1
|
Fathy MA, Bühlmann P. Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies. BIOSENSORS 2025; 15:51. [PMID: 39852102 PMCID: PMC11764208 DOI: 10.3390/bios15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors. Nanomaterials play a pivotal role, offering unique properties, such as high conductivity and surface-to-volume ratios. This article provides a review of recent advancements in wearable potentiometric sensors utilizing various solid contacts, with a particular emphasis on nanomaterials. These sensors are employed for precise ion concentration determinations, notably sodium, potassium, calcium, magnesium, ammonium, and chloride, in human biological fluids. This review highlights two primary applications, that is, (1) the enhancement of athletic performance by continuous monitoring of ion levels in sweat to gauge the athlete's health status, and (2) the facilitation of clinical diagnosis and preventive healthcare by monitoring the health status of patients, in particular to detect early signs of dehydration, fatigue, and muscle spasms.
Collapse
Affiliation(s)
- Mahmoud Abdelwahab Fathy
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Sajeevan A, Sukumaran RA, Panicker LR, Kotagiri YG. Trends in ready-to-use portable electrochemical sensing devices for healthcare diagnosis. Mikrochim Acta 2025; 192:80. [PMID: 39808331 DOI: 10.1007/s00604-024-06916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations. Enhanced levels of healthcare management can be attained by the implementation of rapid diagnostic procedures and cognitive data analysis. Therefore, there is a constant need for smart therapeutics, analytical tools, and diagnostic systems to improve health and well-being. The past decade witnessed enormous growth in the sensing detection systems integrated into smartphones with printed electrodes and wearable patches for the screening of various healthcare diagnostics biomarkers and therapeutic drugs. This review focuses on the expansion of point-of-care technologies and their incorporation into a broader array of portable devices, a critical aspect in the context of decentralized societies and their healthcare systems. Discussions are broadly focused on the different sensing platforms such as solid electrodes, screen-printed electrodes, and paper-based sensing strategies for the detection of various biomarkers and therapeutic drugs. We also discuss the next-generation healthcare wearable sensing device importance and future research possibilities. Finally, the portable electrochemical sensing devices and their future perspective developments towards healthcare diagnosis are critically summarized.
Collapse
Affiliation(s)
- Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Reshmi A Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
| |
Collapse
|
3
|
Yu Z, Wang H, He Y, Chen D, Chen R, Tang X, Zhou M, Yao J, Xiong B. Application of a Screen-Printed Ion-Selective Electrode Based on Hydrophobic Ti 3C 2/AuNPs for K + Determination Across Variable Temperatures. Int J Mol Sci 2024; 25:13204. [PMID: 39684915 DOI: 10.3390/ijms252313204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Monitoring potassium ion (K+) concentration is essential in veterinary medicine, particularly for preventing hypokalemia in dairy cows, which can severely impact their health and productivity. While traditional laboratory methods like atomic absorption spectrometry are accurate, they are also time-consuming and require complex sample preparation. Ion-selective electrodes (ISEs) provide an alternative that is faster and more suitable for field measurements, but their performance is often compromised under variable temperature conditions, leading to inaccuracies. To address this, we developed a novel screen-printed ion-selective electrode (SPE) with hydrophobic Ti3C2 Mxene and gold nanoparticles (AuNPs), integrated with a temperature sensor. This design improves stability and accuracy across fluctuating temperatures by preventing water layer formation and enhancing conductivity. The sensor was validated across temperatures from 5 °C to 45 °C, achieving a linear detection range of 10-⁵ to 10-1 M and a response time of approximately 15 s. It also demonstrated excellent repeatability, selectivity, and stability, making it a robust tool for K+ monitoring in complex environments. This advancement could lead to broader applications in other temperature-sensitive analytical fields.
Collapse
Affiliation(s)
- Zhixue Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongfei Chen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Hassan SSM, Fathy MA. A novel miniaturized potentiometric electrode based on carbon nanotubes and molecularly imprinted polymer for the determination of lidocaine. Mikrochim Acta 2024; 191:744. [PMID: 39542990 PMCID: PMC11564208 DOI: 10.1007/s00604-024-06802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
A novel miniaturized, solid-contact potentiometric screen-printed electrode was developed for highly sensitive and selective determination of lidocaine anesthetic. The electrode integrated single-walled carbon nanotubes as a solid-contact material and a molecularly imprinted polymer as a recognition sensory material. The performance characteristics of the electrode were evaluated and optimized to display a Nernstian slope of 58.92 ± 0.98 mV/decade over a linear concentration range of 4.53 × 10-7 to 6.18 × 10-3 mol/l within < 6 s. The detection limit was 7.75 × 10-8 mol/l (18.16 ng/ml) of lidocaine. The use of the molecularly imprinted polymer significantly enhanced the selectivity of the electrode, and carbon nanotubes increased the sensitivity, accuracy, and potential stability. The electrode was successfully used for determining lidocaine in pharmaceutical preparations and human urine. The results favorably compared with data obtained by liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
| | - Mahmoud Abdelwahab Fathy
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Hussain K, Ahmad R, Hassan S, Khan MY, Ahmad A, Alshammari MB, Ali MS, Lakho SA, Lee BI. Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure-based sensor. Anal Biochem 2024; 693:115595. [PMID: 38909770 DOI: 10.1016/j.ab.2024.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.
