1
|
Battaglia O, Pesapane F, Penco S, Signorelli G, Dominelli V, Nicosia L, Bozzini AC, Rotili A, Cassano E. Ultrafast Breast MRI: A Narrative Review. J Pers Med 2025; 15:142. [PMID: 40278321 PMCID: PMC12028396 DOI: 10.3390/jpm15040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Breast magnetic resonance imaging (MRI) is considered the most effective method for detecting breast cancer due to its high sensitivity. Yet multiple factors limit its widespread use, including high direct and indirect costs, a prolonged acquisition time with consequent patient discomfort, and a lack of trained radiologists. During the last decade, new strategies have been followed to increase the availability of breast MRI, including the omission of non-essential sequences to generate abbreviated MRI protocols (AB-MRIs) aimed at reducing the acquisition time with the potential of improving the patient's experience and accommodating a higher number of MRI examinations per day. An alternative method is ultrafast MRI (UF-MRI), a novel technique that gathers kinetic data within the first minute after contrast injection, offering high temporal resolution. This enables the analysis of early contrast wash-in curves, showing promising outcomes. In this study, we reviewed the role of UF-MRI in breast imaging and detailed how the integration of this new approach with radiomics and mathematical models might further improve diagnostic accuracy and even have a prognostic role, a fundamental characteristic in the modern scenarios of personalized medicine. In addition, possible clinical applications and advantages of UF-MRI will be discussed.
Collapse
Affiliation(s)
- Ottavia Battaglia
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; (F.P.); (S.P.); (G.S.); (V.D.); (L.N.); (A.C.B.); (A.R.); (E.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zaza T, Chandora K, Yalniz C, Zamora KW, Zalasin S, Li Y, Woodard S. Performance of Abbreviated Breast MRI in High-Risk Patients in a Tertiary Care Academic Medical Center. JOURNAL OF BREAST IMAGING 2025; 7:177-186. [PMID: 39541267 DOI: 10.1093/jbi/wbae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The development of abbreviated breast MRI (AB-MRI) protocols reduce scan times. This paper reports the performance of AB-MRI at a tertiary care public academic medical center in comparison with established literature. METHODS This HIPAA-compliant IRB-approved retrospective study reviewed 413 AB-MRI screenings in high-risk patients from June 2020 to March 2023. Data were collected from 3 databases (MagView, Cerner PowerChart, and Prism Primordial). Demographics and overall BI-RADS assessment were recorded. For all positive (BI-RADS 0, 3, 4, 5) examinations, manual review of each case was performed. Performance metrics (sensitivity, specificity, cancer detection rate [CDR], recall rate, positive predictive value [PPV] 3 and negative predictive value [NPV]) were calculated. PubMed and Google Scholar were used to review similar AB-MRI studies to compare performance metrics. RESULTS There were 413 AB-MRI examinations from 413 unique patients. The majority of cases were audit-negative BI-RADS 1 or 2 (83.8%, 346/413). There were 67 (16.2%, 67/413) audit-positive cases with 3.6% (15/413) BI-RADS 3, 10.9% (45/413) BI-RADS 4, 0.7% (3/413) BI-RADS 5, and 1.0% (4/413) BI-RADS 0. Performance metrics showed a sensitivity of 100.0% (95% CI, 63.1%-100.0%) and a specificity of 85.7% (95% CI, 81.9%-88.9%). The PPV3 was 14.3% (95% CI, 5.1%-23.5%), and the NPV was 100.0% (95% CI, 99.0%-100.0%). The CDR was 19.4 per 1000 screenings. The results are comparable to prior literature and benchmark data. CONCLUSION This study demonstrates high sensitivity (100.0%) and NPV (100.0%) of AB-MRI with comparable specificity (85.7%) and CDR (19.4/1000) to the literature, adding support to the use of AB-MRI. Further research is needed to optimize AB-MRI protocols.
