1
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Wearable SERS devices in health management: Challenges and prospects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125957. [PMID: 40024086 DOI: 10.1016/j.saa.2025.125957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Surface-Enhanced Raman Scattering (SERS) is an advanced analytical technique renowned for its heightened sensitivity in detecting molecular vibrations. Its integration into wearable technologies facilitates the monitoring of biofluids, such as sweat and tears, enabling continuous, non-invasive, real-time analysis of human chemical and biomolecular processes. This capability underscores its significant potential for early disease detection and the advancement of personalized medicine. SERS has attracted considerable research attention in the fields of wearable flexible sensing and point-of-care testing (POCT) within medical diagnostics. Nonetheless, the integration of SERS with wearable technology presents several challenges, including device miniaturization, reliable biofluid sampling, user comfort, biocompatibility, and data interpretation. The ongoing advancements in nanotechnology and artificial intelligence are instrumental in addressing these challenges. This review provides a comprehensive analysis of design strategies for wearable SERS sensors and explores their applications within this domain. Finally, it addresses the current challenges in this area and the future prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnostics. Wearable SERS is a promising innovation in future healthcare, potentially enhancing individual health outcomes and reducing healthcare costs by fostering preventive health management approaches.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| |
Collapse
|
2
|
Chenani H, Razaghi Z, Saeidi M, Aghaii AH, Rastkhiz MA, Orouji M, Ekrami A, Simchi A. A stretchable, adhesive, and wearable hydrogel-based patches based on a bilayer PVA composite for online monitoring of sweat by artificial intelligence-assisted smartphones. Talanta 2025; 287:127640. [PMID: 39879801 DOI: 10.1016/j.talanta.2025.127640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Real-time monitoring of sweat using wearable devices faces challenges such as limited adhesion, mechanical flexibility, and accurate detection. In this work, we present a stretchable, adhesive, bilayer hydrogel-based patch designed for continuous monitoring of sweat pH and glucose levels using AI-assisted smartphones. The patch is composed of a bottom PVA hydrogel layer functionalized with colorimetric reagents and glucose oxidase enzyme, while the top PVA-sucrose layer enhances skin adhesion and protects against air moisture. The hydrogel demonstrates excellent mechanical properties with a tensile strain of 440 % and an elastic modulus of 157 kPa, providing a strong yet flexible interface with the skin. Machine learning models, including random forest (RF) and convolutional neural network (CNN), enabled accurate sweat analysis, achieving a coefficient of determination (R2) of ∼0.99 for pH (3-9) and glucose concentrations up to 0.5 mM. Validation against standard methods like HPLC confirmed the reliability of the patch. This AI-powered system offers a promising platform for next-generation wearable health monitoring devices.
Collapse
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - Zahra Razaghi
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - Aliakbar Ekrami
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran.
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran; Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Sadiq Z, Safiabadi Tali SH, Mansouri M, Jahanshahi-Anbuhi S. A dual-functional nanogold tablet as a plasmonic and nanozyme sensor for point-of-care applications. NANOSCALE ADVANCES 2025; 7:2967-2978. [PMID: 40177386 PMCID: PMC11960780 DOI: 10.1039/d5na00082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Point-of-care (POC) devices provide on-site disease diagnosis, particularly in resource-limited settings. Despite considerable progress in POC testing, the availability of commercial devices remains limited, primarily due to challenges in detection sensitivity and portability. Furthermore, advancements in existing POC devices are essential to better meet the needs of end-users. Herein, we present a colorimetric dual-functional tablet sensor using dextran-gold nanoparticles (dAuNPs) to detect and quantify uric acid and glucose levels in urine. Our tablet sensor combines the plasmonic and nanozyme properties of dAuNPs, resulting in highly sensitive detection of both biomarkers. Interestingly, we fabricated the nanogold tablet directly from the dAuNP solution without the addition of any external stabilizer or tablet-forming reagent, thus naming it a