1
|
Liang S, Chen S, Xu Z, Chen J, Lei H, Guan T. A smartphone-based dual-modal lateral flow immunochromatographic assay for multiplex detection of illegal stimulant laxatives in slimming foods. Talanta 2025; 285:127433. [PMID: 39709833 DOI: 10.1016/j.talanta.2024.127433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Stimulant laxatives (especially bisacodyl and sodium picosulfate) are frequently found to be adulterated into slimming foods, causing health-threatening effects to consumers. Sensitive, accurate, easy-to-operate and portable multiplex analytical techniques are still desired for the rapid screening of stimulant laxatives in slimming foods. In this work, a highly sensitive dual-modal colorimetric/photothermal lateral flow immunochromatographic assay (LFIA) was established based on facilely prepared concentrated gold nanoparticles (cAuNPs). Due to the enhanced local surface plasmon resonance and absorption intensity of our unique cAuNPs, this LFIA can simultaneously detect bisacodyl, bis-(p-hydroxyphenyl)-pyridyl-2-methane and sodium picosulfate in slimming food as low as 0.014-0.308 ng/mL by a smartphone-based photothermal device or 1.4-10 ng/mL by naked eyes. Compared with traditional AuNPs-LFIA, it demonstrated 8.48-10.27 times higher sensitivity in photothermal mode. Moreover, in the recovery test and blind sample analysis, this dual-modal LFIA exhibited reasonable recoveries (85.04 %-119.18 %) and high correlation with authorized LC-MS/MS method, suggesting high accuracy and applicability. This work offers a highly sensitive, accurate and convenient way for the on-site determination of stimulant laxatives, which can also be employed to detect other food hazards, environmental pollutants, or clinical analytes within a few minutes.
Collapse
Affiliation(s)
- Shuiyuan Liang
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Sha Chen
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahong Chen
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Tian Guan
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Hang T, Zhang C, Pei F, Yang M, Wang F, Xia M, Hao Q, Lei W. Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays. ACS Sens 2024; 9:6779-6788. [PMID: 39556460 DOI: 10.1021/acssensors.4c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The successful application of fluorescence immunoassays for clinical diagnosis requires stable photoluminescent materials and highly efficient signal amplification strategies. In this work, the magnetism-functionalized lanthanide MOF-on-MOF (Fe3O4@SiO2@MOF-on-MOF) was synthesized through intermolecular (van der Waals) interaction-assisted growth and further homogeneous epitaxial growth, which significantly improved the fluorescence performances and uncovered the underlying mechanism. The quantum chemical theory calculation and experimental studies revealed that the introduced magnetic Fe3O4@SiO2 not only endowed magnetic separation capability but also promoted fluorescence performances, which increased the energy transfer of the intersystem crossing process and suppressed the luminescence of ligands and aggregation-induced quenching. Furthermore, the plasmonic Ag/Au nanocages were developed as highly efficient fluorescence quenchers to improve the sensitivity of the fluorescence immunoassay. On the basis of the proposed differential signal amplification (DSA) strategy, the immunoassay displayed superior detection ability, with a limit of detection of 0.13 pg·mL-1 for severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. The designed magnetic lanthanide MOF-on-MOF and proposed DSA strategy give new insights into ultrasensitive fluorescence immunoassays.
