1
|
Nemati SS, Dehghan G, Soleymani J, Jouyban A. Advances in electrochemical sensors for naproxen detection: Mechanisms, performance factors, and emerging challenges. Heliyon 2025; 11:e40906. [PMID: 39758385 PMCID: PMC11699440 DOI: 10.1016/j.heliyon.2024.e40906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Naproxen (NAP), a nonsteroidal anti-inflammatory, analgesic, and antipyretic drug, has fewer side effects than similar drugs due to its aryl acetic acid structure. For this reason, it is widely prescribed to manage fever, short-term and long-term pain, and musculoskeletal disorders. However, its use has complications such as changes in kidney function, severe gastrointestinal lesions, and increased bleeding after surgery. In addition, the toxicity of NAP or its metabolites affects the organisms in the ecosystem. Therefore, it is necessary to determine the pharmaceutical quality of produced NAP and measure its amount in living organisms and the environment. Spectroscopy, chromatography, and electrochemical methods have been used to determine NAP. Electrochemical methods have attracted more attention due to their low cost, easy sample preparation, availability, sensitivity, and acceptable results. In addition, using nanomaterials for NAP oxidation results in high surface-to-volume, high available active sites, low cost, and long-term usability with high sensitivity. In this review, electrochemical-based methods for NAP analysis and sensing have been reviewed. Also, the influential factors in NAP identification and evaluation, and their oxidation mechanism have been discussed.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin, 10, Turkey
| |
Collapse
|
2
|
Dezhakam E, Vayghan RF, Dehghani S, Kafili-Hajlari T, Naseri A, Dadashpour M, Khalilzadeh B, Kanberoglu GS. Highly efficient electrochemical biosensing platform in breast cancer detection based on MOF-COF@Au core-shell like nanostructure. Sci Rep 2024; 14:29850. [PMID: 39617770 PMCID: PMC11609286 DOI: 10.1038/s41598-024-78836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Nowadays, rapid and facile diagnosis of cancer using user friendly processes has attracted much attention. In this regard, an electrochemical (EC) biosensor with high sensitivity was fabricated by merging MIL156 MOF@COF nanocomposite with Au nanoparticles for the detection of CA15-3. Herein, metal clusters of MIL-156 as a Metal organic frameworks (MOF) were coated by a crystalline covalent organic frameworks (COF) through covalent bonding and created core-shell-like structures. The active part of the working electrode was modified in two consecutive steps. First, MIL-156 MOF@COF and then Au nanoparticles were electrodeposited on the glassy carbon electrode (GCE). The porosity of nanocomposite has significantly increased the surface area and improved the conductivity. Au nanoparticles also form an acceptable substrate for bonding antibodies due to their high affinity with amino groups. In addition, Au nanoparticles amplify the EC signal of the biosensor with their undeniable conductivity. Nanocomposite was characterized with XRD, SEM, and EDAX techniques. To investigate the proposed biosensor, differential pulse voltammetry (DPV) was used as an analytical technique. The CA15-3 calibration provided a linear range between concentrations of 30 and 100 nU/mL, thus expressing the powerful diagnostic potential of the designed biosensor. Furthermore, the suggested biosensor has been used in serum samples and discriminate breast cancer sufferers from healthy individuals with high confidence levels.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Roya Faraghi Vayghan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sarina Dehghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Taha Kafili-Hajlari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Chemistry and Chemical Engineering departmen, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan.