direct tablet. An enzyme-free approach was employed for uric acid detection, providing a wide detection range of 0.00187-7.8 mM and a low detection limit of 0.0037 mM, attributed to the hydrogen bonding between dextran and uric acid. On the other hand, the unique nanozyme properties of dAuNPs exhibited exclusive POx-mimetic activity for glucose detection (K m = 0.106 mM and V max = 369.72 mM min-1), with a lower detection limit of 0.625 mM. Our dual-functional tablet offers exceptional substrate selectivity for the colorimetric-chromogenic assay of both uric acid and glucose. This dual-functionality not only provides a highly sensitive, selective, and cost-effective detection strategy for resource-limited settings but also introduces a new avenue for designing customizable plasmonic-nanozyme nanogold tablet sensors as a powerful tool for rapid diagnosis.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Maryam Mansouri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| |
Collapse
|
4
|
Jiang B, Zhang H, Pan R, Ji M, Zhu L, Zhang G, Liu J, Shi H, Huang H, Wan S, Yin K, Sun L. Three-Electron Uric Acid Oxidation via Interdistance-Dependent Switching Pathways in Correlated Single-Atom Catalysts for Boosting Sensing Signals. Angew Chem Int Ed Engl 2025; 64:e202500474. [PMID: 39962913 DOI: 10.1002/anie.202500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The overly simplistic geometric and electronic structures of single-atom catalysts have become a significant bottleneck in the field of single-atom sensing, impeding both the design of highly efficient electrochemical sensors and the establishment of structure-activity relationships. To address these challenges, we present a novel strategy to boost the sensing performance of single-atom catalysts by precisely tuning the single-atomic interdistance (SAD) in correlated single-atom catalysts (c-SACs). A series of Ru-based c-SACs (Rud=6.2 Å, Rud=7.0 Å, and Rud=9.3 Å) are synthesized with predetermined SAD values, which are comprehensively characterized by various techniques. Electrochemical studies on uric acid (UA) oxidation reveal that Rud=6.2 Å demonstrates an extraordinary sensitivity of 9.83 μA μM-1cm-2, which is superior to most of electrochemistry biosensors reported previously. Kinetic analysis and product examination unveil that the 6.2 Å Ru SAD instigates a distinctive three-electron oxidation of UA, with an extra electron transfer compared to the conventional two-electron pathway, which fundamentally enhances its sensitivity. Density functional theory calculations confirm the optimal SAD facilitates dual-site UA adsorption and accelerated charge transfer dynamics. This investigation provides novel insights into the strategic engineering of high-performance SAC-based electrochemical sensors by precisely controlling the atomic-scale structure of active sites.
Collapse
Affiliation(s)
- Bowen Jiang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Heng Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Min Ji
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Lin Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Guoju Zhang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Jing Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Jiangsu, Nanjing, 210037, P. R. China
| | - Huihui Shi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Huang Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Shu Wan
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Jiang D, Liu X, Zhan W, Fu M, Liu J, He J, Li Y, Li Y, Chen X, Yu C. Skin-Interfaced Wearable Sensor for Long-Term Reliable Monitoring of Uric Acid and pH in Sweat. NANO LETTERS 2025; 25:1427-1435. [PMID: 39818914 DOI: 10.1021/acs.nanolett.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Wearable sweat sensors offering real-time monitoring of biomarker levels suffer from stability and accuracy issues, primarily due to low biomarker concentrations, fluctuating sweat pH, and material detachment from sensor deformation. Here, we developed a wearable sensing system integrated with two advanced electrodes and a flexible microchannel for long-term reliable monitoring of sweat pH and uric acid (UA). By printing the ink doped with nanomaterials (Co3O4@CuCo2O4 and polyaniline), we achieved highly stable electrodes for the direct analysis of perspiration, without additional surface modification. Additionally, real-time pH analysis provided a means for sensitivity calibration, reducing the effect of individual metabolism and exercise intensity. As a result, the wearable sensing system for effective gout management was validated by accurately tracking the UA fluctuations in serum and sweat of hyperuricemia patients and healthy individuals. These findings offer a reliable method for tracking biomarkers to assess personal health.