Collapse
Affiliation(s)
- Tianxiang Hang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ming Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Mohammadi M, Asvar Z, Solhjoo SP, Sarikhanikhorrami M, Abadi HG, Ghazizadeh S, Mahmoodi H, Habibolah NK, Moradi O, Kesharwani P, Amani AM, Sahebkar A. COVID-19 diagnosis on the basis of nanobiosensors' prompt interactivity: A holistic review. Pathol Res Pract 2024; 262:155565. [PMID: 39226801 DOI: 10.1016/j.prp.2024.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The fast spread and severe consequences of novel coronavirus disease 2019 (COVID-19) have once again underscored the critical necessity of early detection of viral infections. Several serology-based techniques, including as point-of-care assays and high-throughput enzyme immunoassays that support the diagnosis of COVID-19 are utilized in the detection and identification of coronaviruses. A rapid, precise, simple, affordable, and adaptable diagnostic tool is required for controlling COVID-19 as well as for outbreak management, since the calculation and monitoring of viral loads are crucial for predicting the infection stage and recovery time. Nowadays, the most popular method for diagnosing COVID-19 is reverse transcription polymerase chain reaction (RT-PCR) testing, and chest computed tomography (CT) scans are also used to determine the disease's phases. This is all because of the fact that RT-PCR method caries with itself a number of downsides comprising of being immovable, expensive, and laborious. RT-PCR has not well proven to be capable of detection on the very early infection stages. Nanomaterial-based diagnostics, together with traditional clinical procedures, have a lot of promise against COVID-19. It is worthy of attention that nanotechnology has the mainstay capacity for purposes of developing even more modern stratagems fighting COVID-19 by means of focusing on state-of-the-art diagnostics. What we have centered on in this review, is bringing out even more efficient detection techniques whereby nanobiosensors are employed so that we might obstruct any further development and spreading of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Pooria Solhjoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sarikhanikhorrami
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghader Abadi
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Kazerun, Kazerun, Iran
| | - Shirin Ghazizadeh
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Hassan Mahmoodi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Karbalaee Habibolah
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Omar Moradi
- Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
5
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
6
|
Wu F, Jiang Y, Yang H, Ma L. Development of Detection Antibody Targeting the Linear Epitope in SARS-CoV-2 Nucleocapsid Protein with Ultra-High Sensitivity. Int J Mol Sci 2024; 25:4436. [PMID: 38674021 PMCID: PMC11050370 DOI: 10.3390/ijms25084436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Shenzhen Institute of Drug Control, Shenzhen 518057, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Hongtian Yang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
7
|
Kim MJ, Haizan I, Ahn MJ, Park DH, Choi JH. Recent Advances in Lateral Flow Assays for Viral Protein Detection with Nanomaterial-Based Optical Sensors. BIOSENSORS 2024; 14:197. [PMID: 38667190 PMCID: PMC11048458 DOI: 10.3390/bios14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Dong-Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
8
|
Han J, Lv Q, Su D, Chen L, Zhu S, Liu Q, Jiang Y, Li X, Jiang Y, Wang Z. Polymer Microspheres Copolymerized with Deep Red Fluorescent Molecules as a Label for Lateral Flow Immunochromatography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6971-6979. [PMID: 38517386 DOI: 10.1021/acs.langmuir.3c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The development of fluorescently labeled microspheres is a critical aspect of advancing the technology of lateral flow immunochromatography (LFIA) for biological detection. Nevertheless, potential interference posed by the background fluorescence originating from the nitrocellulose (NC) membrane would significantly impact the sensitivity and accuracy of microsphere-based detection in LFIA. In this work, an attempt was made to extend the π-conjugated system and asymmetric structure of rhodamine fluorophore, resulting in the synthesis of dye molecules (RB2) incorporating double bonds, which can reach an absolute photoluminescence quantum yield (PLQY) of 30.01% in EtOH. Subsequently, carboxyl group functionalized fluorescent microspheres were prepared in a two-step copolymerization via soap-free emulsion polymerization. The obtained microspheres were characterized by scanning electron microscopy, transmission electron microscopy, DLS, Fourier transform infrared spectroscopy, ultraviolet spectrophotometry, and fluorescence spectrophotometry. The results showed that RB2 was successfully copolymerized into the microspheres, and the resulting microspheres had good dispersion and stability with high red fluorescence intensity (λabs ∼ 610 nm, λem ∼ 660 nm). Utilizing these microspheres, the resulting lateral flow immunoassay was successfully found to detect SARS-CoV-2 N protein with a detection limit of 2.5 pg/mL and the linear concentration spanning from 2.5 pg/mL to 10 ng/mL. The results confirm the effectiveness of the synthetic fluorescent microspheres as the label for LFIA.