Collapse
Affiliation(s)
- Tamara Zaza
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ceren Yalniz
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kathryn Watts Zamora
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Zalasin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Woodard
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Amitai Y, Freitas VAR, Golan O, Kessner R, Shalmon T, Neeman R, Mauda-Havakuk M, Mercer D, Sklair-Levy M, Menes TS. The diagnostic performance of ultrafast MRI to differentiate benign from malignant breast lesions: a systematic review and meta-analysis. Eur Radiol 2024; 34:6285-6295. [PMID: 38512492 PMCID: PMC11399157 DOI: 10.1007/s00330-024-10690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES To assess the diagnostic performance of ultrafast magnetic resonance imaging (UF-DCE MRI) in differentiating benign from malignant breast lesions. MATERIALS AND METHODS A comprehensive search was conducted until September 1, 2023, in Medline, Embase, and Cochrane databases. Clinical studies evaluating the diagnostic performance of UF-DCE MRI in breast lesion stratification were screened and included in the meta-analysis. Pooled summary estimates for sensitivity, specificity, diagnostic odds ratio (DOR), and hierarchic summary operating characteristics (SROC) curves were pooled under the random-effects model. Publication bias and heterogeneity between studies were calculated. RESULTS A final set of 16 studies analyzing 2090 lesions met the inclusion criteria and were incorporated into the meta-analysis. Using UF-DCE MRI kinetic parameters, the pooled sensitivity, specificity, DOR, and area under the curve (AUC) for differentiating benign from malignant breast lesions were 83% (95% CI 79-88%), 77% (95% CI 72-83%), 18.9 (95% CI 13.7-26.2), and 0.876 (95% CI 0.83-0.887), respectively. We found no significant difference in diagnostic accuracy between the two main UF-DCE MRI kinetic parameters, maximum slope (MS) and time to enhancement (TTE). DOR and SROC exhibited low heterogeneity across the included studies. No evidence of publication bias was identified (p = 0.585). CONCLUSIONS UF-DCE MRI as a stand-alone technique has high accuracy in discriminating benign from malignant breast lesions. CLINICAL RELEVANCE STATEMENT UF-DCE MRI has the potential to obtain kinetic information and stratify breast lesions accurately while decreasing scan times, which may offer significant benefit to patients. KEY POINTS • Ultrafast breast MRI is a novel technique which captures kinetic information with very high temporal resolution. • The kinetic parameters of ultrafast breast MRI demonstrate a high level of accuracy in distinguishing between benign and malignant breast lesions. • There is no significant difference in accuracy between maximum slope and time to enhancement kinetic parameters.
Collapse
Affiliation(s)
- Yoav Amitai
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel.
| | - Vivianne A R Freitas
- Joint Department of Medical Imaging - University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, 610 University Avenue - M5G 2M9, Toronto, Ontario, Canada
| | - Orit Golan
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Rivka Kessner
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Tamar Shalmon
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Rina Neeman
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Michal Mauda-Havakuk
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Diego Mercer
- Department of Medical Imaging, Tel Aviv University, Sackler School of Medicine, Sourasky Medical Center, Weizmann 6, 6423906, Tel Aviv-Yafo, Israel
| | - Miri Sklair-Levy
- Department of Medical Imaging, Sackler School of Medicine, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Derech Shiba 2, 52621, Ramat-Gan, Israel
| | - Tehillah S Menes
- Department of Surgery, Sackler School of Medicine, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Derech Shiba 2, 52621, Ramat-Gan, Israel
| |
Collapse
|
4
|
Seely JM, Domonkos V, Verma R. Auditing Abbreviated Breast MR Imaging: Clinical Considerations and Implications. Radiol Clin North Am 2024; 62:687-701. [PMID: 38777543 DOI: 10.1016/j.rcl.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Abbreviated breast MR (AB-MR) imaging is a relatively new breast imaging tool, which maintains diagnostic accuracy while reducing image times compared with full-protocol breast MR (FP-MR) imaging. Breast imaging audits involve calculating individual and organizational metrics, which can be compared with established benchmarks, providing a standard against which performance can be measured. Unlike FP-MR imaging, there are no established benchmarks for AB-MR imaging but studies demonstrate comparable performance for cancer detection rate, positive predictive value 3, sensitivity, and specificity with T2. We review the basics of performing an audit, including strategies to implement if benchmarks are not being met.
Collapse
Affiliation(s)
- Jean M Seely
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| | - Victoria Domonkos
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Raman Verma
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada. https://twitter.com/RamanVermaMD
| |
Collapse
|
5
|
Edmonds CE, Weinstein SP, McDonald ES, Bagheri S, Zuckerman SP, O'Brien SR, Schnall MD, Conant EF. Abbreviated Breast MRI for Supplemental Screening in Patients With Dense Breasts: Comparison of Baseline Versus Subsequent-Round Examinations. AJR Am J Roentgenol 2024; 223:e2431098. [PMID: 38775433 DOI: 10.2214/ajr.24.31098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND. Abbreviated breast MRI (AB-MRI) achieves a higher cancer detection rate (CDR) than digital breast tomosynthesis when applied for baseline (i.e., first-round) supplemental screening of individuals with dense breasts. Limited literature has evaluated subsequent (i.e., sequential) AB-MRI screening rounds. OBJECTIVE. This study aimed to compare outcomes between baseline and subsequent rounds of screening AB-MRI in individuals with dense breasts who otherwise had an average risk for breast cancer. METHODS. This retrospective study included patients with dense breasts who otherwise had an average risk for breast cancer and underwent AB-MRI for supplemental screening between December 20, 2016, and May 10, 2023. The clinical interpretations and results of recommended biopsies for AB-MRI examinations were extracted from the EMR. Baseline and subsequent-round AB-MRI examinations were compared. RESULTS. The final sample included 