1
|
Wang H, Lv Z, Chen M, Jiang Y, Huang Y, Ren B, Ying X, Lin G, Xie G, Zheng W. Target-induced proximity ligation triggers polymerase chain reaction for subset tracing of small extracellular vesicles. Talanta 2025; 287:127609. [PMID: 39862517 DOI: 10.1016/j.talanta.2025.127609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
The considerable abundance and remarkable stability of sEVs provide substantial benefits for diagnosing Alzheimer's disease. Therefore, precise tracking subtypes of small extracellular vesicles (sEVs) is crucial for screening novel diagnostic biomarkers and developing therapeutic technologies. We propose a three-target recognition-mediated proximity ligation assay for the precise identification of sEV subtypes utilizing three specifically designed probes: one for the exosomal surface protein CD63 recognition, one for fixing the biolipid layer, and the third for the identification of distinctive protein associated with a specific subtype of sEVs (L1CAM positive sEVs). The developed sEVs subtype tracing approach integrates proximity ligation of the three probes to specifically bind to surface biomarkers and polymerase chain reaction (PCR) for signal amplification, enabling "AND" logic analysis of three essential components on sEVs. This method can be utilized for both sEVs quantification and subtype tracing. The proposed approach demonstrated a low limit of detection for neuronal sEVs at 2.5 particles/μL, according to this design. In addition, we utilized this technique to measure plasma sEV levels in individuals with Alzheimer's disease and examined its early diagnostic effectiveness. The approach can assess the concentration ratios of neuronal sEVs and cancer-derived sEVs, highlighting its potential for clinical applications. In addition, the approach enables precise tracing and identification of sEVs subtypes, hence facilitating extensive applications in biological science, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Zhongyue Lv
- Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Yinqi Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325027, China
| | - Bingxuan Ren
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315211, China
| | - Xujin Ying
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Guanjiang Lin
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China.
| | - Wu Zheng
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China.
| |
Collapse
|
2
|
Abedi R, Raoof JB, Bagheri Hashkavayi A, Jalayeri Darbandi Z, Abedi P, Barati Darband G. Innovations in aptamer-based biosensors for detection of pathogenic bacteria: Recent advances and perspective. Talanta 2025; 295:128330. [PMID: 40388877 DOI: 10.1016/j.talanta.2025.128330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
The rapid and accurate detection of pathogenic bacteria is a pressing concern in the fields of public health, food safety, and environmental monitoring. However, traditional methods often prove to be slow and difficult to quantify accurately. Thus, there is a pressing need to develop advanced methods that enable rapid detection which is sensitive and inexpensive. Aptamers, which are short nucleic acid sequences derived through a process called systematic evolution of ligands by exponential enrichment (SELEX), offer a promising alternative due to their unique binding characteristics. These properties confer several advantages over traditional antibodies, making aptamers effective and versatile bioreceptors for pathogen detection. Recent advancements have led to the development of various aptamer-based biosensors utilizing diverse signaling strategies, including optical, electrochemical, mass-based, paper-based and microchip capillary electrophoresis (MCE) methods. The integration of nanomaterials with aptamer technology has further enhanced biosensor performance by improving sensitivity and enabling real-time monitoring of bacterial contamination. In this review, the focus is on current developments in aptamer-based biosensors and their potential applications in clinical diagnostics, food safety and environmental monitoring. As research progresses, the customization of aptamer sequences for specific targets is expected to yield tailored diagnostic solutions, ultimately improving patient outcomes and public health responses. The continued exploration of aptamer technology marks a significant advancement in methodologies for detecting pathogenic bacteria, highlighting not only the promise of aptamers as effective detection tools but also the critical need for multidisciplinary collaboration, integrating molecular biology, materials science, and microfluidics, to overcome challenges in this field.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Applied Physical Sciences, University of North Carolina- Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC, 27599-2100, USA
| | - Zahra Jalayeri Darbandi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran
| | - Pouria Abedi
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran.