Collapse
Affiliation(s)
- Jiaxing Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Daoxiang Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lucheng Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shihong Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao Li
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan 250101, China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Atta S, Zhao Y, Li JQ, Vo-Dinh T. Dual-Modal Colorimetric and Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunoassay for Ultrasensitive Detection of SARS-CoV-2 Using a Plasmonic Gold Nanocrown. Anal Chem 2024; 96:4783-4790. [PMID: 38471066 DOI: 10.1021/acs.analchem.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The 2019 coronavirus disease (COVID-19) outbreak created an unprecedented need for rapid, sensitive, and cost-effective point-of-care diagnostic tests to prevent and mitigate the spread of the SARS-CoV-2 virus. Herein, we demonstrated an advanced lateral flow immunoassay (LFIA) platform with dual-functional [colorimetric and surface-enhanced Raman scattering (SERS)] detection of the spike 1 (S1) protein of SARS-CoV-2. The nanosensor was integrated with a specially designed core-gap-shell morphology consisting of a gold shell decorated with external nanospheres, a structure referred to as gold nanocrown (GNC), labeled with a Raman reporter molecule 1,3,3,1',3',3'-hexamethyl-2,2'-indotricarbocyanine iodide (HITC) to produce a strong colorimetric signal as well as an enhanced SERS signal. Among the different plasmonics-active GNC nanostructures, the GNC-2 morphology, which has a shell decorated with an optimum number and size of nanospheres, produces an intense dark-blue colorimetric signal and ultrahigh SERS signal. The limit of detection (LOD) of the S1 protein via colorimetric detection LFIA was determined to be 91.24 pg/mL. On the other hand, the LOD for the SERS LFIA method was more than three orders of magnitude lower at 57.21 fg/mL. Furthermore, we analyzed the performance of the GNC-2 nanosensor for directly analyzing the S1 protein spiked in saliva samples without any sample pretreatment and achieving the LOD as low as 39.65 fg/mL using SERS-based plasmonics-enhanced LFIA, indicating ultrahigh detection sensitivity. Overall, our GNC nanosensor showed excellent sensitivity, reproducibility, and rapid detection of the SARS-CoV-2 S1 protein, demonstrating excellent potential as a promising point-of-care platform for the early detection of respiratory virus infections.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yuanhao Zhao
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joy Qiaoyi Li
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Wang Z, He S, Zhang C, Xu D. A label-free aptasensing method for detecting SARS-CoV-2 virus antigen by using dumbbell probe-mediated circle-to-circle amplification. Anal Bioanal Chem 2024; 416:1961-1970. [PMID: 38349532 DOI: 10.1007/s00216-024-05195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Controlling the spread of pathogen requires an efficient and accurate diagnosis. Compared with nucleic acid and antibody detection, antigen assays are more convenient to meet clinical diagnostic needs. However, antigen detection is often difficult to achieve high sensitivity in a limited time. In this work, a novel aptasensing method was designed for the purpose of SARS-CoV-2 antigen detection, using a dumbbell padlock probe-mediated circle-to-circle amplification (C2CA) approach. A sandwich complex of antibody-antigen-aptamer is first formed on the magnetic beads. Afterwards, the signal is amplified by a C2CA reaction involving two tandem rolling circle amplifications. Without special instruments or nanomaterials, a detection limit of 575 fg/mL for S1 protein can be achieved in less than 2 h. In the case of the spike pseudovirus SARS-CoV-2 in artificial saliva, the detection limit is 272 TU/μL, which is much lower than average viral load in patients. Therefore, our method provides a timely, efficient and accurate approach for the clinical diagnosis of SARS-CoV-2. It also opens up the application of C2CA in aptamer sensing and antigen detection.
Collapse
Affiliation(s)
- Zecheng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Si He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Chenchen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
Zhu J, Guo G, Liu J, Li X, Yang X, Liu M, Fu C, Zeng J, Li J. One-pot synthesized Au@Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody. Anal Chim Acta 2024; 1292:342241. [PMID: 38309851 DOI: 10.1016/j.aca.2024.342241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
In addition to confirming virus infection, quantitative identification of the antibodies to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) also evaluates persons immunity to guide personal protection. However, portable assays for fast and accurate quantification of SARS-CoV-2 antibodies remain challenging. In this work, we synthesized Au@Pt star-like nanoparticles (NPs) quickly and easily by a one-pot wet-chemical approach, allowing the stellate Au core to be partially decorated by Pt nanoshells. The nanoparticles were used as probe in a lateral flow immunoassay (LFIA) that operated in both colorimetric and photothermal dual modes, which could detect the antibodies to the SARS-CoV-2 nucleocapsid (N) protein with high sensitivity. Due to the sharp tips on the external region of nanostars and surface plasmon coupling effect between the Au core and Pt shell, the NIR absorption capacity and photothermal performance of these NPs were exceptional. Under optimal conditions, the colorimetric mode's detection limit for SARS-CoV-2 N protein antibody was 1 ng mL-1, which is significantly lower by 2-order of magnitude compared to commercially available colloidal gold strips. And the detection limit for the photothermal mode was as low as 24.91 pg mL-1, which was approximately 40-fold more sensitive than colorimetric detection. Moreover, the method demonstrated favorable specificity, reproducibility and stability. Finally, the approach was employed for the successful identification of actual serum samples. Therefore, the dual-mode LFIA can be applied for screening and tracking the early immunological reaction to SARS-CoV-2, and it has great promise for clinical application.