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
3
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
4
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
5
|
Kulkarni MB, Rajagopal S, Prieto-Simón B, Pogue BW. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024; 272:125817. [PMID: 38402739 DOI: 10.1016/j.talanta.2024.125817] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States.
| | - Sivakumar Rajagopal
- School of Electronics Engineering, Vellore Institute of Technology, Vellore Campus, 632014, TN, India
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States
| |
Collapse
|
6
|
Ji C, Tang X, Wen R, Xu C, Wei J, Han B, Wu L. A Multienzyme Reaction-Mediated Electrochemical Biosensor for Sensitive Detection of Organophosphorus Pesticides. BIOSENSORS 2024; 14:62. [PMID: 38391981 PMCID: PMC10886554 DOI: 10.3390/bios14020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Ethephon (ETH), a commonly employed growth regulator, poses potential health risks due to its residue in fruits and vegetables, leading to both acute and subchronic toxicity. However, the detection accuracy of ETH is compromised by the color effects of the samples during the detection process. In this work, a multienzyme reaction-mediated electrochemical biosensor (MRMEC) was developed for the sensitive, rapid, and color-interference-resistant determination of ETH. Nanozymes Fe3O4@Au-Pt and graphene nanocomplexes (GN-Au NPs) were prepared as catalysts and signal amplifiers for MRMEC. Acetylcholinesterase (AChE), acetylcholine (ACh), and choline oxidase (CHOx) form a cascade enzyme reaction to produce H2O2 in an electrolytic cell. Fe3O4@Au-Pt has excellent peroxidase-like activity and can catalyze the oxidation of 3,3',5,5'-tetramethvlbenzidine (TMB) in the presence of H2O2, resulting in a decrease in the characteristic peak current of TMB. Based on the inhibitory effect of ETH on AChE, the differential pulse voltammetry (DPV) current signal of TMB was used to detect ETH, offering the limit of detection (LOD) of 2.01 nmol L-1. The MRMEC method effectively analyzed ETH levels in mangoes, showing satisfactory precision (coefficient of variations, 2.88-15.97%) and recovery rate (92.18-110.72%). This biosensor holds promise for detecting various organophosphorus pesticides in food samples.
Collapse
Affiliation(s)
- Chengzhen Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Xuemei Tang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Ruiming Wen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Chengdong Xu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Jing Wei
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China;
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Long Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China;
| |
Collapse
|
7
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
9
|
Wei L, Xu D, Yuan B, Pang C, Xu H, Nie K, Yang Q, Ozkan SA, Zhang Y, Guo Y, Sun X. A Dynamic and Pseudo-Homogeneous MBs-icELISA for the Early Detection of Aflatoxin B 1 in Food and Feed. Toxins (Basel) 2023; 15:660. [PMID: 37999523 PMCID: PMC10675393 DOI: 10.3390/toxins15110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic and harmful fungal toxins to humans and animals, and the fundamental way to prevent its entry into humans is to detect its presence in advance. In this paper, the monoclonal antibody mAbA2-2 was obtained via three-step sample amplification and multi-concentration standard detection using a subcloning method based on the limited dilution method with AFB1 as the target. A dynamic and pseucdo-homogeneous magnetic beads enzyme-linked immunosorbent assay (MBs-icELISA) was established using the prepared antibody as the recognition element and immunomagnetic beads as the antigen carrier. The MBs-icELISA showed good linear correlation in the concentration range of 0.004-10 ng/mL with R2 = 0.99396. The limit of detection (LOD) of the MBs-icELISA for AFB1 was 0.0013 ng/mL. This new ELISA strategy significantly shortened AFB1 detection time through improved sensitivity compared to the conventional ELISA method.