| |
Collapse
|
3
|
Xu F, Wang K, Xu C, Xu J, Zhu C, Zhu Y, Zhu C, Zhang W, Zhang J, Li Z, Guan X. Enrichment and Detection of HER2-Expressing Extracellular Vesicles Based on DNA Tetrahedral Nanostructures: A New Strategy for Liquid Biopsy in Breast Cancer. Anal Chem 2025; 97:9212-9219. [PMID: 40116571 DOI: 10.1021/acs.analchem.4c06417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Extracellular vesicles (EVs) play a crucial role as important mediators of intercellular communication in the progression of tumors. The capture and analysis of tumor-derived EVs offer new possibilities for the application of cancer liquid biopsies. This study aims to construct a DNA tetrahedral nanostructure that specifically recognizes HER2 and CD63, enabling the effective enrichment and detection of HER2-expressing EVs (HEVs). We enriched HEVs from cell lines and 13 random clinical samples and validated their characteristics by dynamic light scattering, transmission electron microscopy, and Western blotting. Further, we detected HEVs levels in clinical samples. The HEVs levels in HER2-positive breast cancer patients were significantly higher than those in healthy/benign controls (mean, 4.737 vs 4.160 vs 4.144 U/μL, P < 0.0001), displaying a concentration gradient across different HER2 expression levels. This study establishes an approach for HEV detection, thus providing a new tool for the diagnosis of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ke Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chi Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ye Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chuandong Zhu
- Department of Oncology, Nanjing Second Hospital, Nanjing 210003, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing 210006, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210000, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
4
|
Kong X, Li C, Li Y, Song X, Huang L. Ultrasensitive determination of exosomes by tyramine-assisted colorimetric sensors for tumor diagnosis. Analyst 2025; 150:1670-1678. [PMID: 40111754 DOI: 10.1039/d5an00013k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Exosomes, which are recognized as a kind of valuable liquid biopsy biomarker, exhibit significant application potential in cancer diagnosis. Therefore, it is crucial to establish a reliable detection method for their clinical application. In this study, we have presented an ultrasensitive aptasensor for the visual detection of exosomes by employing tyramine-assisted dual-signal amplification technology. First, we utilized magnetic beads modified with the nucleolin aptamer (MNPs-Aptnucleolin) to capture exosomes. This modification not only enhanced specificity, but also reduced interference of complex sample components. The captured exosomes as a rich source of proteins can bind with multiple biotinyl-tyramide (Bio-TR) molecules through a catalytic reaction involving horseradish peroxidase (HRP) and H2O2. Second, streptavidin-HRP complex-modified gold nanoparticles (GNPs-Str-HRP) as a signal amplification probe was introduced to further enhance the detection signal by binding to Bio-TR. Lastly, the addition of 3,3',5,5'-tetramethylbenzidine (TMB) solution induced a visible color change, enabling quantification of the exosome concentration. This dual-signal amplification strategy resulted in a low limit of detection (LOD) of 63 particles per μL, and it also demonstrated accurate visual diagnosis capabilities for clinical samples. The successful implementation of this approach suggests its potential as a promising tool for point-of-care testing (POCT) in cancer diagnostics.
Collapse
Affiliation(s)
- Xiaoming Kong
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230022, China
| | - Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Xueqian Song
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
5
|
Li C, Jia H, Wei R, Liu J, Wang H, Zhou M, Yan C, Huang L. An easy-operation aptasensor for simultaneous detection of multiple tumor-associated exosomal proteins based on multicolor fluorescent DNA nanoassemblies. Talanta 2025; 281:126843. [PMID: 39277930 DOI: 10.1016/j.talanta.2024.126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
As a promising liquid biopsy biomarker, exosomes have demonstrated great potential and advantages in the noninvasive tumor diagnosis. However, an accurate and sensitive method for tumors-associated exosomes detection is scarce. Herein, we presented an easy-operation aptasensor which simultaneously detect multiple exosomal proteins by using multicolor fluorescent DNA nanoassemblies (FDNs) and CD63 aptamer-modified magnetic beads (MNPs-AptCD63). In this system, the FDNs were firstly constructed by encapsulating different quantum dots (QDs) into rolling circle amplification (RCA) products that contained different aptamer sequences. Thus, the FDNs could selectively recognize the different exosomal proteins captured by the MNPs-AptCD63, and achieve the multiplex and sensitive detection according to the fluorescence of QDs. Benefiting from the signal amplification capacity and high selectivity of FDNs, this aptasensor not only could detect exosomes as low as 650 particles/μL, but also showed accurate analysis in clinical samples. In addition, we can also achieve point-of-care testing (POCT) due to the simple analysis steps and naked-eye observable fluorescence of QDs under the ultraviolet irradiation. We believe that our aptasensor could provide a promising platform for exosomes-based personalized diagnosis and precise monitoring of human health.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rong Wei