Collapse
Affiliation(s)
- Jinyue Zhu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianting Liu
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xianning Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Min Liu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chunhui Fu
- Qingdao Henderson Biological Technology Co., Ltd, Qingdao, 266109, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Jingwen Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
12
|
Li T, Zhang J, Bu P, Wu H, Guo J, Guo J. Multi-modal nanoprobe-enabled biosensing platforms: a critical review. NANOSCALE 2024; 16:3784-3816. [PMID: 38323860 DOI: 10.1039/d3nr03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nanomaterials show great potential for applications in biosensing due to their unique physical, chemical, and biological properties. However, the single-modal signal sensing mechanism greatly limits the development of single-modal nanoprobes and their related sensors. Multi-modal nanoprobes can realize the output of fluorescence, colorimetric, electrochemical, and magnetic signals through composite nanomaterials, which can effectively compensate for the defects of single-modal nanoprobes. Following the multi-modal nanoprobes, multi-modal biosensors break through the performance limitation of the current single-modal signal and realize multi-modal signal reading. Herein, the current status and classification of multi-modal nanoprobes are provided. Moreover, the multi-modal signal sensing mechanisms and the working principle of multi-modal biosensing platforms are discussed in detail. We also focus on the applications in pharmaceutical detection, food and environmental fields. Finally, we highlight this field's challenges and development prospects to create potential enlightenment.
Collapse
Affiliation(s)
- Tong Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiani Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengzhi Bu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoping Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong, University, Shanghai, China.
| |
Collapse
|
13
|
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. BIOSENSORS 2024; 14:108. [PMID: 38392027 PMCID: PMC10887370 DOI: 10.3390/bios14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Nanostructures have played a key role in the development of different techniques to attack severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors. The latter are of great interest for detecting diseases since some of their features allowed us to find specific markers in secretion samples such as saliva, blood, and even tears. Herein, we highlight how hierarchical nanoparticles integrated into two or more low-dimensional materials present outstanding advantages that are attractive for photonic biosensing using their nanoscale functions. The potential of nanohybrids with their superlative mechanical characteristics together with their optical and optoelectronic properties is discussed. The progress in the scientific research focused on using nanoparticles for biosensing a variety of viruses has become a medical milestone in recent years, and has laid the groundwork for future disease treatments. This perspective analyzes the crucial information about the use of hierarchical nanostructures in biosensing for the prevention, treatment, and mitigation of SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Jael Abigail Medrano-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Isaela Villalpando
- Centro de Investigación para los Recursos Naturales, Salaices 33941, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
14
|
Wang F, Li X, Liu Z, Zhao X, Zhao C, Hou G, Liu Q, Liu X. A Magnetic-Optical Triple-Mode Lateral Flow Immunoassay for Sensitive and Rapid Detection of Respiratory Adenovirus. Anal Chem 2024; 96:2059-2067. [PMID: 38258754 DOI: 10.1021/acs.analchem.3c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human respiratory adenovirus (ADV) is a highly infectious respiratory virus with potential for pandemics. There are currently no specific drugs to treat ADV worldwide, so early rapid detection of ADV infection is essential. In this study, we developed an innovative magnetic-optical triple-mode lateral flow immunoassay (LFIA) using magnetic quantum dots as immunomarkers. This novel approach addresses the need for rapid and accurate ADV detection, allowing for multimodal quantitative/semiquantitative analysis of magnetic, fluorescent, and visible signals within a mere 15 min. The lower limit of detection (LOD) for magnetic, fluorescent, and visual signals was determined to be 5.6 × 103, 1.2 × 103, and 1.95 × 104 copies/mL, respectively. The detection range for ADV using this approach was 1.2 × 103-5 × 107 copies/mL. Additionally, semiquantitative analysis, which is user-friendly and does not necessitate specialized equipment, was successfully implemented. Notably, seven respiratory viruses showed no cross-reactivity with the generated LFIA test strips. The intrabatch repeatability exhibited a coefficient of variation (CV) of less than 5%, while the interbatch repeatability had a CV of less than 15%. Furthermore, recovery values ranged from 95% to 106.8% for samples analyzed concurrently with dual signals at the same spiking concentration. The assay developed in this study boasts a wide detection range and exceptional sensitivity and specificity. This technique is exceptionally well-suited for on-site rapid detection, with the potential for personal self-testing and early ADV infection diagnosis. Its versatility extends to a broad array of application scenarios.
