for high-performance electrochemical measurement of antipyretic drug in water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46484-46497. [PMID: 36869953 DOI: 10.1007/s11356-023-26043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Acetaminophen (AP) acts as supportive clinical therapy for fever and dysmenorrhea. An overdose of AP may result in severe adverse diseases, such as liver dysfunction. In addition, AP is a key-listed environmental pollutant, which is difficult to degrade in the environment and has serious effects on living bodies. Therefore, the simple and quantitative determination of AP is highly relevant today. In this work, tin dioxide (SnO2) nanoparticles with functionalized multi-walled carbon nanotube (f-MWCNT) as a hybrid composite were prepared by hydrothermal-assisted synthesis. The composite material was characterized by various spectral, morphological, and electrochemical tests. Electrochemical investigations were conducted using a SnO2@f-MWCNT-reinforced electrode for the detection of AP. The composite electrode exhibited better functional properties, which facilitated electron transfer and enhanced electrical conductivity. The calculated low detection limit (LOD) of 0.36 nM is with a wide linear range of concentration from 0.001 to 673 µM. Additionally, the SnO2@f-MWCNT-modified electrode exhibited good anti-interference capability, repeatability, reproducibility, storage, and operational stability. The developed SnO2@f-MWCNT-modified electrode was applied to practical analysis in diverse water matrices (river, drinking, and pond) with acceptable recovery percentages. A synthesized nanoscale metal oxide electrocatalyst is of great interest and an active research area that serves as a foundation for the development of new, cost-effective electrochemical antibiotic drug sensors.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei, 106, Taiwan.
| |
Collapse
|
5
|
Yin Y, Zhang J, Ji C, Tao H, Yang Y. Rare [Cu 4I 2] 2+ cationic cluster-based metal-organic framework and hierarchical porous composites design for effective detection and removal of roxarsone and antibiotics. J Colloid Interface Sci 2024; 664:551-560. [PMID: 38484524 DOI: 10.1016/j.jcis.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Fluorescence quenching induced by photoinduced electron transfer (PET) stands as an effective strategy for identifying water pollutants. Herein, a novel (4, 8)-connected three-dimensional framework Cu(I)-MOF ([Cu2I(tpt)]n) with unique 8-connected [Cu4I2]2+ cationic clusters is designed by employing the nitrogen-rich ligand (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole). Water-stabilized Cu(I)-MOF exhibits outstanding fluorescence properties, facilitating its application in detecting organic pollutants in water. Benefiting from the fact that the Cu(I)-MOF possesses a higher lowest unoccupied molecular orbitals (LUMO) energy level than that of the analyte, the rapid d-PET can occur, entitling Cu(I)-MOF to a sensitive fluorescence quenching response to roxarsone (ROX), nitrofurazone (NFZ) and nitrofurantoin (NFT) (with detection limits as low as 0.13 µM, 0.15 µM, and 0.13 µM, respectively). The nitrogen-containing sites of melamine foam (MF) are utilized to facilitate the anchoring and growth of Cu-MOF crystals, which enables the preparation of hierarchical microporous - macroporous Cu(I)-MOF/MF composites. The ordered porous structure of Cu(I)-MOF/MF provides cavities and open sites for the efficient removal of ROX (qmax = 210.6 mg∙g-1), NFZ (qmax = 111.5 mg∙g-1) and NFT (qmax = 238.9 mg∙g-1) from water. This characteristic endows the Cu(I)-MOF/MF with rapid and recyclable adsorption capacity. Therefore, this work provides valuable insights to address the problem of detection and removal of pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - He Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
6
|
Ma L, Pei WY, Xu HL, Yang J, Ma JF. Composite of a thiacalix[4]arene-copper(I) metal-organic framework and mesoporous carbon for efficient electrochemical detection of antibiotics. Talanta 2024; 269:125490. [PMID: 38048681 DOI: 10.1016/j.talanta.2023.125490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023]
Abstract
Abundant use of nitrofurantoin (NFT) and metronidazole (MTZ) antibiotics has led to excessive residues in the environments and humans, resulting in serious damage to the human body and ecosystem. Therefore, effective detection of NFT and MTZ is exceedingly necessary. In this regard, metal-organic frameworks (MOFs) are promising materials as electrochemical sensors. Herein, we synthesized a new two-dimensional thiacalix [4]arene-copper (I) MOF (Cu-TC4A-M). This MOF was mixed with mesoporous carbon (MC) to a give Cu-TC4A-M@MC composite. In addition, the sensors of Cu-TC4A-M@MC(2:1)/GCE and Cu-TC4A-M@MC(1:2)/GCE were achieved (GCE = glassy carbon electrode), and then were applied for effectively detecting NFT and MTZ, respectively. Markedly, the two sensors exhibited satisfactory linear detection range, anti-interference, reproducibility and stability. When they were utilized in the real samples, such as human serum, urine, tap water and lake water, satisfactory recoveries were attained. The relative standard deviations (RSDs) were in the range of 1.16 % ∼ 1.92 % for NFT and 0.95 % ∼ 2.33 % for MTZ. This work provided a new application prospect for the thiacalix [4]arene-based MOFs as promising candidate materials for NFT and MTZ detection.