2585 AB-MRI examinations (2007 baseline and 578 subsequent-round examinations) performed for supplemental screening of 2007 women (mean age, 57.1 years old) with dense breasts. Of 2007 baseline examinations, 1658 (82.6%) were assessed as BI-RADS category 1 or 2, 171 (8.5%) as BI-RADS category 3, and 178 (8.9%) as BI-RADS category 4 or 5. Of 578 subsequent-round examinations, 533 (92.2%) were assessed as BI-RADS category 1 or 2, 20 (3.5%) as BI-RADS category 3, and 25 (4.3%) as BI-RADS category 4 or 5 (p < .001). The abnormal interpretation rate (AIR) was 17.4% (349/2007) for baseline examinations versus 7.8% (45/578) for subsequent-round examinations (p < .001). For baseline examinations, PPV2 was 21.3% (38/178), PPV3 was 26.6% (38/143), and the CDR was 18.9 cancers per 1000 examinations (38/2007). For subsequent-round examinations, PPV2 was 28.0% (7/25) (p = .45), PPV3 was 29.2% (7/24) (p = .81), and the CDR was 12.1 cancers per 1000 examinations (7/578) (p = .37). All 45 cancers diagnosed by baseline or subsequent-round AB-MRI were stage 0 or 1. Seven cancers diagnosed by subsequent-round AB-MRI had a mean interval of 872 ± 373 (SD) days since prior AB-MRI and node-negative status at surgical axillary evaluation; six had an invasive component, all measuring 1.2 cm or less. CONCLUSION. Subsequent rounds of AB-MRI screening of individuals with dense breasts had lower AIR than baseline examinations while maintaining a high CDR. All cancers detected by subsequent-round examinations were early-stage node-negative cancers. CLINICAL IMPACT. The findings support sequential AB-MRI for supplemental screening in individuals with dense breasts. Further investigations are warranted to optimize the screening interval.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Susan P Weinstein
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Sina Bagheri
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Samantha P Zuckerman
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Mitchell D Schnall
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Emily F Conant
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
6
|
Niell BL, Jochelson MS, Amir T, Brown A, Adamson M, Baron P, Bennett DL, Chetlen A, Dayaratna S, Freer PE, Ivansco LK, Klein KA, Malak SF, Mehta TS, Moy L, Neal CH, Newell MS, Richman IB, Schonberg M, Small W, Ulaner GA, Slanetz PJ. ACR Appropriateness Criteria® Female Breast Cancer Screening: 2023 Update. J Am Coll Radiol 2024; 21:S126-S143. [PMID: 38823941 DOI: 10.1016/j.jacr.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
Early detection of breast cancer from regular screening substantially reduces breast cancer mortality and morbidity. Multiple different imaging modalities may be used to screen for breast cancer. Screening recommendations differ based on an individual's risk of developing breast cancer. Numerous factors contribute to breast cancer risk, which is frequently divided into three major categories: average, intermediate, and high risk. For patients assigned female at birth with native breast tissue, mammography and digital breast tomosynthesis are the recommended method for breast cancer screening in all risk categories. In addition to the recommendation of mammography and digital breast tomosynthesis in high-risk patients, screening with breast MRI is recommended. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Bethany L Niell
- Panel Chair, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | - Tali Amir
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann Brown
- Panel Vice Chair, University of Cincinnati, Cincinnati, Ohio
| | - Megan Adamson
- Clinica Family Health, Lafayette, Colorado; American Academy of Family Physicians
| | - Paul Baron
- Lenox Hill Hospital, Northwell Health, New York, New York; American College of Surgeons
| | | | - Alison Chetlen
- Penn State Health Hershey Medical Center, Hershey, Pennsylvania
| | - Sandra Dayaratna
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania; American College of Obstetricians and Gynecologists
| | | | | | | | | | - Tejas S Mehta
- UMass Memorial Medical Center/UMass Chan Medical School, Worcester, Massachusetts
| | - Linda Moy
- NYU Clinical Cancer Center, New York, New York
| | | | - Mary S Newell
- Emory University Hospital, Atlanta, Georgia; RADS Committee
| | - Ilana B Richman
- Yale School of Medicine, New Haven, Connecticut; Society of General Internal Medicine
| | - Mara Schonberg
- Harvard Medical School, Boston, Massachusetts; American Geriatrics Society
| | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois; Commission on Radiation Oncology
| | - Gary A Ulaner
- Hoag Family Cancer Institute, Newport Beach, California; University of Southern California, Los Angeles, California; Commission on Nuclear Medicine and Molecular Imaging
| | - Priscilla J Slanetz
- Specialty Chair, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Kuhl CK. Abbreviated Breast MRI: State of the Art. Radiology 2024; 310:e221822. [PMID: 38530181 DOI: 10.1148/radiol.221822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abbreviated MRI is an umbrella term, defined as a focused MRI examination tailored to answer a single specific clinical question. For abbreviated breast MRI, this question is: "Is there evidence of breast cancer?" Abbreviated MRI of the breast makes maximum use of the fact that the kinetics of breast cancers and of benign tissue differ most in the very early postcontrast phase; therefore, abbreviated breast MRI focuses on this period. The different published approaches to abbreviated MRI include the following three subtypes: (a) short protocols, consisting of a precontrast and either a single postcontrast acquisition (first postcontrast subtracted [FAST]) or a time-resolved series of postcontrast acquisitions with lower spatial resolution (ultrafast [UF]), obtained during the early postcontrast phase immediately after contrast agent injection; (b) abridged protocols, consisting of FAST or UF acquisitions plus selected additional pulse sequences; and (c) noncontrast protocols, where diffusion-weighted imaging replaces the contrast information. Abbreviated MRI was proposed to increase tolerability of and access to breast MRI as a screening tool. But its widening application now includes follow-up after breast cancer and even diagnostic assessment. This review defines the three subtypes of abbreviated MRI, highlighting the differences between the protocols and their clinical implications and summarizing the respective evidence on diagnostic accuracy and clinical utility.