Collapse
Affiliation(s)
- Kanwal Hussain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Rafiq Ahmad
- 'New-Senior' Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sohail Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Muhammad Y Khan
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan.
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Muhammad S Ali
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Saeed A Lakho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Jamshoro, 76080. Sindh, Pakistan
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
7
|
Hassan SSM, Fathy MA. Novel paper-based potentiometric combined sensors using coumarin derivatives modified with vanadium pentoxide nanoparticles for the selective determination of trace levels of lead ions. Mikrochim Acta 2024; 191:427. [PMID: 38935135 DOI: 10.1007/s00604-024-06494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Novel miniaturized Pb(II) paper-based potentiometric sensors are described using coumarin derivatives I and II as electroactive ionophores and nano vanadium pentoxide as a solid contact material for the sensitive and selective monitoring of trace lead ions. Density functional theory (DFT) confirms optimum geometries, electronic properties, and charge transfer behaviors of 1:2 Pb(II): coumarin complexes. The sensors are prepared by using two strips of 20 × 5 mm filter paper with two circular orifices. One orifice is coated with vanadium pentoxide (V2O5) nanoparticles in colloidal conductive carbon as a solid-contact, covered by a PVC membrane containing coumarin ionophore to act as a sensing probe. The other orifice is treated with Ag/AgCl in a polyvinyl butyral (PVB) film, to act as a reference electrode. Sensors with ionophores (I) and (II) exhibit Nernstian slopes of 27.7 ± 0.2 and 30.2 ± 0.2 mV/decade over the linear concentration range 4.5 × 10-7 to 6.2 × 10-3 M and 8.5 × 10-8 to 6.2 × 10-3 M, with detection limits of 1.3 × 10-7 M (26.9 ppb) and 2.1 × 10-8 M (4.4 ppb), respectively. The sensors are satisfactorily used for accurate determination of lead ions in drinking water, lead-acid battery wastewater, and electronic waste leachates. The results compare favourably well with data obtained by flameless atomic absorption spectrometry.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
| | - Mahmoud Abdelwahab Fathy
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Hassan SSM, El-Shalakany HH, Fathy MA, Kamel AH. A novel potentiometric screen-printed electrode based on crown ethers/nano manganese oxide/Nafion composite for trace level determination of copper ion in biological fluids. Mikrochim Acta 2024; 191:313. [PMID: 38717608 DOI: 10.1007/s00604-024-06394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 μF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
| | - Hadeel H El-Shalakany
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Mahmoud Abdelwahab Fathy
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt.
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo, 11566, Egypt
- Department of Chemistry, College of Science, Sokheer, 32038, Kingdom of Bahrain
| |
Collapse
|
9
|
Hemmati F, Hosseini H, Mostashari P, Aliyeva A, Mousavi Khaneghah A. Application of molecularly imprinted polymers as the sorbent for extraction of chemical contaminants from milk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2015-2030. [PMID: 37115101 DOI: 10.1080/09603123.2023.2207484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Milk is one of the most consumed and balanced foods with a high nutritional value which could be contaminated with different chemicals such as antibiotics, melamine, and hormones. Because of the low concentration of these compounds and the complexity of milk samples, there is a need to use sample pre-treatment methods for purification and preconcentration of these compounds before instrumental techniques. Molecular imprinting polymers (MIPs) are synthetic materials with specific recognition sites complementary to the target molecule. MIPs have selectivity for a specific analyte or group of analytes, which could be used to extract and determine contaminants and remove the interfering compounds from complex samples. Compared to other techniques, sample preparation, high selectivity, excellent stability, and low cost are other advantages of using MIPs. The present article gives an overview of the synthesis of MIPs and their application for extracting antibiotics, hormones, and melamine in milk samples.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
11
|
Alterary SS. Construction of novel potentiometric sensors modified with biogenically synthesized metal oxide nanoparticles for sensitive detection of the opioid agonist-antagonist nalbuphine hydrochloride in its injection. Heliyon 2023; 9:e20510. [PMID: 37800067 PMCID: PMC10550502 DOI: 10.1016/j.heliyon.2023.e20510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Novel and sensitive potentiometric sensors were described for the assay of nalbuphine HCl (NBP) in authentic powder and injection samples. The developed sensors were modified with alumina nanoparticles (Al2O3NPs) and copper oxide nanoparticles (CuONPs). The nanoscale materials were synthesized using the extract of Salvia officinalis leaves in an environmentally friendly manner. The synthesized metal oxides were fully confirmed by various analytical techniques. Scanning electron