Collapse
Affiliation(s)
- Danfeng Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| | - Wenjun Zhan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Mengmeng Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jiacheng Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yunlong Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yingguo Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| |
Collapse
|
6
|
Ruiz-Guerrero CD, Estrada-Osorio DV, Gutiérrez A, Espinosa-Lagunes FI, Escalona-Villalpando RA, Luna-Bárcenas G, Molina A, Arenillas A, Arriaga LG, Ledesma-García J. Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH. Biosens Bioelectron 2025; 267:116850. [PMID: 39423707 DOI: 10.1016/j.bios.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
A sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m2 g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N2 adsorption-desorption technique. Co-based aerogels were mixed by cross-linking with UOx enzymes and electrochemically characterized in buffers at pH 7.4 and 5.6 (pH values reported for biological fluids such as blood and sweat) in the presence of different uric acid concentrations. Co-based aerogels with UOx showed improved performance as a uric acid biosensor compared to using the enzyme alone. At a pH of 7.4, a higher sensitivity of 11 μA μM-1 was obtained with Pd-Co/UOx, 1.6 times higher than with UOx. At a pH value of 5.6, the highest sensitivity is achieved with Ni-Co/UOx. Stability and selectivity tests were performed in the presence of biological interferents without significant changes in the sensor. These results indicate a pleasing synergistic activity between Co-based aerogels and the enzyme.
Collapse
Affiliation(s)
- Carlos D Ruiz-Guerrero
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - D V Estrada-Osorio
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - A Gutiérrez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - F I Espinosa-Lagunes
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - R A Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - G Luna-Bárcenas
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 76130, Santiago de Querétaro, Mexico
| | - A Molina
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 76130, Santiago de Querétaro, Mexico
| | - A Arenillas
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, 76703, Santiago de Querétaro, Mexico
| | - J Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico.
| |
Collapse
|
7
|
Cheng C, Guo X, Feng Y, Yu J, Huang S, Zhang L, Wu Y, Shao L, Xu X, Feng L. Enhanced activity of enzymes encapsulated in spheres metal azolate framework-7 with defects. Int J Biol Macromol 2024; 283:137689. [PMID: 39561823 DOI: 10.1016/j.ijbiomac.2024.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Developing metal-organic frameworks (MOFs) with specific structures is critical for improving the activity of embedded enzymes, and defects may be one of the effective methods. Several methods have been demonstrated to be effective in creating defects in MOFs, including post-synthetic treatments, the use of acid as a modulator, and the use of ordinary or thermally sensitive linkers. However, these methods necessitate the utilization of additional substances. Metal azolate framework-7 (MAF-7) is a kind of MOF that was formed by the coordination of Zn2+ with 3-methyl-1,2,4-triazole (Hmtz). This paper presents a method for the preparation of defect MAF-7 by changing the sequence of reactants without the introduction of additional substances. The defects were characterized by a range of techniques, including scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and powder X-ray diffraction. The activity of microcystinase A (MlrA) encapsulated in defective MAF-7 (CMlrA@DMAF-7) was found to be significantly increased in comparison to non-porous MAF-7 (NMAF-7), and was largely unaffected by alterations in synthesis conditions. It is also noteworthy that lysozyme (LZ) and horseradish peroxidase (HRP), which are commonly used in industry, also demonstrated enhanced activity when encapsulated in DMAF-7. It was therefore anticipated that modifying the sequence of reactant addition would be a straightforward and simple method of introducing defects into MAF-7, thereby improving enzyme utilization.
Collapse
Affiliation(s)
- Cai Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| | - Yu Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi Huang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linna Shao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuehan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China.
| |
Collapse
|
8
|
Shahzad S, Iftikhar FJ, Shah A, Rehman HA, Iwuoha E. Novel interfaces for internet of wearable electrochemical sensors. RSC Adv 2024; 14:36713-36732. [PMID: 39559568 PMCID: PMC11570917 DOI: 10.1039/d4ra07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.
Collapse
Affiliation(s)
- Suniya Shahzad
- National University of Technology (NUTECH) Islamabad 44000 Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Emmanuel Iwuoha
- Sensorlab, Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
9
|
Salih IL, Alshatteri AH, Omer KM. Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review. ANAL SCI 2024; 40:1969-1986. [PMID: 39093545 DOI: 10.1007/s44211-024-00635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.