Collapse
Affiliation(s)
- Lin Wei
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Haitao Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Kunying Nie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, China; (L.W.); (D.X.); (B.Y.); (C.P.); (H.X.); (K.N.); (Y.Z.); (Y.G.); (X.S.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo 255049, China
| |
Collapse
|
10
|
Nava-Ramírez MDJ, Vázquez-Durán A, Figueroa-Cárdenas JDD, Hernández-Patlán D, Solís-Cruz B, Téllez-Isaías G, López-Coello C, Méndez-Albores A. Removal of Aflatoxin B 1 Using Alfalfa Leaves as an Adsorbent Material: A Comparison between Two In Vitro Experimental Models. Toxins (Basel) 2023; 15:604. [PMID: 37888635 PMCID: PMC10610884 DOI: 10.3390/toxins15100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
An adsorbent material derived from alfalfa leaves was prepared and further characterized, and its efficacy for removing aflatoxin B1 (AFB1) was investigated. Characterization consisted of the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), environmental scanning electron microscopy (ESEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), point of zero charge (pHpzc), zeta potential (ζ-potential), UV-Vis diffuse reflectance spectroscopy, and spectral analysis. To determine the adsorption capacity against AFB1 (250 ng AFB1/mL), pH-dependent and avian intestinal in vitro models were used. The adsorbent inclusion percentage was 0.5% (w/w). In general, the pH-dependent model gave adsorption percentages of 98.2%, 99.9%, and 98.2%, evaluated at pH values of 2, 5, and 7, respectively. However, when the avian intestinal model was used, it was observed that the adsorption percentage of AFB1 significantly decreased (88.8%). Based on the characterization results, it is proposed that electrostatic, non-electrostatic, and the formation of chlorophyll-AFB1 complexes were the main mechanisms for AFB1 adsorption. From these results, it can be concluded that the adsorbent derived from alfalfa leaves could be used as an effective material for removing AFB1 in in vitro digestion models that mimic the physiological reality.
Collapse
Affiliation(s)
- María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico; (M.d.J.N.-R.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico; (M.d.J.N.-R.); (A.V.-D.)
| | - Juan de Dios Figueroa-Cárdenas
- Cinvestav-IPN Unidad de Querétaro, Libramiento Norponiente No. 2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico;
| | | | - Bruno Solís-Cruz
- UIM L5, FES-C, UNAM, Mexico City 54714, Mexico; (D.H.-P.); (B.S.-C.)
| | - Guillermo Téllez-Isaías
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Carlos López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City 04510, Mexico;
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico; (M.d.J.N.-R.); (A.V.-D.)
| |
Collapse
|
11
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Qasim almajidi Y, Althomali RH, Gandla K, Uinarni H, Sharma N, Hussien BM, Alhassan MS, Mireya Romero-Parra R, Singh Bisht Y. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem J 2023; 191:108901. [DOI: 10.1016/j.microc.2023.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
14
|
Li X, Zhang M, Mo H, Li H, Xu D, Hu L. The Ultrasensitive Detection of Aflatoxin M 1 Using Gold Nanoparticles Modified Electrode with Fe 3+ as a Probe. Foods 2023; 12:2521. [PMID: 37444259 DOI: 10.3390/foods12132521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The increasing incidence of diseases caused by highly carcinogenic aflatoxin M1 (AFM1) in food demands a simple, fast, and cost-effective detection technique capable of sensitively monitoring AFM1. Recent works predominantly focus on the electrochemical aptamer-based biosensor, which still faces challenges and high costs in experimentally identifying an efficient candidate aptamer. However, the direct electrochemical detection of AFM1 has been scarcely reported thus far. In this study, we observed a significant influence on the electrochemical signals of ferric ions at a gold nanoparticle-modified glassy carbon electrode (AuNPs/GCE) by adding varying amounts of AFM1. Utilizing ferricyanide as a sensitive indicator of AFM1, we have introduced a novel approach for detecting AFM1, achieving an unprecedentedly low detection limit of 1.6 × 10-21 g/L. Through monitoring the fluorescence quenching of AFM1 with Fe3+ addition, the interaction between them has been identified at a ratio of 1:936. Transient fluorescence analysis reveals that the fluorescence quenching process is predominantly static. It is interesting that the application of iron chelator diethylenetriaminepentaacetic acid (DTPA) cannot prevent the interaction between AFM1 and Fe3+. With a particle size distribution analysis, it is suggested that a combination of AFM1 and Fe3+ occurs and forms a polymer-like aggregate. Nonetheless, the mutual reaction mechanism between AFM1 and Fe3+ remains unexplained and urgently necessitates unveiling. Finally, the developed sensor is successfully applied for the AFM1 test in real samples, fully meeting the detection requirements for milk.