1
|
Strategies to Reduce the Use of Gadolinium-Based Contrast Agents for Abdominal MRI in Children. AJR Am J Roentgenol 2020; 214:1054-1064. [DOI: 10.2214/ajr.19.22232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Manias KA, Gill SK, MacPherson L, Foster K, Oates A, Peet AC. Magnetic resonance imaging based functional imaging in paediatric oncology. Eur J Cancer 2016; 72:251-265. [PMID: 28011138 DOI: 10.1016/j.ejca.2016.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 12/16/2022]
Abstract
Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice.
Collapse
Affiliation(s)
- Karen A Manias
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Simrandip K Gill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Lesley MacPherson
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Katharine Foster
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Adam Oates
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
3
|
Demir S, Altinkaya N, Kocer NE, Erbay A, Oguzkurt P. Variations in apparent diffusion coefficient values following chemotherapy in pediatric neuroblastoma. Diagn Interv Radiol 2016; 21:184-8. [PMID: 25519453 DOI: 10.5152/dir.2014.14187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE In children the assessment of solid tumors' response to chemotherapy is based primarily on size reduction, which can be unreliable and a late marker, in the presence of necrosis. We aimed to establish whether apparent diffusion coefficient (ADC) values of childhood neuroblastomas show proportional changes in relation to chemotherapy response. METHODS We evaluated 15 pediatric patients with abdominopelvic neuroblastomas, who had undergone MRI before and after chemotherapy. Two radiologists retrospectively analyzed all images by drawing a round uniform region-of-interest in the solid/contrast-enhancing portion of the lesions in consensus. The ADC values from pre- and postchemotherapy images were compared. RESULTS Postchemotherapy ADC values were significantly higher than those obtained before treatment (P < 0.05, for minimum, maximum, and median ADC values). CONCLUSION Our results support diffusion-weighted MRI as a promising noninvasive biomarker of therapeutic responses. To the best of our knowledge, this is the first report to compare diffusion- weighted imaging findings before and after chemotherapy in childhood neuroblastic tumors.
Collapse
Affiliation(s)
- Senay Demir
- Department of Radiology, Baskent University School of Medicine, Adana, Turkey.
| | | | | | | | | |
Collapse
|
4
|
Serin HI, Gorkem SB, Doganay S, Cıracı S, Unal E, Guzel M, Kucuk A, Kurtsoy A, Coskun A. Diffusion weighted imaging in differentiating malignant and benign neuroblastic tumors. Jpn J Radiol 2016; 34:620-4. [PMID: 27418194 DOI: 10.1007/s11604-016-0565-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE Our aim was to assess diffusion weighted imaging (DWI) of neuroblastic tumors and whether apparent diffusion coefficient (ADC) value may have a role in discrimination among neuroblastoma, ganglioneuroblastoma and ganglioneuroma. MATERIAL AND METHODS The DWIs (b = 0-800 s/mm(2)) of 24 children (13 girls, 11 boys) who were diagnosed neuroblastic tumors on histopathological examination (neuroblastoma = 15, ganglioneuroblastoma = 5, ganglioneuroma = 4) were evaluated retrospectively. The ADC maps were performed by drawing freehand ROI on PACS (Sectra Workstation IDS7, Linköping, Sweden). RESULTS We observed a significant decrease in ADC value of neuroblastomas 0.869 ± 0.179 × 10(-3) mm(2)/s compared to ganglioneuroblastomas 0.97 ± 0.203 × 10(-3) mm(2)/s and ganglioneuromas 1.147 ± 0.299 × 10(-3) mm(2)/s (p = 0.026). There was no significant difference in between ganglioneuroblastoma and ganglioneuroma (p = 0.16). In detecting neuroblastomas; the sensitivity, specificity, negative and positive predictive values of ADC were 74, 67, 78.6, 66 % respectively with a cut-off value of 0.93 × 10(-3) mm(2)/s. CONCLUSION Our study stands out as the most comprehensive study with larger sample size on this topic. Moreover, we are able to suggest a cut-off value which can discriminate neuroblastoma from ganglioneuroblastoma and ganglioneuroma. We believe that ADC will evolve to an objective, quantitative measurement in discrimination among malignant and benign neuroblastic tumors.