Collapse
Affiliation(s)
- Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
- Department of Chemistry, College of Science, University of Raparin, RaniaSulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Azad H Alshatteri
- Department of Chemistry, University of Garmian, Darbandikhan Road, Kalar City, Sulaimaniyah, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
10
|
Theyagarajan K, Kim YJ. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. BIOSENSORS 2024; 14:492. [PMID: 39451704 PMCID: PMC11506055 DOI: 10.3390/bios14100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
11
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
12
|
Haghayegh F, Norouziazad A, Haghani E, Feygin AA, Rahimi RH, Ghavamabadi HA, Sadighbayan D, Madhoun F, Papagelis M, Felfeli T, Salahandish R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400595. [PMID: 38958517 PMCID: PMC11423253 DOI: 10.1002/advs.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Ariel Avraham Feygin
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Reza Hamed Rahimi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Deniz Sadighbayan
- Department of BiologyFaculty of ScienceYork UniversityTorontoONM3J 1P3Canada
| | - Faress Madhoun
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Manos Papagelis
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision SciencesUniversity of TorontoOntarioM5T 3A9Canada
- Institute of Health PolicyManagement and EvaluationUniversity of TorontoOntarioM5T 3M6Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
13
|
Bai Y, Fan X, Chen G, Zhao Z. Efficient and fast detection of uric acid based on a colorimetric sensing method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5896-5901. [PMID: 39157953 DOI: 10.1039/d4ay01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The uric acid (UA) level is an important physiological indicator of the human body, and its abnormality can lead to a series of diseases. Therefore, the immediate detection of uric acid concentration has broad application prospects. Commonly used methods for the analysis of uric acid include chromatography, high-performance capillary electrophoresis and electrochemical methods. However, these methods have the disadvantages of cumbersome sample pre-treatment, high cost, time-consuming, and the need for experimental instruments and professional operators, which are extremely unfavorable for the detection of uric acid and the diagnosis of related diseases in resource-limited areas. In this study, a portable visualization method was developed for the detection of uric acid using hydrogen peroxide (H2O2) test strips. Uric acid enzyme specifically catalyzes the oxidation of uric acid to produce H2O2, which causes a significant change in the color of the H2O2 test strip. The response has good linearity in the range of 1 ∼ 50 μg mL-1. Thus, it provides a simple, rapid, and cost-effective visualized bioassay for uric acid.
Collapse
Affiliation(s)
- Yunfeng Bai
- Traditional Chinese Medicine Hospital of Yinchuan, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhilong Zhao
- Traditional Chinese Medicine Hospital of Yinchuan, China
| |
Collapse
|
14
|
Zhao Q, Wu D, Wang Y, Meng T, Sun J, Yang X. Encapsulation of Enzymes into Hydrophilic and Biocompatible Metal Azolate Framework: Improved Functions of Biocatalyst in Cascade Reactions and its Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307192. [PMID: 38517284 DOI: 10.1002/smll.202307192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Multiple enzyme-triggered cascade biocatalytic reactions are vital in vivo or vitro, considering the basic biofunction preservation in living organisms and signals transduction for biosensing platforms. Encapsulation of such enzymes into carrier endows a sheltering effect and can boost catalytic performance, although the selection and preparation of an appropriate carrier is still a concern. Herein, focusing on MAF-7, a category of metal azolate framework (MAF) with superiority against the topologically identical ZIF-8, this enzyme@MAF system can ameliorate the sustainability of encapsulating natural enzymes into carriers. The proposed biocatalyst composite AChE@ChOx@MAF-7/hemin is constructed via one-pot in situ coprecipitation method. Subsequently, MAF-7 is demonstrated to exhibit an excellent capacity of the carrier and protection against external factors in the counterpart of ZIF-8 through encapsulated and free enzymes. In addition, detections for specific substrates or inhibitors with favorable sensitivity are accomplished, indicating that the properties above expectation of different aspects of the established platform are successfully realized. This biofunctional composite based on MAF-7 can definitely provide a potential approach for optimization of cascade reaction and enzyme encapsulation.