Collapse
Affiliation(s)
- Christiane K Kuhl
- From the Department of Diagnostic and Interventional Radiology, University Hospital Aachen, RWTH Pauwelsstr 30, 52074 Aachen, Germany
| |
Collapse
|
8
|
Hellgren R, Tolocka E, Saracco A, Wilczek B, Sundbom A, Hall P, Dickman PW. Comparing the diagnostic accuracy, reading time, and inter-rater agreement of breast MRI abbreviated and full protocols: a multi-reader study. Acta Radiol 2024; 65:195-201. [PMID: 38115682 PMCID: PMC10903132 DOI: 10.1177/02841851231216552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Earlier studies have shown that abbreviated protocol magnetic resonance imaging (AB-MRI) has similar diagnostic accuracy as the full protocol (Full MRI). PURPOSE To compare the diagnostic accuracy, reading time, and inter-rater agreement of AB-MRI to Full MRI among women without known increased familial risk of breast cancer or prior biopsy. MATERIAL AND METHODS In total, 395 MRI examinations were included in this study. Three readers were blinded to all patient information. The AB-MRI and Full MRI were read separately and in a different random order for each of the readers. Scores 1-2 were considered test negative while scores 3-5 were test positive. A positive reference test was the diagnosis of malignancy; a negative reference test was the absence of a diagnosis of breast cancer within a two-year follow-up. We used a generalized estimating equations approach to compare sensitivity and specificity between the two protocols. We used t-tests to compare the average reading time and Krippendorff's alpha to compare inter-rater agreement. RESULTS MRI examinations of 395 women (median age=56 years) were evaluated. For AB-MRI and Full MRI, respectively, the sensitivity was 93.0% (95% CI=90.6-95.0) vs. 92.0% (95% CI=89.4-94.1), the specificity was 91.7% (95% CI=90.3-92.9) vs. 94.3% (95% CI=93.2-95.3), average reading time was 67 vs. 126 s, and the inter-rater agreement 0.79 vs. 0.83. The difference in sensitivity was not statistically significant (P=0.840), but the difference in specificity was significant (P=0.003). CONCLUSION AB-MRI has similar sensitivity, but somewhat lower specificity. The average reading time for the abbreviated protocol is lower, as is inter-rater agreement.
Collapse
Affiliation(s)
- Roxanna Hellgren
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ernst Tolocka
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Ariel Saracco
- Department of Mammography, Evidia, Stockholm, Sweden
| | - Brigitte Wilczek
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Ann Sundbom
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul W Dickman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Jannusch K, Lindemann ME, Bruckmann NM, Morawitz J, Dietzel F, Pomykala KL, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Umutlu L, Antoch G, Quick HH, Kirchner J. Towards a fast PET/MRI protocol for breast cancer imaging: maintaining diagnostic confidence while reducing PET and MRI acquisition times. Eur Radiol 2023; 33:6179-6188. [PMID: 37045980 PMCID: PMC10415438 DOI: 10.1007/s00330-023-09580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To investigate the diagnostic feasibility of a shortened breast PET/MRI protocol in breast cancer patients. METHODS Altogether 90 women with newly diagnosed T1tumor-staged (T1ts) and T2tumor-staged (T2ts) breast cancer were included in this retrospective study. All underwent a dedicated comprehensive breast [18F]FDG-PET/MRI. List-mode PET data were retrospectively reconstructed with 20, 15, 10, and 5 min for each patient to simulate the effect of reduced PET acquisition times. The SUVmax/mean of all malign breast lesions was measured. Furthermore, breast PET data reconstructions were analyzed regarding image quality, lesion detectability, signal-to-noise ratio (SNR), and image noise (IN). The simultaneously acquired comprehensive MRI protocol was then shortened by retrospectively removing sequences from the protocol. Differences in malignant breast lesion detectability between the original and the fast breast MRI protocol were evaluated lesion-based. The 20-min PET reconstructions and the original MRI protocol served as reference. RESULTS In all PET reconstructions, 127 congruent breast lesions could be detected. Group comparison and T1ts vs. T2ts subgroup comparison revealed no significant difference of subjective image quality between 20, 15, 10, and 5 min acquisition times. SNR of qualitative image evaluation revealed no significant difference between different PET acquisition times. A slight but significant increase of IN with decreasing PET acquisition times could be detected. Lesion SUVmax group comparison between all PET acquisition times revealed no significant differences. Lesion-based evaluation revealed no significant difference in breast lesion detectability between original and fast breast MRI protocols. CONCLUSIONS Breast [18F]FDG-PET/MRI protocols can be shortened from 20 to below 10 min without losing essential diagnostic information. KEY POINTS • A highly accurate breast cancer evaluation is possible by the shortened breast [18F]FDG-PET/MRI examination protocol. • Significant time saving at breast [18F]FDG-PET/MRI protocol could increase patient satisfaction and patient throughput for breast cancer patients at PET/MRI.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, D-45147, Essen, Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Kelsey L Pomykala
- Department for Artificial Intelligence in Medicine, University Hospital Essen, University of Duisburg-Essen, D-45131, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, D-45147, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, D-45141, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| |
Collapse
|
10
|
Marshall H, Burkard-Mandel L, Hsu J, Durieux J, Shikhman R, Plecha D. Abbreviated Breast MRI: Our Two-Year Initial Experience. JOURNAL OF BREAST IMAGING 2023; 5:318-328. [PMID: 38416894 DOI: 10.1093/jbi/wbad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 03/01/2024]