Collapse
Affiliation(s)
- Le Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal Univetsity, Changchun, 130024, China.
| |
Collapse
|
7
|
Manikanta P, Mounesh, Nikam RR, Sandeep S, Nagaraja BM. Development of novel microsphere structured - calcium tungstate as efficacious electrocatalyst for the detection of antibiotic drug nitrofurantoin. J Mater Chem B 2023; 11:11600-11611. [PMID: 38037876 DOI: 10.1039/d3tb02087h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this report, synthetic and nitro groups containing antibiotic drug nitrofurantoin (NFT) were electrochemically quantified under amended conditions using novel constructed calcium tungstate microspheres modified on glassy carbon electrodes (CTMs/GCE). The calcium tungstate microspheres (CTMs) were synthesized by a facile sonochemical method and characterizations were done by various techniques, such as X-ray diffraction spectrometry (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Ahead of this, electrochemical investigations were performed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), amperometry, and linear sweep voltammetry (LSV). The synthesis of CTMs as well-distributed microspheres allows more active metal sites regarding and remarkable electrocatalytic activity towards NFT detection with excellent sensitivity (0.724 μA μM-1 cm-2) and low detection limit (21 nmol L-1) with a wide linear range 10-140 μM. The practical feasibility of the developed CTMs/GC electrode was elucidated using distinct real sample river tap water and clinical sample (NFT capsule), and thus, the modified electrode manifested acceptable recovery results.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - Mounesh
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - Rohit Rangnath Nikam
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| | - S Sandeep
- Department of Chemistry, S J College of Engineering, JSS Science and Technology University, Mysuru-570008, Karnataka, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain (deemed-to-be University), Jain Global Campus, Iakkasandra, Kanakapura, Bangalore-562112, Karnataka, India.
| |
Collapse
|
8
|
Vinoth S, Wang SF. Lanthanum vanadate-based carbon nanocomposite as an electrochemical probe for amperometric detection of theophylline in real food samples. Food Chem 2023; 427:136623. [PMID: 37364311 DOI: 10.1016/j.foodchem.2023.136623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Theophylline (THP) is an emerging drug for chronic obstructive pulmonary disease whose side effects can be greatly affected by caffeine-containing real foods. Because an overdose of this substance can cause respiratory and neurological damage, producing a fast and accurate analytical procedure is critical. Based on a cutting-edge hybrid nanocomposite, this study was used to construct an electrochemical sensor for the accurate detection of THP. Spectroscopy and morphological investigation supported the easy synthesis of tetragonal-LaVO4 (t-LV) nanopellets and LV@CNF hybrid nanocomposite. To detect THP, a highly dispersed LV@CNF nanocomposite was modified on a glassy carbon electrode as a sensing substrate. By amperometric technique, the sensor shows a wide linear range of 0.01-1070 μM, low limit of detection (2.63 nM), and sensitivity (0.228 μA μM-1 cm-2). Finally, the current technique was successfully used to identify THP in real food samples (chocolate, coffee and black tea).