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jiqing Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haoyu Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
6
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
7
|
Kim J, Lee GH, Nam D, Park KS. Enhancing multiplex detection capabilities of the Cas12a/blocker DNA system. Talanta 2025; 281:126864. [PMID: 39270605 DOI: 10.1016/j.talanta.2024.126864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
In the field of molecular diagnostics, the demand for multiplex detection, aimed at reducing overall analysis costs and streamlining procedures, is on the rise, prompting ongoing developments in various technologies. In this study, we developed a novel system, the split T7 promoter-based three-way junction-transcription, coupled with Cas12a/Blocker DNA (T3-CaB), for the multiplex detection of target nucleic acids. The T3-CaB system builds upon the foundation of the T3 system, generating numerous RNA transcripts upon encountering target nucleic acids. Subsequently, these RNA transcripts displace the blocker DNA from reporter DNA, allowing active Cas12a to engage in efficient trans-cleavage reaction on the reporter DNA, resulting in a strong fluorescence signal. Importantly, the proposed system operates at the isothermal condition (37 °C), with the entire analysis completed within 90 min. Further, the detection performance of the proposed system surpasses that of the preceding Cas12a/Blocker DNA system. Model targets, namely the 16S rRNA of Staphylococcus aureus and Escherichia coli, were selected, and a successful demonstration of multiplex detection was achieved. This technology holds promise for broadening the applicability of CRISPR/Cas-based diagnostics, especially in settings necessitating multiplex detection capabilities.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gun Haeng Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Daehan Nam
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Carole NVD, Sheng L, Ji J, Zhang Y, Sun X. Multispectral pathogens detection in food using multiplex hyperbranched saltatory rolling circle amplification. Talanta 2024; 279:126618. [PMID: 39116729 DOI: 10.1016/j.talanta.2024.126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 μM for fluorescence and 78 μM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.
Collapse
Affiliation(s)
- Nanfack V D Carole
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
9
|
Zheng LE, Huang M, Liu Y, Bao Q, Huang Y, Ye Y, Liu M, Sun P. Colorimetric aptasensor based on temporally controllable light-stimulated oxidase-mimicking fluorescein for the sensitive detection of exosomes in mild conditions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3577-3586. [PMID: 38787692 DOI: 10.1039/d4ay00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Analysis of exosomes provides important information for rapid and non-invasive screening of tumors. However, sensitive and convenient detection of exosomes remains technically challenging to date. Herein, a colorimetric aptasensor based on the light-stimulated oxidase-mimicking activity of FITC was constructed for detecting ovarian cancer (OC) exosomes. The aptasensor contained an EpCAM aptamer to capture OC exosomes. Cholesterol and fluorescein (FITC) were used to modify either end of the DNA (DNA anchor). The DNA anchor could combine with exosomes through a hydrophobic reaction between cholesterol and the lipid membrane. FITC oxidized 3,3',5,5'-tetramethylbenzidine (TMB) under a 365 nm LED light source in a temporally controllable manner under mild conditions, causing the solution to change from colorless to blue, and the corresponding UV-vis absorbance increased. Based on this principle, the exosomes were qualitatively analyzed by observing the color change with the naked eye. In parallel, the exosome concentration was also detected using UV-vis spectrophotometry. The linear range was from 2 × 105 to 100 × 105 particles per mL with a limit of detection of 1.77 × 105 particles per mL. The developed aptasensor also exhibited favorable selectivity and could discriminate the exosomes from OC cells and normal cells. Besides, the receiver operating characteristic (ROC) curve demonstrates that it is possible to distinguish between patients with OC and healthy donors (HDs) using exosomes as the biomarker. Our technology may expand the applications of DNA-based detection method-enabled OC diagnostic tools.