Abstract
OBJECTIVE The aim of this study was to retrospectively evaluate and present our two-year experience with abbreviated breast MRI at our academic institution as a screening tool to identify primary breast cancers. METHODS Employing eight specialty trained breast radiologists, studies were interpreted using the BI-RADS MRI lexicon in this IRB-approved retrospective study. The protocol utilized T1-weighted, fat-saturated, pre- and post-contrast, short T1 inversion recovery images, and was completed within 10 minutes. Abbreviated breast MRI was offered to asymptomatic women of all breast densities, whose ages ranged from 24 to 90 years. Statistical analysis was performed for comparative data utilizing estimated odds ratios. RESULTS Of 1338 patients that met inclusion criteria, 83% (1111/1338) were BI-RADS 1 or 2, 9.0% (121/1338) were BI-RADS 3, and 8% (106/1338) were categorized as either BI-RADS 4 or 5 with recommended biopsy. Biopsy of BI-RADS 4 and 5 categorized patients yielded 15 cancers for a positive predictive value (PPV) 2 of 14.2% and a PPV3 of 18.5%, with 76% (81/106) of patients undergoing the recommended biopsy. An additional cancer was detected in a BI-RADS 3 finding. All cancers detected were in women with heterogeneously dense or extremely dense breasts. Therefore, 16 cancers were detected, yielding a cancer detection rate of 12.0 per 1000. Over the next 12 to 24 months, no interval cancers were detected. CONCLUSION Abbreviated breast MRI demonstrates a higher cancer detection rate compared with mammography only and may provide a supplemental screening method to detect breast cancers in patients with varying risk factors.
Collapse
Affiliation(s)
- Holly Marshall
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Lauren Burkard-Mandel
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Jerry Hsu
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Jared Durieux
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | | | - Donna Plecha
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| |
Collapse
|
11
|
Maimone S, Morozov AP, Letter HP, Robinson KA, Wasserman MC, Li Z, Maxwell RW. Abbreviated Molecular Breast Imaging: Feasibility and Future Considerations. JOURNAL OF BREAST IMAGING 2022; 4:590-599. [PMID: 38416994 DOI: 10.1093/jbi/wbac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Molecular breast imaging (MBI) is a supplemental screening modality consistently demonstrating incremental cancer detection over mammography alone; however, its lengthy duration may limit widespread utilization. The study purpose was to assess feasibility of an abbreviated MBI protocol, providing readers with mediolateral oblique (MLO) projections only and assessing performance in lesion detection and localization. METHODS Retrospective IRB-exempt blinded reader study administered to 5 fellowship-trained breast imaging radiologists. Independent reads performed for 124 screening MBI cases, half abnormal and half negative/normal. Readers determined whether an abnormality was present, side of abnormality, and location of abnormality (medial/lateral). Abnormal cases had confirmatory biopsy or surgical pathology; normal cases had imaging follow-up ensuring true negative results. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess performance. A false negative result indicated that a reader failed to detect abnormal uptake; a false positive result indicated a reader incorrectly called an abnormality for a negative case. Tests for association included chi-square, Fisher-exact, and analysis of variance. RESULTS Mean reader performance for detecting abnormal uptake: sensitivity 96.8%, specificity 98.7%, PPV 98.8%, and NPV 96.9%. Accuracy in localizing lesions to the medial or lateral breast was 100%. There were no associations in reader performance with reader experience, reader technique, lesion morphology, or lesion pathology. Median lesion size was 1.0 cm (range: 0.4-8.0 cm). All readers correctly identified 97.7% (42/43) of lesions with malignant or elevated risk pathology. CONCLUSION An abbreviated MBI protocol (MLO images only) maintained high accuracy in lesion detection and localization.
Collapse
Affiliation(s)
- Santo Maimone
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | - Andrey P Morozov
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | - Haley P Letter
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | | | | | - Zhuo Li
- Mayo Clinic Florida, Department of Biostatistics, Jacksonville, FL, USA
| | - Robert W Maxwell
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| |
Collapse
|
12
|
Miles RC, Chou SH, Vijapura C, Patel A. Breast Cancer Screening in Women With Dense Breasts: Current Status and Future Directions for Appropriate Risk Stratification and Imaging Utilization. JOURNAL OF BREAST IMAGING 2022; 4:559-567. [PMID: 38416999 DOI: 10.1093/jbi/wbac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 03/01/2024]
Abstract
Breast density continues to be a prevailing topic in the field of breast imaging, with continued complexities contributing to overall confusion and controversy among patients and the medical community. In this article, we explore the current status of breast cancer screening in women with dense breasts including breast density legislation. Risk-based approaches to supplemental screening may be more financially cost-effective. While all advanced imaging modalities detect additional primarily invasive, node-negative cancers, the degree to which this occurs can vary by density category. Future directions include expanding the use of density-inclusive risk models with appropriate risk stratification and imaging utilization. Further research is needed, however, to better understand how to optimize population-based screening programs with knowledge of patients' individualized risk, including breast density assessment, to improve the benefit-to-harm ratio of breast cancer screening.