Collapse
Affiliation(s)
- Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Xiao R, Zhou X, Zhang C, Liu X, Han S, Che C. Organic Thermoelectric Materials for Wearable Electronic Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4600. [PMID: 39065999 PMCID: PMC11280558 DOI: 10.3390/s24144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no working noise, being self-powered, applicable in a wide range of scenarios, etc. However, compared with classic conductive materials and inorganic thermoelectric materials, the research on organic thermoelectric materials is still insufficient. In order to improve our understanding of the potential of organic thermoelectric materials in wearable electronic devices, this paper reviews the types of organic thermoelectric materials and composites, their assembly strategies, and their potential applications in wearable electronic devices. This review aims to guide new researchers and offer strategic insights into wearable electronic device development.
Collapse
Affiliation(s)
- Runfeng Xiao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xiaoyan Zhou
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317700, China;
| | - Chan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xi Liu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Shaobo Han
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Canyan Che
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
17
|
Peng HL, Zhang Y, Liu H, Gao C. Flexible Wearable Electrochemical Sensors Based on AuNR/PEDOT:PSS for Simultaneous Monitoring of Levodopa and Uric Acid in Sweat. ACS Sens 2024; 9:3296-3306. [PMID: 38829039 DOI: 10.1021/acssensors.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.
Collapse
Affiliation(s)
- Hui-Ling Peng
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yongqi Zhang
- Key Laboratory of Integrated Circuits and Microsystems (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
18
|
Chen C, Fu Y, Sparks SS, Lyu Z, Pradhan A, Ding S, Boddeti N, Liu Y, Lin Y, Du D, Qiu K. 3D-Printed Flexible Microfluidic Health Monitor for In Situ Sweat Analysis and Biomarker Detection. ACS Sens 2024; 9:3212-3223. [PMID: 38820602 PMCID: PMC12009136 DOI: 10.1021/acssensors.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Sonja S Sparks
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Arijit Pradhan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Narasimha Boddeti
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
19
|
Zhang S, He Z, Zhao W, Liu C, Zhou S, Ibrahim OO, Wang C, Wang Q. Innovative Material-Based Wearable Non-Invasive Electrochemical Sweat Sensors towards Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:857. [PMID: 38786813 PMCID: PMC11124380 DOI: 10.3390/nano14100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Sweat is an accessible biofluid that provides useful physiological information about the body's biomolecular state and systemic health. Wearable sensors possess various advantageous features, such as lightweight design, wireless connectivity, and compatibility with human skin, that make them suitable for continuous monitoring. Wearable electrochemical sweat sensors can diagnose diseases and monitor health conditions by detecting biomedical signal changes in sweat. This paper discusses the state-of-the-art research in the field of wearable sweat sensors and the materials used in their construction. It covers biomarkers present in sweat, sensing modalities, techniques for sweat collection, and ways to power these sensors. Innovative materials are categorized into three subcategories: sweat collection, sweat detection, and self-powering. These include substrates for sensor fabrication, analyte detection electrodes, absorbent patches, microfluidic devices, and self-powered devices. This paper concludes by forecasting future research trends and prospects in material-based wearable non-invasive sweat sensors.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
20
|
Wang L, Gao N, Cai Z, Grushevskaya H, He H, He Y, Chang G. Alumina inorganic molecularly imprinted polymer modified multi-walled carbon nanotubes for uric acid detection in sweat. Mikrochim Acta 2024; 191:247. [PMID: 38587580 DOI: 10.1007/s00604-024-06316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 μM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.
Collapse
Affiliation(s)
- Lei Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Nan Gao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Zhiwei Cai
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | | | - Hanping He
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| | - Yunbin He
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China.
| | - Gang Chang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China.
| |
Collapse
|
21
|
Li Y, Shi Z, Wu X, Miao W, Yang Z, Lou X, Sun W, Guo C, Li CM. Graphdiyne marries PEDOT:PSS to form high-stable heterostructure from 2-unstable components toward ultra-low detection limit of uric acid detection in sweat. Mikrochim Acta 2024; 191:243. [PMID: 38575711 DOI: 10.1007/s00604-024-06311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
PEDOT PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 μM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.