Collapse
Affiliation(s)
- Li-E Zheng
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Min Huang
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yiyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qiufang Bao
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yuxiu Huang
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Gynecology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yuhong Ye
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Mengmeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou 350001, Fujian, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, Fujian, China
| |
Collapse
|
10
|
Tian R, Ma W, Wang L, Xie W, Wang Y, Yin Y, Weng T, He S, Fang S, Liang L, Wang L, Wang D, Bai J. The combination of DNA nanostructures and materials for highly sensitive electrochemical detection. Bioelectrochemistry 2024; 157:108651. [PMID: 38281367 DOI: 10.1016/j.bioelechem.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Due to the wide range of electrochemical devices available, DNA nanostructures and material-based technologies have been greatly broadened. They have been actively used to create a variety of beautiful nanostructures owing to their unmatched programmability. Currently, a variety of electrochemical devices have been used for rapid sensing of biomolecules and other diagnostic applications. Here, we provide a brief overview of recent advances in DNA-based biomolecular assays. Biosensing platform such as electrochemical biosensor, nanopore biosensor, and field-effect transistor biosensors (FET), which are equipped with aptamer, DNA walker, DNAzyme, DNA origami, and nanomaterials, has been developed for amplification detection. Under the optimal conditions, the proposed biosensor has good amplification detection performance. Further, we discussed the challenges of detection strategies in clinical applications and offered the prospect of this field.
Collapse
Affiliation(s)
- Rong Tian
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Wenhao Ma
- Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Lue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Xie
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Yajie Yin
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Ting Weng
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shixuan He
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Shaoxi Fang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liyuan Liang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China
| | - Liang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences & Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, PR China.
| | - Jingwei Bai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
11
|
Wu J, Mei X, Zhan X, Liu F, Liu D. Proximity hybridization based "turn-on" DNA tweezers for accurate and enzyme-free small extracellular vesicle analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38699853 DOI: 10.1039/d4ay00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Small extracellular vesicles (sEVs) are a type of extracellular vesicle that carries many types of molecular information. The identification of sEVs is essential for the non-invasive detection and treatment of illnesses. Hence, there is a significant need for the development of simple, sensitive, and precise methods for sEV detection. Herein, a DNA tweezers-based assay utilizing a "turn-on" mechanism and proximity ligation was suggested for the efficient and rapid detection of sEVs through amplified fluorescence. The target facilitates the proximity combination of the C1 probe and C2 probe, resulting in the formation of a complete extended sequence. The elongated sequence can cyclically initiate the hairpin probe (HP), leading to the activation of DNA tweezers. An excellent linear correlation was achieved, with a limit of detection of 57 particles per μL. Furthermore, it has been effectively employed to analyze sEVs under intricate experimental conditions, demonstrating a promising and pragmatic prospect for future applications. Given that the identification of sEVs was successfully accomplished using a single-step method that exhibited exceptional sensitivity and strong resistance to interference, the proposed technique has the potential to provide a beneficial platform for accurate recognition of sEVs and early detection of diseases.
Collapse
Affiliation(s)
- Jinlin Wu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xi Mei
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xiaoqin Zhan
- Department of Clinical Laboratory, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Fang Liu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
12
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