Collapse
Affiliation(s)
- Halil Ibrahim Serin
- Department of Radiology, Bozok University School of Medicine, Yozgat, Turkey.
| | - Sureyya Burcu Gorkem
- Department of Radiology, Pediatric Radiology Section, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey.
| | - Selim Doganay
- Department of Radiology, Pediatric Radiology Section, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Saliha Cıracı
- Department of Radiology, Pediatric Radiology Section, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Ekrem Unal
- Department of Oncology, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Mahmut Guzel
- Department of Pediatric Surgery, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Ahmet Kucuk
- Department of Neurosurgery, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Ali Kurtsoy
- Department of Neurosurgery, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| | - Abdulhakim Coskun
- Department of Radiology, Pediatric Radiology Section, Erciyes University School of Medicine, Melikgazi, Kayseri, Turkey
| |
Collapse
|
5
|
Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol 2016; 46:847-57. [PMID: 27229502 DOI: 10.1007/s00247-016-3573-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Diffusion-weighted MRI is being increasingly used in pediatric body imaging. Its role is still emerging. It is used for detection of tumors and abscesses, differentiation of benign and malignant tumors, and detection of inflamed bowel segments in inflammatory bowel disease in children. It holds great promise in the assessment of therapy response in body tumors, with apparent diffusion coefficient (ADC) value as a potential biomarker. Significant overlap of ADC values of benign and malignant processes and less reproducibility of ADC measurements are hampering its widespread use in clinical practice. With standardization of the technique, diffusion-weighted imaging (DWI) is likely to be used more frequently in clinical practice. We discuss the principles and technique of DWI, selection of b value, qualitative and quantitative assessment, and current status of DWI in evaluation of disease processes in the pediatric body.
Collapse
|
6
|
Bhojwani N, Szpakowski P, Partovi S, Maurer MH, Grosse U, von Tengg-Kobligk H, Zipp-Partovi L, Fergus N, Kosmas C, Nikolaou K, Robbin MR. Diffusion-weighted imaging in musculoskeletal radiology-clinical applications and future directions. Quant Imaging Med Surg 2015; 5:740-53. [PMID: 26682143 DOI: 10.3978/j.issn.2223-4292.2015.07.07] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have been established due to reasons ranging from variability in acquisition protocols to overlapping imaging characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the musculoskeletal system.
Collapse
Affiliation(s)
- Nicholas Bhojwani
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Peter Szpakowski
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Sasan Partovi
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Martin H Maurer
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Ulrich Grosse
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Hendrik von Tengg-Kobligk
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Lisa Zipp-Partovi
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Nathan Fergus
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Christos Kosmas
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Konstantin Nikolaou
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Mark R Robbin
- 1 Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2 Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland ; 4 Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany ; 5 Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Fowkes LA, Koh DM, Collins DJ, Jerome NP, MacVicar D, Chua SC, Pearson ADJ. Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials. Pediatr Radiol 2015; 45:1600-15. [PMID: 26045035 DOI: 10.1007/s00247-015-3342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022]
Abstract
Cancer is the leading cause of death in children older than 1 year of age and new drugs are necessary to improve outcomes. Imaging is crucial to the drug development process and assessment of therapeutic response. In adults, tumours are often assessed with CT using size criteria. Unfortunately, techniques established in adults are not necessarily applicable in children due to differing pathophysiology, ability to cooperate and increased susceptibility to ionising radiation. MRI, in particular quantitative MRI, has to date not been fully utilised in children with extracranial neoplasms. The specific challenges of imaging in children, the potential for functional imaging techniques to inform upon and their inclusion in clinical trials are discussed.
Collapse
Affiliation(s)
- Lucy A Fowkes
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK.
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - David J Collins
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - Neil P Jerome
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - David MacVicar
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Sue C Chua
- Nuclear Medicine & PET Department, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Andrew D J Pearson
- Paediatric Drug Development Unit, Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| |
Collapse
|
8
|
Ahlawat S, Fayad LM. De Novo Assessment of Pediatric Musculoskeletal Soft Tissue Tumors: Beyond Anatomic Imaging. Pediatrics 2015; 136:e194-202. [PMID: 26122807 DOI: 10.1542/peds.2014-2316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MRI plays a central role in the assessment of pediatric musculoskeletal soft tissue tumors. Although these neoplasms may initially be evaluated on other modalities, such as sonography, MRI is essential for accurately determining the extent of disease. Traditionally, MRI has been performed with sequences that provide excellent anatomic detail, with T1-weighted, fluid-sensitive, and static postcontrast T1-weighted sequences. However, with the introduction of noncontrast sequences such as diffusion-weighted imaging and magnetic resonance spectroscopy to the arsenal of available MRI techniques, functional and metabolic features of a neoplasm can now be examined noninvasively. These more recent MRI methods offer information for lesion characterization, the assessment of treatment response, and the distinction of postoperative scar from recurrence. Dynamic contrast-enhanced perfusion imaging is another useful functional technique that can be acquired before conventional static postcontrast imaging, without requiring additional contrast material. This review presents recent advances in MRI methodology that enable a comprehensive clinical assessment of musculoskeletal tumors in the pediatric population. The roles and challenges of combining anatomic, functional, and metabolic MRI sequences will be discussed as they relate to newly discovered soft tissue tumors in children.