Collapse
Affiliation(s)
- Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China.
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Wenting Miao
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Zhengyi Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xinyu Lou
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
22
|
Rageh AH, Said MI, Abdel-Aal FAM. Zirconium-based hydrophobic-MOFs as innovative electrode modifiers for flibanserin determination: Exploring the electrooxidation mechanism using a comprehensive spectroelectrochemical study. Mikrochim Acta 2024; 191:236. [PMID: 38570402 DOI: 10.1007/s00604-024-06297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 μmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.
Collapse
Affiliation(s)
- Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed I Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Fatma A M Abdel-Aal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
23
|
Zhao P, Zhang Y, Liu Y, Huo D, Hou J, Hou C. Wearable electrochemical patch based on iron nano-catalysts incorporated laser-induced graphene for sweat metabolites detection. Biosens Bioelectron 2024; 249:116012. [PMID: 38232450 DOI: 10.1016/j.bios.2024.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
The development of wearable devices shows great application potential in health management. In this work, we propose the fabrication of a novel wearable electrochemical patch and prove its application in sweat metabolites detection. The patch is developed based on iron nano-catalysts incorporated laser-induced graphene (FeNCs/LIG), which is a newly integrated sensing electrode with unique three-dimensional nanostructure and good electrocatalytic activity. It shows desirable sensing performances for sweat metabolites including tyrosine (Tyr) and uric acid (UA) molecules. The detection limit of Tyr and UA can reach 5.11 μM and 1.37 μM, respectively. Besides, density functional theory calculation deeply reveals that the Fe active sites of FeNCs play an important role in molecule adsorption and electron transference, thus promoting sensing performance. To realize wearable application, a dual-channel hydrogel chip is designed and assembled with FeNCs/LIG. The developed patch is successfully utilized to accurately determination of Tyr and UA in sweat. This work is expected to provide a new non-invasive strategy for evaluating amino acid intake and metabolic level.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yong Zhang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
24
|
Chen Z, Wang W, Tian H, Yu W, Niu Y, Zheng X, Liu S, Wang L, Huang Y. Wearable intelligent sweat platform for SERS-AI diagnosis of gout. LAB ON A CHIP 2024; 24:1996-2004. [PMID: 38373026 DOI: 10.1039/d3lc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
For the past few years, sweat analysis for health monitoring has attracted increasing attention benefiting from wearable technology. In related research, the sensitive detection of uric acid (UA) in sweat with complex composition based on surface-enhanced Raman spectroscopy (SERS) for the diagnosis of gout is still a significant challenge. Herein, we report a visualized and intelligent wearable sweat platform for SERS detection of UA in sweat. In this wearable platform, the spiral channel consisted of colorimetric paper with Ag nanowires (AgNWs) that could capture sweat for SERS measurement. With the help of photos from a smartphone, the pH value and volume of sweat could be quantified intelligently based on the image recognition technique. To diagnose gout, SERS spectra of human sweat with UA are collected in this wearable intelligent platform and analyzed by artificial intelligence (AI) algorithms. The results indicate that the artificial neural network (ANN) algorithm exhibits good identification of gout with high accuracy at 97%. Our work demonstrates that SERS-AI in a wearable intelligent sweat platform could be a feasible strategy for diagnosis of gout, which expands research on sweat analysis for comfortable and noninvasive health monitoring.
Collapse
Affiliation(s)
- Zhaoxian Chen
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Wei Wang
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Hao Tian
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Wenrou Yu
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Yu Niu
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Xueli Zheng
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Shihong Liu
- Chongqing University Cancer Hospital, Department of Palliative care, Department of Geriatric Oncology, Chongqing, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
25
|
Chen F, Wang J, Chen L, Lin H, Han D, Bao Y, Wang W, Niu L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti 3C 2T x MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal Chem 2024; 96:3914-3924. [PMID: 38387027 DOI: 10.1021/acs.analchem.3c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 μM-100 μM, exhibiting a lower detection limit of 0.48 μM compared to the uricase-based sensor (0.84 μM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.