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
9
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Das J, Mishra HN. Electrochemical biosensor for monitoring fish spoilage based on nanocellulose as enzyme immobilization matrix. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Rajaji U, Raghu MS, Yogesh Kumar K, Almutairi TM, Mohammed AA, Juang RS, Liu TY. A sonochemical synthesis of SrTiO 3 supported N-doped graphene oxide as a highly efficient electrocatalyst for electrochemical reduction of a chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2023; 93:106293. [PMID: 36638650 PMCID: PMC9852652 DOI: 10.1016/j.ultsonch.2023.106293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/03/2023]
Abstract
A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore 560103, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Cheonan-si, Republic of Korea
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - AbdallahA A Mohammed
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University 259 Wenhua First Road Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 243303, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
12
|
Rajaji U, Yogesh Kumar K, Arumugam R, Alothman AA, Ouladsmane M, Chung RJ, Liu TY. Sonochemical construction of hierarchical strontium doped lanthanum trisulfide electrocatalyst: An efficient electrode for highly sensitive detection of ecological pollutant in food and water. ULTRASONICS SONOCHEMISTRY 2023; 92:106251. [PMID: 36462467 PMCID: PMC9712680 DOI: 10.1016/j.ultsonch.2022.106251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Herbicides are used constantly in agriculture to enhance productivity across the globe. This herbicide monitoring requires utmost importance since its high dose leads to ecological imbalance and a negative impact on the environment. Moreover, a quantification of toxic herbicide is one of the important problems in the food analysis. In this work, deals with the development of a simple, and facile one-pot sonochemical synthesis of strontium doped La2S3 (Sr@La2S3). Morphological and structural characterization confirms the doping of Sr@La2S3 to generate a hierarchical layered structure. The electrochemical performance of modified with rotating disk electrode (RDE) using Sr@La2S3 composite is high, compared to La2S3 and bare electrodes towards the quantitative detection of mesotrione (MTO) in phosphate buffer. Sr@La2S3/RDE showed good sensitivity for MTO detection and it exhibit a range of 0.01-307.01 μM and limit of detection of 2.4 nM. Besides, the selectivity of fabricated electrode is high as it can electrochemically reduce MTO particularly, even in the presence of other chemicals, biological molecules and inorganic ions. The repeatability of MTO detection is high even after 30 days with a lower RSD values. Hence, simple fabrication of Sr@La2S3/RDE could be a novel electrode for the sensitive, selective, and reproducible determination of herbicides in real-time applications.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India
| | - Rameshkumar Arumugam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan.
| |
Collapse
|
13
|
An optical and electrochemical sensor based on L-arginine functionalized reduced graphene oxide. Sci Rep 2022; 12:19398. [PMID: 36371538 PMCID: PMC9653396 DOI: 10.1038/s41598-022-23949-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
The electrochemical and photochemical properties of graphene derivatives could be significantly improved by modifications in the chemical structure. Herein, reduced graphene oxide (RGO) was functionalized with L-arginine (L-Arg) by an amidation reaction between the support and amino acid. Deposition of a powerful ligand, L-Arg, on the optically active support generated an effective optical chemosensor for the determination of Cd(II), Co(II), Pb(II), and Cu(II). In addition, L-Arg-RGO was used as an electrode modifier to fabricate L-Arg-RGO modified glassy-carbon electrode (L-Arg-RGO/GCE) to be employed in the selective detection of Pb(II) ions by differential pulse anodic stripping voltammetry (DP-ASV). L-Arg-RGO/GCE afforded better results than the bare GCE, RGO/GCE, and L-Arg functionalized graphene quantum dot modified GCE. The nanostructure of RGO, modification by L-Arg, and homogeneous immobilization of resultant nanoparticles at the electrode surface are the reasons for outstanding results. The proposed electrochemical sensor has a wide linear range with a limit of detection equal to 0.06 nM, leading to the easy detection of Pb(II) in the presence of other cations. This research highlighted that RGO as a promising support of optical, and electrochemical sensors could be used in the selective, and sensitive determination of transition metals depends on the nature of the modifier. Moreover, L-Arg as an abundant amino acid deserves to perch on the support for optical, and electrochemical determination of transition metals.