Collapse
Affiliation(s)
- Fei Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Xiaoyan Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Zhining Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xin Zhao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Changxu Zhao
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Guangzheng Hou
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Qiqi Liu
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Xin Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
- Jinzhou Medical University Huludao Central Hospital Teaching Base, Huludao 125001,PR China
| |
Collapse
|
15
|
Wang K, Liu X, Liang X, Jiang Y, Wen CY, Zeng J. Near-Infrared Responsive Ag@Au Nanoplates with Exceptional Stability for Highly Sensitive Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay. Anal Chem 2024. [PMID: 38317503 DOI: 10.1021/acs.analchem.3c05787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Lateral flow immunoassay (LFIA) has played a vital role in point-of-care (POC) testing on account of its simplicity, rapidity, and low cost. However, the low sensitivity and difficulty of quantitation limit its further development. Sensitive markers with new detection modes are being developed to dramatically improve LFIA's performance. Herein, a ligand-complex approach was proposed to uniformly coat a thin layer of Au onto Ag triangular nanoplates (Ag TNPs) without etching the Ag cores, which not only retain the unique optical properties from Ag TNPs but also acquire the surface stability and biocompatibility of gold. The localized surface plasmon resonance absorption of these Ag@Au TNPs could be finely adjusted from visible (550 nm) to the second near-infrared region (NIR-II) (1100 nm), and even longer, by simply adjusting the ratio between edge length and thickness. Utilizing the Ag@Au TNPs as new markers for LFIA, a highly sensitive colorimetric and photothermal dual-mode detection of the SARS-CoV-2 nucleocapsid protein was achieved with a very low background. The Ag@Au TNPs showed an exceedingly high photothermal conversion efficiency of 61.4% (ca. 2 times higher than that of Au nanorods), endowing the LFIA method with a low photothermal detection limit (40 pg/mL), which was 25-fold lower than that of the colorimetric results. The generality of the method was further verified by the sensitive and accurate analysis of cardiac troponin I (cTnI). This method is robust, reproducible, and highly specific and has been successfully applied to SARS-COV-2 detection in 35 clinical samples with satisfactory results, demonstrating its potential for POC applications.
Collapse
Affiliation(s)
- Kun Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinyi Liang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430065, China
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
16
|
Qi L, Liu J, Liu S, Liu Y, Xiao Y, Zhang Z, Zhou W, Jiang Y, Fang X. Ultrasensitive Point-of-Care Detection of Protein Markers Using an Aptamer-CRISPR/Cas12a-Regulated Liquid Crystal Sensor (ALICS). Anal Chem 2024; 96:866-875. [PMID: 38164718 DOI: 10.1021/acs.analchem.3c04492] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.
Collapse
Affiliation(s)
- Lubin Qi
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Jie Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Songlin Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yang Liu
- Department of Orthopedics, Second Affiliated Hospital of Shandong First Medical University, Taian 271000, PR China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| |
Collapse
|
17
|
Wu SW, Chen YJ, Chang YW, Huang CY, Liu BH, Yu FY. Novel enzyme-linked aptamer-antibody sandwich assay and hybrid lateral flow strip for SARS-CoV-2 detection. J Nanobiotechnology 2024; 22:5. [PMID: 38169397 PMCID: PMC10762915 DOI: 10.1186/s12951-023-02191-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
We have successfully generated oligonucleotide aptamers (Apts) and monoclonal antibodies (mAbs) targeting the recombinant nucleocapsid (N) protein of SARS-CoV-2. Apts were obtained through seven rounds of systematic evolution of ligands by exponential enrichment (SELEX), while mAbs were derived from the 6F6E11 hybridoma cell line. Leveraging these Apts and mAbs, we have successfully devised two innovative and remarkably sensitive detection techniques for the rapid identification of SARS-CoV-2 N protein in nasopharyngeal samples: the enzyme-linked aptamer-antibody sandwich assay (ELAAA) and the hybrid lateral flow strip (hybrid-LFS). ELAAA exhibited an impressive detection limit of 0.1 ng/mL, while hybrid-LFS offered a detection range of 0.1 - 0.5 ng/mL. In the evaluation using ten nasopharyngeal samples spiked with known N protein concentrations, ELAAA demonstrated an average recovery rate of 92%. Additionally, during the assessment of five nasopharyngeal samples from infected individuals and ten samples from healthy volunteers, hybrid-LFS displayed excellent sensitivity and specificity. Our study introduces a novel and efficient on-site approach for SARS-CoV-2 detection in nasopharyngeal samples. The reliable hybrid Apt-mAb strategy not only advances virus diagnostic methods but also holds promise in combating the spread of related diseases.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