Collapse
Affiliation(s)
| | - Shinn-Huey Chou
- Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Charmi Vijapura
- University of Cincinnati Medical Center, Department of Radiology, Cincinnati, OH, USA
| | - Amy Patel
- Liberty Hospital, Department of Radiology, Kansas City, MO, USA
- Alliance Radiology, Kansas City, MO, USA
- University of Missouri-Kansas City School of Medicine, Department of Radiology, Kansas City, MO, USA
| |
Collapse
|
13
|
Jones LI, Marshall A, Elangovan P, Geach R, McKeown-Keegan S, Vinnicombe S, Harding SA, Taylor-Phillips S, Halling-Brown M, Foy C, O’Flynn E, Ghiasvand H, Hulme C, Dunn JA. Evaluating the effectiveness of abbreviated breast MRI (abMRI) interpretation training for mammogram readers: a multi-centre study assessing diagnostic performance, using an enriched dataset. Breast Cancer Res 2022; 24:55. [PMID: 35907862 PMCID: PMC9338668 DOI: 10.1186/s13058-022-01549-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Abbreviated breast MRI (abMRI) is being introduced in breast screening trials and clinical practice, particularly for women with dense breasts. Upscaling abMRI provision requires the workforce of mammogram readers to learn to effectively interpret abMRI. The purpose of this study was to examine the diagnostic accuracy of mammogram readers to interpret abMRI after a single day of standardised small-group training and to compare diagnostic performance of mammogram readers experienced in full-protocol breast MRI (fpMRI) interpretation (Group 1) with that of those without fpMRI interpretation experience (Group 2). METHODS Mammogram readers were recruited from six NHS Breast Screening Programme sites. Small-group hands-on workstation training was provided, with subsequent prospective, independent, blinded interpretation of an enriched dataset with known outcome. A simplified form of abMRI (first post-contrast subtracted images (FAST MRI), displayed as maximum-intensity projection (MIP) and subtracted slice stack) was used. Per-breast and per-lesion diagnostic accuracy analysis was undertaken, with comparison across groups, and double-reading simulation of a consecutive screening subset. RESULTS 37 readers (Group 1: 17, Group 2: 20) completed the reading task of 125 scans (250 breasts) (total = 9250 reads). Overall sensitivity was 86% (95% confidence interval (CI) 84-87%; 1776/2072) and specificity 86% (95%CI 85-86%; 6140/7178). Group 1 showed significantly higher sensitivity (843/952; 89%; 95%CI 86-91%) and higher specificity (2957/3298; 90%; 95%CI 89-91%) than Group 2 (sensitivity = 83%; 95%CI 81-85% (933/1120) p < 0.0001; specificity = 82%; 95%CI 81-83% (3183/3880) p < 0.0001). Inter-reader agreement was higher for Group 1 (kappa = 0.73; 95%CI 0.68-0.79) than for Group 2 (kappa = 0.51; 95%CI 0.45-0.56). Specificity improved for Group 2, from the first 55 cases (81%) to the remaining 70 (83%) (p = 0.02) but not for Group 1 (90-89% p = 0.44), whereas sensitivity remained consistent for both Group 1 (88-89%) and Group 2 (83-84%). CONCLUSIONS Single-day abMRI interpretation training for mammogram readers achieved an overall diagnostic performance within benchmarks published for fpMRI but was insufficient for diagnostic accuracy of mammogram readers new to breast MRI to match that of experienced fpMRI readers. Novice MRI reader performance improved during the reading task, suggesting that additional training could further narrow this performance gap.