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Miao Zhang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
15
|
Zhang T, Xu S, Lin X, Liu J, Wang K. Label-Free Electrochemical Aptasensor Based on the Vertically-Aligned Mesoporous Silica Films for Determination of Aflatoxin B1. BIOSENSORS 2023; 13:661. [PMID: 37367026 DOI: 10.3390/bios13060661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Herein we report a highly specific electrochemical aptasenseor for AFB1 determination based on AFB1-controlled diffusion of redox probe (Ru(NH3)63+) through nanochannels of AFB1-specific aptamer functionalized VMSF. A high density of silanol groups on the inner surface confers VMSF with cationic permselectivity, enabling electrostatic preconcentration of Ru(NH3)63+ and producing amplified electrochemical signals. Upon the addition of AFB1, the specific interaction between the aptamer and AFB1 occurs and generates steric hindrance effect on the access of Ru(NH3)63+, finally resulting in the reduced electrochemical responses and allowing the quantitative determination of AFB1. The proposed electrochemical aptasensor shows excellent detection performance in the range of 3 pg/mL to 3 μg/mL with a low detection limit of 2.3 pg/mL for AFB1 detection. Practical analysis of AFB1 in peanut and corn samples is also accomplished with satisfactory results by our fabricated electrochemical aptasensor.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
16
|
Thurner F, AlZahra'a Alatraktchi F. Recent advances in electrochemical biosensing of aflatoxin M1 in milk – a mini review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
18
|
Recent advances of amino acid-based biosensors for the efficient food and water contamination detection in food samples and environmental resources: A technical and analytical overview towards advanced nanomaterials and biological receptor. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
19
|
Ou G, Zhao A, Liao H, Zhang Z, Xiao F. Au nanopartics decorated urchin-like Bi2S3 on graphene wrapped carbon fiber microelectrode: Towards electrochemical immunosensor for sensitive determination of aflatoxin B1. J Electroanal Chem (Lausanne) 2023; 929:117124. [DOI: 10.1016/j.jelechem.2022.117124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Parihar A, Choudhary NK, Sharma P, Khan R. MXene-based aptasensor for the detection of aflatoxin in food and agricultural products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120695. [PMID: 36423887 DOI: 10.1016/j.envpol.2022.120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The detection of toxins that contaminate food needs highly sensitive and selective techniques to prevent substantial monitory loss. In this regard, various nanostructured material-enabled biosensors, have recently been developed to improve the detection of food toxins among them aflatoxin is the prevalent one. The biosensor-based detection of aflatoxin is quick, cheaper, and needs less skilled personnel, therefore overcoming the shortcomings of conventional techniques such as LC/MS-MS, HPLC, and ELISA assays. 2D MXenes manifest as an efficient material for biosensing due to their desirable biocompatibility, magnificent mechanical strength, easiness of surface functionalization, and tuneable optical and electronic features. Contrary to this, aptamers as biorecognition elements (BREs) possess high selectivity, sensitivity, and ease of synthesis when compared to conventional BREs. In this review, we explored the most cutting-edge aptamer-based MXene-enabled biosensing technologies for the detection of the most poisonous mycotoxins (i.e., Aflatoxins) in food and environmental matrices. The discussion begins with the synthesis processes and surface functionalization/modification of MXenes. Computational approaches for designing aptasensors and advanced data analysis based on artificial intelligence and machine learning with special emphasis over Internet-of-Thing