| | - Ying-Ju Chen
- School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Yu-Wen Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
| |
Collapse
|
18
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
19
|
Sun Q, Ning Q, Li T, Jiang Q, Feng S, Tang N, Cui D, Wang K. Immunochromatographic enhancement strategy for SARS-CoV-2 detection based on nanotechnology. NANOSCALE 2023; 15:15092-15107. [PMID: 37676509 DOI: 10.1039/d3nr02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) has been catastrophic to both human health and social development. Therefore, developing highly reliable and sensitive point-of-care testing (POCT) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a priority. Among all available POCTs, the lateral flow immunoassay (LFIA, also known as immunochromatography) has proved to be effective due to its accuracy, portability, convenience, and speed. In areas with a scarcity of laboratory resources and medical personnel, the LFIA provides an affordable option for the diagnosis of COVID-19. This review offers a comprehensive overview of methods for improving the sensitivity of SARS-CoV-2 detection using immunochromatography based on nanotechnology, sorted according to the different detection targets (antigens, antibodies, and nucleic acids). It also looks into the performance and properties of the various sensitivity enhancement strategies, before delving into the remaining challenges in COVID-19 diagnosis through LFIA. Ultimately, it seeks to provide helpful guidance in selecting an appropriate strategy for SARS-CoV-2 immunochromatographic detection based on nanotechnology.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ning Tang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| |
Collapse
|
20
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
21
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
22
|
CdTe QDs-sensitized TiO 2 nanocomposite for magnetic-assisted photoelectrochemical immunoassay of SARS-CoV-2 nucleocapsid protein. Bioelectrochemistry 2023; 150:108358. [PMID: 36580690 PMCID: PMC9783190 DOI: 10.1016/j.bioelechem.2022.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A sensitive, reliable, and cost-effective detection for SARS-CoV-2 was urgently needed due to the rapid spread of COVID-19. Here, a "signal-on" magnetic-assisted PEC immunosensor was constructed for the quantitative detection of SARS-CoV-2 nucleocapsid (N) protein based on Z-scheme heterojunction. Fe3O4@SiO2@Au was used to connect the capture antibody to act as a capture probe (Fe3O4@SiO2@Au/Ab1). It can extract target analytes selectively in complex samples and multiple electrode rinsing and assembly steps were avoided effectively. CdTe QDs sensitized TiO2 coated on the surface of SiO2 spheres to form Z-scheme heterojunction (SiO2@TiO2@CdTe QDs), which broadened the optical absorption range and inhibited the quick recombination of photogenerated electron/hole of the composite. With fascinating photoelectric conversion performance, SiO2@TiO2@CdTe QDs were utilized as a signal label, thus further realizing signal amplification. The migration mechanism of photogenerated electrons was further deduced by active material quenching experiment and electron spin resonance (ESR) measurement. The elaborated immunosensor can detect SARS-CoV-2 N protein in the linear range of 0.005-50 ng mL-1 with a low detection limit of 1.8 pg mL-1 (S/N = 3). The immunosensor displays extraordinary sensitivity, strong anti-interference, and high reproducibility in detecting SARS-CoV-2 N protein, which envisages its potential application in the clinical diagnosis of COVID-19.
Collapse
|
23
|
Lai S, Liu Y, Fang S, Wu Q, Fan M, Lin D, Lin J, Feng S. Ultrasensitive detection of SARS-CoV-2 antigen using surface-enhanced Raman spectroscopy-based lateral flow immunosensor. JOURNAL OF BIOPHOTONICS 2023:e202300004. [PMID: 36999175 DOI: 10.1002/jbio.202300004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.