Collapse
Affiliation(s)
- Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
9
|
Gawande RS, Gonzalez G, Messing S, Khurana A, Daldrup-Link HE. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013; 43:836-45. [PMID: 23666206 DOI: 10.1007/s00247-013-2626-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/09/2012] [Accepted: 11/27/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Solid malignant tumors are more highly cellular than benign lesions and hence have a restricted diffusion of water molecules. OBJECTIVE To evaluate whether diffusion-weighted MR imaging (DWI) can differentiate between benign and malignant pediatric abdominal tumors. MATERIALS AND METHODS We retrospectively analyzed DWI scans of 68 consecutive children with 39 benign and 34 malignant abdominal masses. To calculate the apparent diffusion coefficient (ADC) maps and ADC values, we used 1.5-T sequences at TR/TE/b-value of 5,250-7,500/54-64/b = 0, 500 and 3-T sequences at 3,500-4,000/66-73/b = 0, 500, 800. ADC values were compared between benign and malignant and between data derived at 1.5 tesla (T) and at 3 tesla magnetic field strength, using the Mann-Whitney-Wilcoxon test, ANOVA and a receiver operating curve (ROC) analysis. RESULTS There was no significant difference in ADC values obtained at 1.5 T and 3 T (P = 0.962). Mean ADC values (× 10(-3) mm(2)/s) were 1.07 for solid malignant tumors, 1.6 for solid benign tumors, 2.9 for necrotic portions of malignant tumors and 3.1 for cystic benign lesions. The differences between malignant and benign solid tumors were statistically significant (P = 0.000025). ROC analysis revealed an optimal cut-off ADC value for differentiating malignant and benign solid tumors as 1.29 with excellent inter-observer reliability (alpha score 0.88). CONCLUSION DWI scans and ADC values can contribute to distinguishing between benign and malignant pediatric abdominal tumors.
Collapse
|
10
|
Mayerhoefer ME, Ba-Ssalamah A, Weber M, Mitterhauser M, Eidherr H, Wadsak W, Raderer M, Trattnig S, Herneth A, Karanikas G. Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 2013; 23:1978-85. [DOI: 10.1007/s00330-013-2785-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
|
11
|
Darge K, Anupindi SA, Jaramillo D. MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 2011; 261:12-29. [PMID: 21931139 DOI: 10.1148/radiol.11101922] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent developments in magnetic resonance (MR) imaging have profoundly changed the investigation of abdominal and pelvic disease in pediatrics. Motion reduction techniques, such periodically rotated overlapping parallel lines with enhanced reconstruction, or PROPELLER, have resulted in reliable imaging with quiet breathing. Faster imaging sequences minimize artifact and allow for more efficient studies. Diffusion-weighted imaging has become increasingly important in the evaluation of neoplastic disease, depicting disease with increased cellularity and helping to differentiate benign from malignant masses. MR enterography helps visualize intra- and extraluminal bowel pathologic conditions. MR cholangiopancreatography can depict congenital and acquired causes of pancreatic and biliary abnormalities. MR urography is an effective technique for a one-stop-shop evaluation of structural urinary tract abnormality and renal function. Three-dimensional acquisitions allow volumetric display of structures from multiple angles. Specialized techniques allow quantification of iron and fat in the viscera in children with hemolytic anemia and obesity, respectively. This article covers current techniques and strategies to perform and optimize MR imaging of the abdomen and pelvis in infants, children, and adolescents and describes important practical applications.