Collapse
Affiliation(s)
- Fan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhao Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Haoliang Lin
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
26
|
Lv M, Qiao X, Li Y, Zeng X, Luo X. A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat. Anal Chim Acta 2024; 1287:342154. [PMID: 38182356 DOI: 10.1016/j.aca.2023.342154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Wearable sweat sensors with stretch capabilities and robust performances are desired for continuous monitoring of human health, and it remains a challenge for sweat sensors to detect targets reliably in both static and dynamic states. Herein, a flexible sweat sensor was created using a cost-effective approach involving the utilization of three-dimensional graphene foam and polydimethylsiloxane (PDMS). The flexible electrochemical sensor was fabricated based on PDMS and Pt/Pd nanoparticles modified 3D graphene foam for the detection of uric acid in sweat. Pt/Pd nanoparticles were electrodeposited on the graphene foam to markedly enhance the electrocatalytic activity for uric acid detection. The graphene foam with excellent electrical property and high porosity, and PDMS with an ideal mechanical property endow the sensing device with high stretchability (tolerable strain up to 110 %), high sensitivity (0.87 μA μM-1 cm-2), and stability (remaining unchanged for more than 5000 cycles) for daily wear. To eliminate possible interferences, the wearable sensor was designed with dual working electrodes, and their response difference ensured reliable and accurate detection of targets. This strategy of constructing sweat sensors with dual working electrodes based on the flexible composite material represents a promising way for the development of robust wearable sensing devices.
Collapse
Affiliation(s)
- Mingrui Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
27
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
28
|
Zheng A, Guo Z, Li C, Zhang Z, Li C, Yao J, Wang X, Li J, Zhao S, Wang W, Zhang W, Zhou L. A wide-range UAC sensor for the classification of hyperuricemia in spot samples. Talanta 2024; 266:125102. [PMID: 37651905 DOI: 10.1016/j.talanta.2023.125102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Hyperuricemia (HUA) has received wide attention as an independent risk factor for various chronic diseases. HUA is usually asymptomatic, and the related damage can be reduced by effective classification and treatment according to uric acid clearance (UAC). UAC is a calculated ratio based on the uric acid level in blood and urine. This important method is not universally used due to the inconvenience of collecting 24-h urine samples in the clinic, and most sensors are limited by the need for wide ranges and for two testing samples. In this study, a pH-sensitive urate oxidase-modified electrochemical sensor with filter membrane was proposed to calculate UAC by detecting uric acid in blood and urine. The results demonstrated that the sensor had high selectivity for uric acid with a detection limit of 0.25 μM in 5 μL spot sample, the wide linear range was 2.5-7000 μM, and the impact of the sample pH was calibrated. The linear correlation of the measurement results between the UAC sensor and clinical instrument was higher than 0.980 for 87 patients. The change in UAC in spot urine may reflect alteration in body-transport mechanisms. Thus, the UAC sensor may open a new window for the management of HUA and broaden its application in point-of-care testing.
Collapse
Affiliation(s)
- Anran Zheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Weiguo Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu Province, China.
| | - Wei Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China.
| |
Collapse
|
29
|
Zheng L, Cao M, Du Y, Liu Q, Emran MY, Kotb A, Sun M, Ma CB, Zhou M. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. NANOSCALE 2023; 16:44-60. [PMID: 38053393 DOI: 10.1039/d3nr05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid evolution of sensing technologies, the integration of nanoscale catalysts, particularly those mimicking enzymatic functions, into electrochemical devices has surfaced as a pivotal advancement. These catalysts, dubbed artificial enzymes, embody a blend of heightened sensitivity, selectivity, and durability, laying the groundwork for innovative applications in real-time health monitoring and environmental detection. This minireview penetrates into the fundamental principles of electrochemical sensing, elucidating the unique attributes that establish artificial enzymes as foundational elements in this field. We spotlight a range of innovations where these catalysts have been proficiently incorporated into wearable and portable platforms. Navigating the pathway of amalgamating these nanoscale wonders into consumer-appealing devices presents a multitude of challenges; nevertheless, the progress made thus far signals a promising trajectory. As the intersection of materials science, biochemistry, and electronics progressively intensifies, a flourishing future seems imminent for artificial enzyme-infused electrochemical devices, with the potential to redefine the landscapes of wearable health diagnostics and portable sensing solutions.