Collapse
Affiliation(s)
- Shuxia Lai
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Pei F, Feng S, Hu W, Liu B, Mu X, Hao Q, Cao Y, Lei W, Tong Z. Sandwich mode lateral flow assay for point-of-care detecting SARS-CoV-2. Talanta 2023; 253. [PMCID: PMC9612878 DOI: 10.1016/j.talanta.2022.124051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The global corona virus disease 2019 (COVID-19) has been announced a pandemic outbreak, and has threatened human life and health seriously. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as its causative pathogen, is widely detected in the screening of COVID-19 patients, infected people and contaminated substances. Lateral flow assay (LFA) is a popular point-of-care detection method, possesses advantages of quick response, simple operation mode, portable device, and low cost. Based on the above advantages, LFA has been widely developed for detecting SARS-CoV-2. In this review, we summarized the articles about the sandwich mode LFA detecting SARS-CoV-2, classified according to the target detection objects indicating genes, nucleocapsid protein, spike protein, and specific antibodies of SARS-CoV-2. In each part, LFA is further classified and summarized according to different signal detection types. Additionally, the properties of the targets were introduced to clarify their detection significance. The review is expected to provide a helpful guide for LFA sensitization and marker selection of SARS-CoV-2.
Collapse
Affiliation(s)
- Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,Corresponding author
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
25
|
Zuo J, Yan T, Tang X, Zhang Q, Li P. Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B 1 in Maize. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2771-2780. [PMID: 36598495 DOI: 10.1021/acsami.2c20269] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent years, dual-modal immunosensors based on synthetic nanomaterials have provided accurate and sensitive detection. However, preparation of nanomaterial probes can be time-consuming, laborious, and not limited to producing inactive and low-affinity antibodies. These challenges can be addressed through the multifunction nanobody without conjugation. In this study, a nanobody-enhanced green fluorescent (Nb26-EGFP) was novel produced with a satisfactory affinity and fluorescent properties. Then, a dual-modal fluorescent/colorimetric immunosensor was constructed using the Nb26-EGFP-gold nanoflowers (AuNFs) composite as a probe, to detect the aflatoxin B1 (AFB1). In the maize matrix, the proposed immunosensor showed high sensitivity with a limit of detection (LOD) of 0.0024 ng/mL and a visual LOD of 1 ng/mL, which is 20-fold and 325-fold compared with the Nb26-EGFP-based single-modal immunosensor and original nanobody Nb26-based immunoassay. The performance of the dual-modal assay was validated by a high-performance liquid chromatography method. The recoveries were between 83.19 and 108.85%, with the coefficients of variation below 9.43%, indicating satisfied accuracy and repeatability. Overall, the novel Nb26-EGFP could be used as the detection probe, and the dual-modal immunosensor could be used as a practical detection method for AFB1 in real samples.
Collapse
Affiliation(s)
- Jiasi Zuo
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Tingting Yan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| |
Collapse
|
26
|
Sun Y, Xie Z, Pei F, Hu W, Feng S, Hao Q, Liu B, Mu X, Lei W, Tong Z. Trimetallic Au@Pd@Pt nanozyme-enhanced lateral flow immunoassay for the detection of SARS-CoV-2 nucleocapsid protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5091-5099. [PMID: 36468531 DOI: 10.1039/d2ay01530g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seriously threatened global public health. Establishing a rapid and sensitive diagnostic test for early detection of the SARS-CoV-2 nucleocapsid protein is urgently required to defend against the pandemic. Herein, an enhanced lateral flow immunoassay (LFIA) was fabricated by trimetallic Au@Pd@Pt core-shell nanozymes for detection of the SARS-CoV-2 nucleocapsid protein. The Au@Pd@Pt nanozymes (Au@Pd@Pt NZs) synthesized via a one-pot method, with a dendrite morphology and uniform particle size, showed excellent peroxidase-like activity. Due to the perfect enzyme-like catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), the catalytic signal could be generated even by a tiny amount of Au@Pd@Pt NZs accumulated on the test strip. Therefore, rapid detection with higher sensitivity was achieved. The Au@Pd@Pt NZs-based LFIA provided a quantitative range of 0.05-100 ng mL-1 with a limit of detection of 0.037 ng mL-1, which was 17-fold lower than the LFIA without enhancement. The average recoveries from spiked samples were in the range of 92.5-107.9% with relative standard deviations all less than 4%, indicating the reliability and repeatability of the proposed LFIA. Additionally, the proposed LFIA could report results within 30 min using a microplate reader. In conclusion, the Au@Pd@Pt NZs-LFIA is a rapid, simple, and sensitive method for detecting the SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zihao Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|