integrated biosensing devices has been presented. Besides, the advantages of aptasensors over conventional methods along with their limitations have been briefed. Their benefits, drawbacks, and future potential are discussed concerning their analytical performance, utility, and on-site adaptability. Additionally, next-generation MXene-enabled biosensing technologies that provide end users with simple handling and improved sensitivity and selectivity have been emphasized. Owing to massive applicability, economic/commercial potential of MXene in current and future perspective have been highlighted. Finally, the existing difficulties are scrutinized and a roadmap for developing sophisticated biosensing technologies to detect toxins in various samples in the future is projected.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
| | - Nishant Kumar Choudhary
- NIMS Institute of Allied Medical Science and Technology, NIMS University, Jaipur, 303121, Rajasthan, India
| | - Palak Sharma
- NIMS Institute of Allied Medical Science and Technology, NIMS University, Jaipur, 303121, Rajasthan, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Xiao J, Shi S, Yao L, Feng J, Zuo J, He Q. Fast and Ultrasensitive Electrochemical Detection for Antiviral Drug Tenofovir Disoproxil Fumarate in Biological Matrices. BIOSENSORS 2022; 12:1123. [PMID: 36551090 PMCID: PMC9775179 DOI: 10.3390/bios12121123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF. Moreover, bare electrodes are susceptible to pollution, and have high overvoltage and low sensitivity, so it is crucial to find a suitable electrode material. In this work, zirconium oxide (ZrO2) that has a certain selectivity to phosphoric acid groups was synthesized by a hydrothermal method with zirconyl chloride octahydrate as the precursor. A composite modified glassy carbon electrode for zirconium oxide-chitosan-multiwalled carbon nanotubes (ZrO2-CS-MWCNTs/GCE) was used for the first time to detect the TDF, and achieved rapid, sensitive detection of TDF with a detection limit of sub-micron content. The ZrO2-CS-MWCNTs composite was created using sonication of a mixture of ZrO2 and CS-MWCNTs solution. The composite was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Electrochemical analysis was performed using differential pulse voltammetry (DPV). Compared with single-material electrodes, the ZrO2-CS-MWCNTs/GCE significantly improves the electrochemical sensing of TDF due to the synergistic effect of the composite. Under optimal conditions, the proposed method has achieved good results in linear range (0.3~30 μM; 30~100 μM) and detection limit (0.0625 μM). Moreover, the sensor has the merits of simple preparation, good reproducibility and good repeatability. The ZrO2-CS-MWCNTs/GCE has been applied to the determination of TDF in serum and urine, and it may be helpful for potential applications of other substances with similar structures.
Collapse
Affiliation(s)
- Jingyun Xiao
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| | - Shuting Shi
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
| | - Jinxia Feng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Jinsong Zuo
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| |
Collapse
|
22
|
Chen H, Liu H, Cui C, Zhang W, Zuo Y. Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for Brucella Testing in milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4653-4662. [PMID: 36276517 PMCID: PMC9579256 DOI: 10.1007/s13197-022-05544-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, a simple label-free biosensor for Brucella was constructed, which based on the screen-printed carbon electrode (SPCE) modified by Recombinant protein G/gold nanoparticles/graphene oxide (RpG/Au/GO). The impedance responses of the proposed biosensor were measured by electrochemical AC impedance method in Brucella antigen gradient concentration solutions. The results showed that the linear range of this biosensor was from 1.6 × 102 CFU/mL to 1.6 × 108 CFU/mL with the minimum detection limit of 3.2 × 102 CFU/mL (S/N = 3). Moreover, the biosensor for Brucella detection possessed acceptable reproducibility with a relative standard deviation of 5.15% and acceptable stability with a relative standard deviation of 4.68%. The spiked recovery rate in actual pasteurized milk samples was more than 92%. Therefore, the developed biosensor exhibits excellent prospects in the selective quantification detection of Brucella abortus. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05544-8.