O’Brien C, Khor CK, Ardalan S, Ignaszak A. Multiplex electrochemical sensing platforms for the detection of breast cancer biomarkers. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1360510. [PMID: 38425422 PMCID: PMC10902167 DOI: 10.3389/fmedt.2024.1360510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herein, advancements in electroanalytical devices for the simultaneous detection of diverse breast cancer (BC) markers are demonstrated. This article identifies several important areas of exploration for electrochemical diagnostics and highlights important factors that are pivotal for the successful deployment of novel bioanalytical devices. We have highlighted that the limits of detection (LOD) reported for the multiplex electrochemical biosensor can surpass the sensitivity displayed by current clinical standards such as ELISA, FISH, and PCR. HER-2; a breast cancer marker characterised by increased metastatic potential, more aggressive development, and poor clinical outcomes; can be sensed with a LOD of 0.5 ng/ml using electrochemical multiplex platforms, which falls within the range of that measured by ELISA (from picogram/ml to nanogram/ml). Electrochemical multiplex biosensors are reported with detection limits of 0.53 ng/ml and 0.21 U/ml for MUC-1 and CA 15-3, respectively, or 5.8 × 10-3 U/ml for CA 15-3 alone. The sensitivity of electrochemical assays is improved when compared to conventional analysis of MUC-1 protein which is detected at 11-12 ng/ml, and ≤30 U/ml for CA 15-3 in the current clinical blood tests. The LOD for micro-ribonucleic acid (miRNA) biomarkers analyzed by electrochemical multiplex assays were all notedly superior at 9.79 × 10-16 M, 3.58 × 10-15 M, and 2.54 × 10-16 M for miRNA-155, miRNA-21, and miRNA-16, respectively. The dogma in miRNA testing is the qRT-PCR method, which reports ranges in the ng/ml level for the same miRNAs. Breast cancer exosomes, which are being explored as a new frontier of biosensing, have been detected electrochemically with an LOD of 103-108 particles/mL and can exceed detection limits seen by the tracking and analysis of nanoparticles (∼ 107 particles/ml), flow cytometry, Western blotting and ELISA, etc. A range of concentration at 78-5,000 pg/ml for RANKL and 16-1,000 pg/ml for TNF is reported for ELISA assay while LOD values of 2.6 and 3.0 pg/ml for RANKL and TNF, respectively, are demonstrated by the electrochemical dual immunoassay platform. Finally, EGFR and VEGF markers can be quantified at much lower concentrations (0.01 and 0.005 pg/ml for EGFR and VEGF, respectively) as compared to their ELISA assays (EGRF at 0.31-20 ng/ml and VEGF at 31.3-2,000 pg/ml). In this study we hope to answer several questions: (1) Are the limits of detection (LODs) reported for multiplex electrochemical biosensors of clinical relevance and how do they compare to well-established methods like ELISA, FISH, or PCR? (2) Can a single sensor electrode be used for the detection of multiple markers from one blood drop? (3) What mechanism of electrochemical biosensing is the most promising, and what technological advancements are needed to utilize these devices for multiplex POC detection? (4) Can nanotechnology advance the sensitive and selective diagnostics of multiple BC biomarkers? (5) Are there preferred receptors (antibody, nucleic acid or their combinations) and preferred biosensor designs (complementary methods, sandwich-type protocols, antibody/aptamer concept, label-free protocol)? (6) Why are we still without FDA-approved electrochemical multiplex devices for BC screening?
Collapse
Affiliation(s)
- Connor O’Brien
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chun Keat Khor
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Sina Ardalan
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
14
|
Zhang B, Ma X, Xie L, Li X, Chen L, He B. A dual-cycle amplification-based electrochemical platform for sensitive detection of tobramycin. Anal Chim Acta 2023; 1279:341770. [PMID: 37827631 DOI: 10.1016/j.aca.2023.341770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Tobramycin (TOB), an essential aminoglycoside antibiotic in human life, poses potential threats due to its residues in the environment. The primary concern is the adverse impact of excessive TOB on human kidneys, hearing, and other organs, significantly affecting human health. Constructing a sensitive electrochemical platform for simple and rapid trace detection is crucial. Herein, to enhance the sensitivity of TOB detection in the environment and mitigate the risks associated with residual antibiotics, an ultrasensitive electrochemical aptasensor was developed. RESULTS The sensor employs a dual-cycle amplification strategy involving catalytic hairpin assembly (CHA) and exonuclease III (Exo III) for efficient signal amplification. Simultaneously, the electrode performance was optimized by incorporating gold nanowires (AuNWs) onto the surface of reduced graphene oxide (PDA-rGO). Specifically, in the presence of TOB, which binds to the aptamer (Apt), dsDNA dissociates, releasing cDNA to open hairpin 1 (HP1) and initiate the CHA cycle with the participation of hairpin 2 (HP2). Exo III shears HP1 in the HP1/HP2 complex, freeing HP2 to participate in the CHA cycle again. Ultimately, a significant amount of signal label is retained on the electrode by hybridizing with sheared HP1, generating a robust electrical signal. SIGNIFICANCE Through the signal amplification strategy, the aptasensor design provides a broad linear range of 0.005-500 nM, with a low detection limit of 0.112 pM for TOB. It is worth mentioning that the aptasensor displayed favorable stability, specificity, and reproducibility, and has been successfully applied to practical samples, demonstrating its utility in practical applications.