Collapse
Affiliation(s)
- Lyn I. Jones
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL UK
| | - Premkumar Elangovan
- Scientific Computing, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
| | - Rebecca Geach
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Sadie McKeown-Keegan
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Sarah Vinnicombe
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, GL53 7AS UK
| | - Sam A. Harding
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | | | - Mark Halling-Brown
- Scientific Computing, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
| | - Christopher Foy
- Research Design Service South West Gloucester Office, National Institute for Health Research (NIHR) Leadon House, Gloucestershire Royal Hospital, Gloucester, GL1 3NN UK
| | - Elizabeth O’Flynn
- St George’s University Hospitals Foundation Trust, London, SW17 0QT UK
| | - Hesam Ghiasvand
- Institute of Health Research, University of Exeter Medical School, Exeter, EX1 2LU UK
| | - Claire Hulme
- Institute of Health Research, University of Exeter Medical School, Exeter, EX1 2LU UK
| | - Janet A. Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
14
|
Naranjo ID, Sogani J, Saccarelli C, Horvat JV, Sevilimedu V, Hughes MC, Gullo RL, Jochelson MS, Reiner J, Pinker K. MRI Screening of BRCA Mutation Carriers: Comparison of Standard Protocol and Abbreviated Protocols With and Without T2-Weighted Images. AJR Am J Roentgenol 2022; 218:810-820. [PMID: 34935399 PMCID: PMC9422039 DOI: 10.2214/ajr.21.27022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND. Increasing evidence supports the role of abbreviated MRI protocols for breast cancer detection. However, abbreviated protocols have been poorly studied in patients who are BRCA1 or BRCA2 mutation carriers. Furthermore, the need for T2-weighted sequences in abbreviated protocols remains controversial. OBJECTIVE. The purpose of this study was to compare, in the evaluation of patients with BRCA mutations, the diagnostic performance of a standard full breast MRI protocol with the performance of abbreviated protocols that included and did not include a T2-weighted sequence. METHODS. This retrospective study included 292 patients (mean age, 47.9 years) who were BRCA1 or BRCA2 mutation carriers who underwent 427 screening breast MRI examinations according to a standard full protocol who could be classified as having benign (n = 407) or malignant (n = 20) findings based on histopathology or imaging follow-up. Four readers independently assessed examinations in three separate sessions (theoretic abbreviated protocol, which included the first postcontrast acquisition; theoretic abbreviated protocol with addition of a T2-weighted sequence; and the standard full protocol) and assigned BI-RADS categories. Categories 3-5 were considered to represent positive examinations. Interreader agreement was assessed, and diagnostic performance was compared by use of pooled reader data. RESULTS. Interreader agreement on BI-RADS category, expressed as kappa values, was 0.55 for the standard, 0.45 for the abbreviated, and 0.57 for the abbreviated plus T2-weighted protocols. Pooled sensitivity was 94% for the standard, 92% for the abbreviated, and 90% for the abbreviated plus T2-weighted protocols (all p > .001). Pooled specificity was 80% for the standard, 71% for the abbreviated, and 83% for the abbreviated plus T2-weighted protocols (p < .001 for abbreviated plus T2-weighted compared with both standard and abbreviated). Pooled PPV was 19% for the standard, 14% for the abbreviated, and 20% for the abbreviated plus T2-weighted protocols (p < .001 for abbreviated compared with both standard and abbreviated). Pooled NPV was 100% for the standard, 99% for the abbreviated, and 99% for the abbreviated plus T2-weighted (all p > .001) protocols. Pooled accuracy was 80% for the standard, 73% for the abbreviated, and 83% for the abbreviated plus T2-weighted protocols (p < .001 for abbreviated compared with both standard and abbreviated plus T2-weighted). CONCLUSION. The abbreviated protocol without T2-weighted imaging had suboptimal performance. However, addition of the T2-weighted sequence yielded comparable sensitivity and accuracy and a small increase in specificity compared with the full protocol. CLINICAL IMPACT. The findings support implementation of abbreviated MRI with T2-weighted imaging for breast cancer screening of patients with BRCA mutations.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julie Sogani
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Carolina Saccarelli
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Joao V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Varadan Sevilimedu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mary C Hughes
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Maxine S Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Jeffrey Reiner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY 10065
- Department of Biomedical Imaging and Image-Guided Therapy, Molecular and Structural Preclinical Imaging, Medical University Vienna, Vienna, Austria
| |
Collapse
|
15
|
Al Ewaidat H, Ayasrah M. A Concise Review on the Utilization of Abbreviated Protocol Breast MRI over Full Diagnostic Protocol in Breast Cancer Detection. Int J Biomed Imaging 2022; 2022:8705531. [PMID: 35528224 PMCID: PMC9071885 DOI: 10.1155/2022/8705531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Breast MRI possesses high sensitivity for detecting breast cancer among the current clinical modalities and is an indispensable imaging practice. Breast MRI comprises diffusion-weighted imaging, ultrafast, and T2 weighted and T1 weighted CE (contrast-enhanced) imaging that may be utilized for improving the characterization of the lesions. This multimodal evaluation of breast lesions enables outstanding discrimination between the malignant and benign and malignant lesions. The expanding indications of breast MRI confirm the far superiority of MRI in preoperative staging, especially in the estimation of tumour size and identifying tumour foci in the contralateral and ipsilateral breast. Recent studies depicted that experts can meritoriously utilize this tool for improving breast cancer surgery despite their existence of no significant long term outcomes. For managing the, directly and indirectly, associated screening cost, abbreviated protocols are found to be more beneficial. Further, in some of the patients who were treated with neoadjuvant chemotherapy, breast MRI is utilized for documenting response. It is therefore essential to realise that oncological screening must be easily available, cost-effective, and time-consuming. Earlier detection of this short sequence protocol leads to prior and early breast cancer disease in high risky female populations like women with dense breasts, prehistoric evidence, etc. This proper utilization of AP reduces unnecessary mastectomies. Hence, this review focused on the explorative information for strongly suggesting the benefits of AP breast MRI compared to full diagnostic protocol MRI.