Collapse
Affiliation(s)
- Long Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| |
Collapse
|
30
|
Sun M, Cui C, Chen H, Wang D, Zhang W, Guo W. Enzymatic and Non-Enzymatic Uric Acid Electrochemical Biosensors: A Review. Chempluschem 2023; 88:e202300262. [PMID: 37551133 DOI: 10.1002/cplu.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
In recent years, the development of electrochemical biosensors for uric acid has made great achievements. Firstly, uric acid electrochemical biosensors were classified according to their reaction mechanism. Then, the reaction mechanism of the uric acid sensor and the application of nano-modified materials were deeply analyzed from the perspective of non-enzyme and enzymes. In this paper, the catalytic oxidation capacity, enzyme adsorption effect, conductivity, robustness, detection range, and detection limit of uric acid sensors were discussed and compared. Finally, the advantages of acid-sensitive electrochemical biosensors were summarized, and the constructive recommendations were proposed for improving the deficiencies of acid biosensors. The potential for further development in this area was also discussed.
Collapse
Affiliation(s)
- Miao Sun
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Chuanjin Cui
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Hongshuo Chen
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Dengling Wang
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Wensi Zhang
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Wenjin Guo
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| |
Collapse
|
31
|
Xiao Y, Huang N, Wen J, Yang D, Chen H, Long Y, Zheng H. Detecting uric acid base on the dual inner filter effect using BSA@Au nanoclusters as both peroxidase mimics and fluorescent reporters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122504. [PMID: 36801742 DOI: 10.1016/j.saa.2023.122504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent bovine serum albumin-protected gold nanoclusters (BSA@Au NCs) can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB for its peroxidase-like activity. The two absorption peaks of oxTMB overlapped with the excitation and emission peaks of BSA@Au NCs, respectively, causing efficient quenching on the fluorescence of BSA@Au NCs. The quenching mechanism can be attributed to the dual inner filter effect (IFE). Based on the dual IFE, BSA@Au NCs were utilized as both peroxidase mimics and fluorescent reporters for H2O2 detection and further for uric acid detection with uricase. Under optimal detection conditions, the method can be used to detect H2O2 ranging 0.50-50 μM with a detection limit of 0.44 μM and UA ranging 0.50-50 μM with a detection limit of 0.39 μM. The established method had been successfully utilized for the determination of UA in human urine, with massive potential in biomedical applications.
Collapse
Affiliation(s)
- Yu Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Dan Yang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huanhuan Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
32
|
Abstract
Flexible sweat sensors have found widespread potential applications for long-term wear and tracking and real-time monitoring of human health. However, the main substrate currently used in common flexible sweat sensors is thin film, which has disadvantages such as poor air permeability and the need for additional wearables. In this Review, the recent progress of sweat sensors has been systematically summarized by the types of monitoring methods of sweat sensors. In addition, this Review introduces and compares the performance of sweat sensors based on thin film and textile substrates such as fiber/yarn. Finally, opportunities and suggestions for the development of flexible sweat sensors are presented by summarizing the integration methods of sensors and human body monitoring sites.
Collapse
Affiliation(s)
- Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Haibo Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Qianqian Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Yin He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
33
|
Zhao J, Kan Y, Chen Z, Li H, Zhang W. MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids. BIOSENSORS 2023; 13:284. [PMID: 36832051 PMCID: PMC9954106 DOI: 10.3390/bios13020284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity, and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites, electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of microfluidic chips in combination with electrochemical methods are all reviewed, and the potential for the development of microfluidic chips electrochemical methods with MOFs surface modifications for the detection of opioids is also prospected. We hope that this review will provide contributions to the study of electrochemical sensors modified with MOFs for the detection of opioids.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Ying Kan
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
34
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|