Collapse
Affiliation(s)
- Baozhong Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Xinyue Ma
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lingling Xie
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xiquan Li
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China.
| |
Collapse
|
15
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
16
|
Cha BS, Jang YJ, Lee ES, Kim DY, Woo JS, Son J, Kim S, Shin J, Han J, Kim S, Park KS. Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell-Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Adv Healthc Mater 2023; 12:e2300854. [PMID: 37129521 DOI: 10.1002/adhm.202300854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) as the second leading cause of global cancer deaths poses critical challenges in clinical settings. Cancer-derived small extracellular vesicles (sEVs), which are secreted by cancer cells, have been shown to mediate tumor development, invasion, and even metastasis, and have thus received increasing attention for the development of cancer diagnostic or therapeutic platforms. In the present study, the sEV-targeted systematic evolution of ligands by exponential enrichment (E-SELEX) is developed to generate a high-quality aptamer (CCE-10F) that recognizes and binds to CRC-derived sEVs. Via an in-depth investigation, it is confirmed that this novel aptamer possesses high affinity (Kd = 3.41 nm) for CRC-derived sEVs and exhibits a wide linear range (2.0 × 104 -1.0 × 106 particles µL-1 ) with a limit of detection (LOD) of 1.0 × 103 particles µL-1 . Furthermore, the aptamer discriminates CRC cell-derived sEVs from those derived from normal colon cell, human serum, and other cancer cells, showing high specificity for CRC cell-derived sEVs and significantly suppresses the critical processes of metastasis, including cellular migration, invasion, and angiogenesis, which are originally induced by sEVs themselves. These findings are highly encouraging for the potential use of the aptamer in sEV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Su Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokhwan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
17
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. A signal-off aptasensor for the determination of Acinetobacter baumannii by using methylene blue as an electrochemical probe. Mikrochim Acta 2023; 190:308. [PMID: 37466698 DOI: 10.1007/s00604-023-05901-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@Fe3O4@SiO2-Cl nanocomposite and then binding A. baumannii-specific aptamer using covalent immobilization on the modified electrode surface and the interaction of methylene blue (MB) with Apt as an electrochemical redox indicator. As a result of the incubation of the A. baumannii bacteria as a target on the proposed aptasensor, a cathodic peak current density (Jpc) of MB decreased due to the formation of the Apt-A. baumannii complex and MB being released from the immobilized Apt on the surface of the modified electrode. In addition to increasing the electron transfer kinetics, the nanocomposite provides a relatively stable matrix to improve the loading Apt sequence. The suggested aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of 10.0-1.0 × 107 colony-forming unit (CFU) mL-1 and a detection limit of 1 CFU mL-1 (S/N = 3) using differential pulse voltammetry (DPV) studies at a working potential of ~0.29 V and a scan rate of 100 mV s-1. The outcomes revealed that the aptasensor exhibited high A. baumannii detection sensitivity, stability, reproducibility, and specificity.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Molecular and Cell Biology, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
18
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
19
|
Zhang M, Xia L, Mei W, Zou Q, Liu H, Wang H, Zou L, Wang Q, Yang X, Wang K. One-step multiplex analysis of breast cancer exosomes using an electrochemical strategy assisted by gold nanoparticles. Anal Chim Acta 2023; 1254:341130. [PMID: 37005015 DOI: 10.1016/j.aca.2023.341130] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Exosomes, as a non-invasive biomarker, perform an important role in breast cancer screening and prognosis monitoring. However, establishing a simple, sensitive, and reliable exosome analysis technique remains challenging. Herein, a one-step multiplex analysis electrochemical aptasensor based on a multi-probe recognition strategy was constructed to analyze breast cancer exosomes. HER2-positive breast cancer cell (SK-BR-3) exosomes were selected as the model targets and three aptamers including CD63, HER2 and EpCAM aptamers were used as the capture units. Methylene blue (MB) functionalized HER2 aptamer and ferrocene (Fc) functionalized EpCAM aptamer, which were modified on gold nanoparticles (Au NPs), i.e. MB-HER2-Au NPs and Fc-EpCAM-Au NPs, were used as signal units. When the mixture of target exosomes, MB-HER2-Au NPs and Fc-EpCAM-Au NPs were added on the CD63 aptamer modified gold electrode, two Au NPs modified by MB and Fc could be specifically captured on the electrode by the recognition of three aptamers with target exosomes. Then one-step multiplex analysis of exosomes was achieved by detecting two independent electrochemical signals. This strategy can not only distinguish breast cancer exosomes from other exosomes (including normal exosomes and other tumor exosomes) but also HER2-positive breast cancer exosomes and HER2-negative breast cancer exosomes. Besides, it had high sensitivity and can detect SK-BR-3 exosomes with a concentration as low as 3.4 × 103 particles mL-1. Crucially, this method can be applicable to the examination of exosomes in complicated samples, which is anticipated to afford assistance for the screening and prognosis of breast cancer.