Collapse
Affiliation(s)
- Kassa Darge
- Department of Radiology, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
12
|
Diffusion-weighted imaging in the characterization of focal liver lesions: efficacy of visual assessment. J Comput Assist Tomogr 2011; 35:326-31. [PMID: 21586924 DOI: 10.1097/rct.0b013e318216efeb] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of the study was to assess the value of visual assessment of signal intensities on b800 diffusion-weighted images and apparent diffusion coefficient (ADC) maps in differentiation of benign and malignant focal liver lesions (FLLs). METHODS Approval for this retrospective study was obtained from the institutional review board. One hundred forty-three FLLs in 65 patients (38 women, 27 men; mean age, 50.8 years) underwent magnetic resonance (MR) imaging and diffusion-weighted imaging (DWI) with a respiratory-triggered single-shot echo-planar imaging sequence. Focal liver lesions were evaluated visually according to the signal intensities on b800 and ADC map images, and ADC values were also calculated. The conventional MR imaging, follow-up imaging findings, and histopathologic data were regarded as gold standard. Normal distribution was assessed with Kolmogorov-Smirnov test. The accuracies of visual assessment and ADC values in differentiating benign and malignant FLLs were assessed with the Student t test, and threshold values were determined with receiver operating characteristic curve analysis. RESULTS By using a cutoff value of 1.21 × 10⁻³ mm²/s, ADC had a sensitivity of 100%, a specificity of 89.3%, and an accuracy of 92.3% in the discrimination of malignant FLLs. With the visual assessment of the DWIs and ADC maps, malignant lesions were differentiated from benign ones, with 100% sensitivity, 92.2% specificity, and 94.4% accuracy. Although some benign lesions were interpreted as malignant, no malignant lesion was determined as benign in visual assessment. CONCLUSIONS Most FLLs are benign ones such as hemangiomas and cysts, which can be readily and practically characterized only by using visual assessment of DWIs without requiring time-consuming conventional and dynamic contrast-enhanced imaging sequences. Some benign lesions that are falsely interpreted as malignant can be further characterized by using conventional and contrast-enhanced MR studies.
Collapse
|
13
|
Wang X, Jacobs MA, Fayad L. Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR IN BIOMEDICINE 2011; 24:750-63. [PMID: 21793077 PMCID: PMC3150732 DOI: 10.1002/nbm.1731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article provides a literature review of the use of MRI in monitoring the treatment response of soft tissue sarcomas. The basic classification and physiology of soft tissue tumors are introduced. Then, the major treatment options for soft tissue sarcomas are summarized with brief coverage of possible responses and grading systems. Four major branches of MRI techniques are covered, including conventional T(1) - and T(2) -weighted imaging, contrast-enhanced MRI, MR diffusion and perfusion imaging, and MRS, with a focus on the tumor microenvironment. Although this literature survey focuses on recent clinical developments using these MRI techniques, research venues in preclinical studies, as well as in potential applications other than soft tissue sarcomas, are also included when comparable and/or mutually supporting. Examples from other less-discussed MRI modalities are also briefly covered, not only to complement, but also to expand, the scope and depth of information for various kinds of lesions.
Collapse
Affiliation(s)
- Xin Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
14
|
Goo HW. Regional and whole-body imaging in pediatric oncology. Pediatr Radiol 2011; 41 Suppl 1:S186-94. [PMID: 21523595 DOI: 10.1007/s00247-011-2050-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/01/2011] [Indexed: 11/29/2022]
Abstract
The goals of tumor imaging include tumor detection, tumor characterization and differential diagnosis, imaging-guided biopsy, evaluation of tumor extent and staging, assessment of treatment responses, and surveillance for residual tumor or tumor recurrence. In clinical practice, various combinations of imaging modalities are used to achieve these goals. Recently introduced tumor imaging methods, such as diffusion MRI, perfusion MRI, whole-body MRI, and positron emission tomography (PET-CT), have shown promising results. Depending on tumor type and management plan, imaging protocols for children should be individually optimized to achieve the shortest examination time, the highest image quality, the lowest risk, and maximum clinical benefits. In this article, the roles of regional and whole-body tumor imaging will be reviewed, and several important issues related to recent technical developments will be discussed.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-gil, Songpa-gu, Seoul 138-736, South Korea.
| |
Collapse
|
15
|
Kocaoglu M, Bulakbasi N, Sanal HT, Kismet E, Caliskan B, Akgun V, Tayfun C. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 2010; 28:629-36. [DOI: 10.1016/j.mri.2010.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/14/2009] [Accepted: 02/08/2010] [Indexed: 01/18/2023]
|