microscope confirmed the morphology of nanosized materials with even distribution and particle size of 55.07 ± 4.15 and 59.48 ± 4.50 nm for Al2O3NPs and CuONPs, respectively. The modified sensors were prepared in three different steps. Nalbuphine hydrochloride was mixed with phosphomolybdic acid to prepare the sensor material nalbuphine phosphomolybdate (NBP-PM). It was then mixed with polyvinyl chloride in the presence of o-nitrophenyl ether and metal oxide nanoparticles to form the membrane matrix. Finally, a copper wire was coated with the sensing material. Excellent potentials of 1.0 × 10-8-1.0 × 10-2 and 1.0 × 10-9-1.0 × 10-2 mol L-1 were measured with lower assay limits of 4.8 × 10-9 and 5.0 × 10-10 mol L-1. The average detection % were 99.28 ± 0.58% and 99.52 ± 0.28% for NBP-PM-Al2O3NPs and NBP-PM-CuONPs, correspondingly. The suitability of the described sensors was investigated in terms of various validation criteria, and the modified sensors exposed excellent applicability and insurance for the quantification of nalbuphine hydrochloride in its bulk samples and injections compared with another standard sensor. It is obvious that the developed NBP-PM-Al2O3NPs and NBP-PM-CuONPs will serve as suitable sensors for the determination of NBP.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
12
|
Mouhamed AA, Eltanany BM, Mostafa NM, Elwaie TA, Nadim AH. Design of screen-printed potentiometric platform for sensitive determination of mirabegron in spiked human plasma; molecular docking and transducer optimization. RSC Adv 2023; 13:23138-23146. [PMID: 37533779 PMCID: PMC10391324 DOI: 10.1039/d3ra02343e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
The integration of molecular modelling simulation and electrochemical sensors is of high interest. Herein, for the first time, a portable solid-contact potentiometric electrode was designed for the sensitive determination of mirabegron (MIR) in human plasma and pharmaceutical formulation. A two-step optimization protocol was investigated for the fabrication of an ion on sensing polymeric membrane. First, molecular docking was used for optimum ionophore selection. Calix[6]arene showed the highest affinity towards MIR with a better docking score (-4.35) and potential energy (-65.23) compared to other calixarene derivatives. Second, carbon nanotubes and gold nanoparticles were investigated as ion-electron transducers using a drop-casting procedure. Gold nanoparticle-based sensors showed better slope, potential stability, and rapid response compared to carbon nanotubes. The proposed solid contact sensors (V-VII) showed comparable sensitivity and ease of handling compared to liquid contact sensors (I-IV). The optimized gold nanoparticles sensor VII produced a Nernstian response over the range of 9.77 × 10-7 to 1 × 10-3 M with LOD of 2.4 × 10-7 M. It has also been used to determine MIR in its pharmaceutical formulation in the presence of a co-formulated antioxidant butylated hydroxytoluene and spiked human plasma. This would offer a feasible and economic platform for monitoring MIR in pharmaceutical preparation and biological fluids.
Collapse
Affiliation(s)
- Aya A Mouhamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini St. Cairo 11562 Egypt
| | - Basma M Eltanany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini St. Cairo 11562 Egypt
| | - Nadia M Mostafa
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini St. Cairo 11562 Egypt
| | - Tamer A Elwaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini St. Cairo 11562 Egypt
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Centre School of Pharmacy Texas 78363 USA
| | - Ahmed H Nadim
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini St. Cairo 11562 Egypt
| |
Collapse
|
13
|
Bajaber MA, Kamel AH. All-Solid State Potentiometric Sensors for Desvenlafaxine Detection Using Biomimetic Imprinted Polymers as Recognition Receptors. Polymers (Basel) 2022; 14:polym14224814. [PMID: 36432940 PMCID: PMC9693087 DOI: 10.3390/polym14224814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Using single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer, a novel disposable all-solid-state desvenlafaxine-selective electrode based on a screen-printed carbon paste electrode was created. SWCNTs were put onto the carbon-paste electrode area, which was protected by a poly (vinyl chloride) (PVC) membrane with a desvenlafaxine-imprinted polymer serving as a recognition receptor. Electrochemical impedance spectroscopy and chronopotentiometric techniques were used to examine the electrochemical characteristics of the SWCNTs/PVC coating on the carbon screen-printed electrode. The electrode displayed a 57.2 ± 0.8 mV/decade near-Nernstian slope with a 2.0 × 10-6 M detection limit. In 10 mM phosphate buffer, pH 6, the ODV-selective electrodes displayed a quick reaction (5 s) and outstanding stability, repeatability, and reproducibility. The usefulness of electrodes was demonstrated in samples of ODV-containing pharmaceutical products and human urine. These electrodes have the potential to be mass produced and employed as disposable sensors for on-site testing, since they are quick, practical, and inexpensive.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ayman H. Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Abbasia, Egypt
- Chemistry Department, College of Science, Sakhir 32038, Bahrain
- Correspondence:
| |
Collapse
|