Collapse
Affiliation(s)
- Hongshuo Chen
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, 063210 People’s Republic of China
- College of Engineering, Shanxi Agricultural University, Taigu, 030801 People’s Republic of China
| | - Haibin Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210 People’s Republic of China
| | - Chuanjin Cui
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, 063210 People’s Republic of China
| | - Wensi Zhang
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, 063210 People’s Republic of China
| | - Yueming Zuo
- College of Engineering, Shanxi Agricultural University, Taigu, 030801 People’s Republic of China
| |
Collapse
|
23
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
24
|
Park JW. Principles and Applications of Loop-Mediated Isothermal Amplification to Point-of-Care Tests. BIOSENSORS 2022; 12:bios12100857. [PMID: 36290994 PMCID: PMC9599884 DOI: 10.3390/bios12100857] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/03/2023]
Abstract
For the identification of nucleic acids, which are important biomarkers of pathogen-mediated diseases and viruses, the gold standard for NA-based diagnostic applications is polymerase chain reaction (PCR). However, the requirements of PCR limit its application as a rapid point-of-care diagnostic technique. To address the challenges associated with regular PCR, many isothermal amplification methods have been developed to accurately detect NAs. Isothermal amplification methods enable NA amplification without changes in temperature with simple devices, as well as faster amplification times compared with regular PCR. Of the isothermal amplifications, loop-mediated isothermal amplification (LAMP) is the most studied because it amplifies NAs rapidly and specifically. This review describes the principles of LAMP, the methods used to monitor the process of LAMP, and examples of biosensors that detect the amplicons of LAMP. In addition, current trends in the application of LAMP to smartphones and self-diagnosis systems for point-of-care tests are also discussed.
Collapse
Affiliation(s)
- Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Korea
| |
Collapse
|
25
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
26
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
27
|
An Electrochemical Immunosensor for the Determination of Procalcitonin Using the Gold-Graphene Interdigitated Electrode. BIOSENSORS 2022; 12:bios12100771. [PMID: 36290909 PMCID: PMC9599768 DOI: 10.3390/bios12100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 01/09/2023]
Abstract
Procalcitonin (PCT) is considered a sepsis and infection biomarker. Herein, an interdigitated electrochemical immunosensor for the determination of PCT has been developed. The interdigitated electrode was made of the laser-engraved graphene electrode decorated with gold (LEGE/Aunano). The scanning electron microscopy indicated the LEGE/Aunano has been fabricated successfully. After that, the anti-PTC antibodies were immobilized on the surface of the electrode by using 3-mercaptopropionic acid. The electrochemical performance of the fabricated immunosensor was studied using electrochemical impedance spectroscopy (EIS). The EIS method was used for the determination of PCT in the concentration range of 2.5–800 pg/mL with a limit of detection of 0.36 pg/mL. The effect of several interfering agents such as the C reactive protein (CRP), immunoglobulin G (IgG), and human serum albumin (HSA) was also studied. The fabricated immunosensor had a good selectivity to the PCT. The stability of the immunosensor was also studied for 1 month. The relative standard deviation (RSD) was obtained to be 5.2%.
Collapse
|
28
|
Properties of a Novel Salmonella Phage L66 and Its Application Based on Electrochemical Sensor-Combined AuNPs to Detect Salmonella. Foods 2022; 11:foods11182836. [PMID: 36140964 PMCID: PMC9498146 DOI: 10.3390/foods11182836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/19/2022] Open
Abstract
Salmonella is widespread in nature and poses a significant threat to human health and safety. Phage is considered as a new tool for the control of food-borne pathogens. In this study, Salmonella phage L66 (phage L66) was isolated from sewage by using Salmonella Typhimurium ATCC 14028 as the host bacterium, and its basic properties were obtained by biological and bioinformatics analysis. Phage L66 had a broad host spectrum, with an optimal infection complex of 0.1 and an optimal adsorption rate of 90.06%. It also exhibited thermal stability between 30 °C~60 °C and pH stability pH from 3 to 12, and the average lysis amount was 46 PFU/cell. The genome sequence analysis showed that the genome length of phage L66 was 157,675 bp and the average GC content was 46.13%. It was predicted to contain 209 genes, 97 of which were annotated with known functions based on the evolutionary analysis, and phage L66 was attributed to the Kuttervirus genus. Subsequently, an electrochemical sensor using phage L66 as a recognition factor was developed and the working electrode GDE-AuNPs-MPA-Phage L66 was prepared by layer-by-layer assembly for the detection of Salmonella. The slope of the impedance was 0.9985 within the scope from 20 to 2 × 107 CFU/mL of bacterial concentration. The minimum detection limit of the method was 13 CFU/mL, and the average spiked recovery rate was 102.3% with a relative standard deviation of 5.16%. The specificity and stability of this sensor were excellent, and it can be applied for the rapid detection of Salmonella in various foods. It provides a phage-based electrochemical biosensor for the detection of pathogenic bacteria.