Collapse
|
20
|
Sadeghi M, Sadeghi S, Naghib SM, Garshasbi HR. A Comprehensive Review on Electrochemical Nano Biosensors for Precise Detection of Blood-Based Oncomarkers in Breast Cancer. BIOSENSORS 2023; 13:bios13040481. [PMID: 37185556 PMCID: PMC10136762 DOI: 10.3390/bios13040481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.
Collapse
Affiliation(s)
- Mahdi Sadeghi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
21
|
Negahdary M, Angnes L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023; 259:124548. [PMID: 37062088 DOI: 10.1016/j.talanta.2023.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
New technologies have provided suitable tools for rapid diagnosis of cancer which can reduce treatment costs and even increase patients' survival rates. Recently, the development of electrochemical aptamer-based nanobiosensors has raised great hopes for early, sensitive, selective, and low-cost cancer diagnosis. Here, we reviewed the flagged recent research (2021-2023) developed as a series of biosensors equipped with nanomaterials and aptamer sequences (nanoaptasensors) to diagnose/prognosis of various types of cancers. Equipping these aptasensors with nanomaterials and using advanced biomolecular technologies have provided specified biosensing interfaces for more optimal and reliable detection of cancer biomarkers. The primary intention of this review was to present and categorize the latest innovations used in the design of these diagnostic tools, including the hottest surface modifications and assembly of sensing bioplatforms considering diagnostic mechanisms. The main classification is based on applying various nanomaterials and sub-classifications considered based on the type of analyte and other vital features. This review may help design subsequent electrochemical aptasensors. Likewise, the up-to-date status, remaining limitations, and possible paths for translating aptasensors to clinical cancer assay tools can be clarified.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
22
|
Extracellular Vesicles, as Drug-Delivery Vehicles, Improve the Biological Activities of Astaxanthin. Antioxidants (Basel) 2023; 12:antiox12020473. [PMID: 36830031 PMCID: PMC9952194 DOI: 10.3390/antiox12020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Astaxanthin (AST) exhibits potent antioxidant and anti-inflammatory activities but poor stability and biological efficacy, which limit its application in the food and medical industries. In the present study, a new strategy was proposed to enhance the biological activities of AST using fetal bovine serum-derived extracellular vesicles (EVs). Saponin-assisted incubation was used to load AST owing to its high encapsulation efficiency and loading capacity. AST-incorporated EVs (EV-ASTs) maintained their original EV morphology and showed high stability at 4 °C, 25 °C, and 37 °C over a 28-day period, which was attributed to the protective environment provided by the phospholipid bilayer membrane of the EVs. Additionally, the EV-ASTs exhibited excellent antioxidant and anti-inflammatory activities in HaCaT keratinocytes and RAW 264.7 macrophage cells, respectively; these were significantly higher than those of free AST. Furthermore, the mechanism associated with the enhanced biological activities of EV-ASTs was evaluated by analyzing the expression of genes involved in antioxidation and anti-inflammation, in parallel with cellular in vitro assays. These results provide insights into methods for improving the performance of hydrophobic drugs using nature-derived EVs and will contribute to the development of novel drug-delivery systems.