Collapse
|
14
|
Al-Gethami W, Alhashmialameer D, Al-Qasmi N, Ismail SH, Sadek AH. Design of a Novel Nanosensors Based on Green Synthesized CoFe 2O 4/Ca-Alginate Nanocomposite-Coated QCM for Rapid Detection of Pb(II) Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3620. [PMID: 36296809 PMCID: PMC9610289 DOI: 10.3390/nano12203620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pb(II) is a significant contaminant that is known to have negative effects on both humans and animals. Recent industrial operations have exacerbated these consequences, and their release of several contaminants, including lead ions, has drawn attention to the potential effects on human health. Therefore, there is a lot of interest in the rapid, accurate, and selective detection of lead ions in various environmental samples. Sensors-based nanomaterials are a significant class among the many tools and methods developed and applied for such purposes. Therefore, a novel green synthesized cobalt ferrite (CoFe2O4) nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite was designed and successfully synthesized for the fabrication of nanoparticles and nanocomposite-coated quartz crystal microbalance (QCM) nanosensors to detect the low concentrations of Pb(II) ions in the aqueous solutions at different temperatures. The structural and morphological properties of synthesized nanoparticles and nanocomposite were characterized using different tools such as X-ray diffraction (XRD), N2 adsorption-desorption isotherm, dynamic light scattering (DLS), zeta potential analyzer (ζ-potential), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The QCM results revealed that the green synthesized CoFe2O4 nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite-coated QCM nanosensors exhibited high sensitivity, stability, and rapid detection of Pb(II) ions in the aqueous solutions at different temperature. The lowest detection limit for Pb(II) ions in the aqueous solutions could reach 125 ng, which resulted in a frequency shift of 27.49 ± 0.81, 23.63 ± 0.90, and 19.57 ± 0.86 Hz (Δf) for the QCM detector coated with green synthesized CoFe2O4 nanoparticles thin films, and 25.85 ± 0.85, 33.87 ± 0.73, and 6.87 ± 0.08 Hz (Δf) for the QCM detector coated with CoFe2O4/Ca-Alg nanocomposite thin films in a real-time of about 11, 13, and 13 min at 25 °C, 35 °C, and 45 °C, respectively. In addition, the resonance frequency change results showed the superiority of functionalized CoFe2O4/Ca-alginate nanocomposite coated QCM nanosensor over CoFe2O4 nanoparticles towards Pb(II) ions detecting, which attributed to the beneficial properties of alginate biopolymer.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
15
|
Mohammadi A, Mirzaei A, Javanshir S. Sonochemical synthesis of inorganic cryogel Ag 2Mo 3O 10@Ag/AgO: structural characterization, antibacterial activity, and dye adsorption properties. RSC Adv 2022; 12:16215-16228. [PMID: 35733660 PMCID: PMC9150545 DOI: 10.1039/d2ra01640k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
An additive-free ultrasonic-assisted synthesis of a multi-layered Ag2Mo3O10@Ag/AgO cryogel (SMSSO) nanocomposite has been developed, and a possible formation mechanism of multi-layered SMSSO was proposed based on characterization results of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, and diffuse reflection spectroscopy (DRS). The FE-SEM images demonstrated the formation process of the multi-layered SMSSO cryogel over time under sonication, starting with the growth of Ag2Mo3O10 nanowires, and the formation of spherical nuclei which turn into an octahedron in the presence of excess silver ions. The antibacterial activity of the synthesized cryogel and its adsorption behavior for hazardous pollutant removal were explored. The results revealed that SMSSO exhibits excellent adsorption properties, with a maximum adsorption capacity of 277.77 mg g−1 and removal of 99/95% for 150 mg L−1 methylene blue (MB) by 0.005 g adsorbent doses at 60 °C and pH 9. It was also confirmed that the synthesized cryogels have good antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The selective adsorption capability of the cryogel toward cationic dye molecules and antibacterial activity makes it a competent candidate for water purification. An ultrasonic-assisted synthesis of Ag2Mo3O10@Ag/AgO cryogel (SMSSO) nanocomposite was developed, and a possible formation mechanism of multi-layered SMSSO was proposed based on characterization results of SEM, EDX, XRD, Raman spectroscopy, and DRS.![]()
Collapse
Affiliation(s)
- Adibeh Mohammadi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Akbar Mirzaei
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| |
Collapse
|