Collapse
|
29
|
Chitosan/Gold Nanoparticles Nanocomposite Film for Bisphenol A Electrochemical Sensing. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is considered an endocrine-disrupting compound and can cause toxicological effects, even at low doses. The development of sensitive and reliable sensors that would allow the detection of such contaminant is highly pursued. Herein, we report an electrochemical sensing strategy based on a simple and low-cost nanocomposite film sensor platform for BPA detection. The platform was developed by modifying a fluorine-doped tin oxide (FTO) electrode with layer-by-layer (LbL) films of chitosan (Chi) and gold nanoparticles functionalized with a polythiophene derivative (AuNPs:PTS). The growth of the Chi/AuNPs:PTS LbL films was monitored by UV–Vis spectroscopy. Electrochemical characterization revealed that the three-bilayer film exhibited the highest electrocatalytic performance and differential-pulse voltammetry (DPV) measurements demonstrated that the modified electrode was suitable for BPA detection through a quasi-reversible and adsorption-controlled electrochemical oxidation and reduction process. The developed sensor exhibited a linear response range from 0.4 to 20 μmol L−1, with a detection limit of 0.32 μmol L−1. The sensor showed good reproducibility with relative standard deviations of 2.12% and 3.73% to intra- and inter-electrode, respectively. Furthermore, the platform demonstrated to be suitable to detect BPA in real water samples, as well as selective for BPA detection in solutions with 100-fold excess of common interfering compounds.
Collapse
|
30
|
Kumar J, Soomro RA, Neiber RR, Ahmed N, Medany SS, Albaqami MD, Nafady A. Ni Nanoparticles Embedded Ti 3C 2T x-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. BIOSENSORS 2022; 12:231. [PMID: 35448291 PMCID: PMC9030921 DOI: 10.3390/bios12040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/08/2023]
Abstract
MXenes-Ti3C2Tx, based on their versatile surface characteristics, has rapidly advanced as an interactive substrate to develop electrochemical sensors for clinical applications. Herein, Ni embedded Ti3C2Tx (MX-Ni) composites were prepared using a self-assembly approach where Ti3C2Tx sheets served as an interactive conductive substrate as well as a protective layer to nickel nanoparticles (Ni NPs), preventing their surface oxidation and aggregation. The composite displayed a cluster-like morphology with an intimate interfacial arrangement between Ni, Ti3C2Tx and Ti3C2Tx-derived TiO2. The configuration of MX-Ni into an electrochemical sensor realized a robust cathodic reduction current against methylmalonic acid (MMA), a biomarker to vitamin B12 deficiency. The synergism of Ni NPs strong redox characteristics with conductive Ti3C2Tx enabled sensitive signal output in wide detection ranges of 0.001 to 0.003 µM and 0.0035 to 0.017 µM and a detection sensitivity down to 0.12 pM of MMA. Importantly, the sensor demonstrated high signal reproducibility and excellent operational capabilities for MMA in a complex biological matrix such as human urine samples.
Collapse
Affiliation(s)
- Jai Kumar
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rana R. Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Nazeer Ahmed
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.D.A.); (A.N.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.D.A.); (A.N.)
| |
Collapse
|