Collapse
|
23
|
Ye S, You Q, Song S, Wang H, Wang C, Zhu L, Yang Y. Nanostructures and Nanotechnologies for the Detection of Extracellular Vesicle. Adv Biol (Weinh) 2023; 7:e2200201. [PMID: 36394211 DOI: 10.1002/adbi.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Liquid biopsy has been taken as a minimally invasive examination and a promising surrogate to the clinically applied tissue-based test for the diagnosis and molecular analysis of cancer. Extracellular vesicles (EVs) carry complex molecular information from the tumor, allowing for the multicomponent analysis of cancer and would be beneficial to personalized medicine. In this review, the advanced nanomaterials and nanotechniques for the detection and molecular profiling of EVs, highlight the advantages of nanotechnology in the high-purity isolation and the high-sensitive and high-specific identification of EVs, are summarized. An outlook on the clinical application of nanotechnology-based liquid biopsy in the diagnosis, prognostication, and surveillance of cancer is also provided. It provides information for developing liquid biopsy based on EVs by discussing the advantages and challenges of functionalized nanomaterials and various nanotechnologies.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuya Song
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
25
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
26
|
Li S, Ma Q. Electrochemical nano-sensing interface for exosomes analysis and cancer diagnosis. Biosens Bioelectron 2022; 214:114554. [PMID: 35834978 DOI: 10.1016/j.bios.2022.114554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are a class of the nanosized extracellular vesicles, which have emerged as representative liquid biopsy biomarkers. To date, the electrochemical nanosensors are of great significance in the exosome detection with the advantages of easy operation, high accuracy and reliable repeatability. Especially, the growing field of nano interface has provided the electrochemical sensing platforms for the accurate exosomes analysis. The incorporation of multiple nanomaterials can take advantages and synergistic properties of functional units. So, based on the integration of with nanomaterial-based signal transduction and specific biorecognition, the nano-sensing interface provides excellent electrochemical features owing to rapid mass transport and excellent conductivity. The nano-sensing interface with a wide variety of morphologies and structure also provides the large active surface area for the immobilization of bio-capturing agents. Furthermore, through the design of nanostructured electrode array, the efficiency of transducer can be greatly improved. It should be noticed that the elaboration of a proper sensor requires the profound knowledge of the nano-sensing interface. Therefore, this article presents a review of the recent advance in exosomes detection based on the electrochemical nano-sensing interface, including electrochemical analysis principles, exosome sensing mechanisms, nano-interface construction strategies, as well as the typical diagnosis application. In particular, the article is focused on the exploration of the various electrochemical sensing performance of nano-interface in the exosome detection. We have also prospected the future trend and challenge of the electrochemical nano-sensing interface for exosomes analysis in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Shijie Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
27
|
Fan C, Jiang B, Shi W, Chen D, Zhou M. Tri-Channel Electrochemical Immunobiosensor for Combined Detections of Multiple Exosome Biomarkers of Lung Cancer. BIOSENSORS 2022; 12:435. [PMID: 35884238 PMCID: PMC9313016 DOI: 10.3390/bios12070435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Current methods for the early diagnosis of cancer can be invasive and costly. In recent years, exosomes have been recognized as potential biomarkers for cancer diagnostics. The common methods for quantitative detection of exosomes, such as nanoparticle tracking analysis (NTA) and flow cytometry, rely on large-scale instruments and complex operation, with results not specific for cancer. Herein, we present a tri-channel electrochemical immunobiosensor for enzyme-free and label-free detecting carcino-embryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin 19 fragments (Cyfra21-1) from exosomes for specific early diagnosis of lung cancer. The electrochemical immunobiosensor showed good selectivity and stability. Under optimum experimental conditions, the linear ranges were from 10-3 to 10 ng/mL for CEA, 10-4 to 102 ng/mL for NSE, and 10-3 to 102 ng/mL for Cyfra21-1, and a detection limit down to 10-4 ng/mL was achieved. Furthermore, we performed exosome analysis in three kinds of lung cancer. The results showed a distinct expression level of exosomal markers in different types. These works provide insight into a promising alternative for the quantification of exosomal markers in specific diseases in the following clinical bioassays.
Collapse
Affiliation(s)
- Cui Fan
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; (C.F.); (B.J.)
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Bingyan Jiang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; (C.F.); (B.J.)
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Wenjia Shi
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410083, China; (W.S.); (D.C.)
| | - Dan Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410083, China; (W.S.); (D.C.)
| | - Mingyong Zhou
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; (C.F.); (B.J.)
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
28
|
Pavadai R, Amalraj A, Perumal P. Cobalt based Bi-functional Metal Organic Framework mediated Fluorescent Bio-sensing System for Hypersensitive Detection of Ag+ Ions through Catalytic Hairpin Assembly. NEW J CHEM 2022. [DOI: 10.1039/d2nj02622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver is often used as a water disinfectant in healthcare institutions as well as in potable water purifiers. Even though there are no strict regulations regarding the amount of silver...
Collapse
|