Collapse
Affiliation(s)
- Haytham Al Ewaidat
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| | - Mohammad Ayasrah
- Jordan University of Science and Technology, Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| |
Collapse
|
16
|
Maimone S, Morozov AP, Li Z, Craver EC, Elder EA, McLaughlin SA. Additional Workups Recommended During Preoperative Breast MRI: Methods to Gain Efficiency and Limit Confusion. Ann Surg Oncol 2022; 29:3839-3848. [PMID: 35258769 DOI: 10.1245/s10434-022-11476-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Preoperative breast MRI is indicated for staging but can lead to complex imaging workups. This study reviewed imaging recommendations made on preoperative MRI exams, to simplify management approaches for patients with newly diagnosed breast cancer. METHODS This retrospective single-institution review was restricted to women with breast cancer who underwent staging MRI. Additional breast lesions, separate from index tumors, recommended for additional workup or surveillance were assessed to see which were detected and which characteristics predicted success in detection. Univariate mixed-effects logistic modeling predicted the likelihood of finding lesions using MRI-directed ultrasound (US), with odds ratios reported. Tests were two-sided, with a p value lower than 0.05 considered significant. RESULTS In this study, 534 (39.6%) patients had recommendations for additional workup after preoperative MRI. MRI detected additional malignancy in 178 patients (33.3%). Half of the 66 patients who refused an additional workup and opted for mastectomy had additional malignancies at mastectomy. MRI-directed US was 14 times more likely to detect masses than nonmass enhancement (NME) (p < 0.001). NME was detected on US in only 16% of cases, with one third of subsequent biopsy results considered discordant. Probably benign assessments were given to 35 patients, with 23% not returning for follow-up evaluation and 7% returning at least 6 months later than recommended. CONCLUSION Use of preoperative breast MRI has increased. Although it can add value, institutions should establish indications and expectations to prevent unnecessary workups. Limiting MRI-directed US to masses, avoiding probably benign assessments, and consulting with patients after MRI but prior to workups can prevent unnecessary exams and confusion.
Collapse
Affiliation(s)
- Santo Maimone
- Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA.
| | - Andrey P Morozov
- Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Zhuo Li
- Department of Biostatistics, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Emily C Craver
- Department of Biostatistics, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Erin A Elder
- Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Surgery, Ochsner Medical Center, New Orleans, LA, USA
| | | |
Collapse
|
17
|
Baek SJ, Ko KH, Jung HK, Park AY, Koh J. Comparison of Abbreviated MRI with Mammography and Ultrasound in Women with a Personal History of Breast Cancer. Acad Radiol 2022; 29 Suppl 1:S19-S25. [PMID: 34175207 DOI: 10.1016/j.acra.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To compare abbreviated MRI with mammography and US for screening in women with a personal history of breast cancer. In addition, the first and subsequent rounds of abbreviated MRI were compared. MATERIALS AND METHODS The Institutional Review Board approved this retrospective study. Nine hundred and thirty-nine abbreviated MRI scans of 710 women with a personal history of breast cancer were included (mean age, 54.1±9.4 years). The diagnostic performances of abbreviated MRI, mammography, and US for the detection of the second breast cancer were compared. When more than one round of abbreviated MRI was performed, we compared the scans of the first and subsequent rounds. RESULTS There were 15 (2.1%) cases of second breast cancer. Thirty-nine of the 939 abbreviated MRI scans were diagnosed as positive; of them, 11 were diagnosed as breast cancer, with a PPV2 of 28.2% (US, 19.0%; mammography, 28.6%). The AUC, sensitivity, and cancer detection rate (per 1000) were the highest for abbreviated MRI (0.829, 68.8% and 11.7) (US: 0.616, 25.0%, and 4.3; mammography: 0.560, 12.5%, and 2.1, respectively). Two hundred women underwent multiple rounds of abbreviated MRI. AUC, PPV2, and the cancer detection rates were higher during the subsequent rounds (0.987, 45.5, and 21.8) than during the first round (0.605, 11.1, and 5). CONCLUSION Abbreviated MRI for women with a personal history of breast cancer was more sensitive for the diagnosis of second breast cancer than US or mammography. In addition, subsequent rounds of MRI showed better performance than the first round.
Collapse
|
18
|
Jones LI, Taylor-Phillips S, Geach R, Harding SA, Marshall A, McKeown-Keegan S, Dunn JA. Re: The potential of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: a systematic review and meta-analysis. A reply. Clin Radiol 2021; 77:73-75. [PMID: 34848027 DOI: 10.1016/j.crad.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Affiliation(s)
- L I Jones
- North Bristol NHS Trust, Bristol, UK.
| | | | - R Geach
- North Bristol NHS Trust, Bristol, UK
| | | | - A Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | | | - J A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| |
Collapse
|
19
|
Weinstein SP, Slanetz PJ, Lewin AA, Battaglia T, Chagpar AB, Dayaratna S, Dibble EH, Goel MS, Hayward JH, Kubicky CD, Le-Petross HT, Newell MS, Sanford MF, Scheel JR, Vincoff NS, Yao K, Moy L. ACR Appropriateness Criteria® Supplemental Breast Cancer Screening Based on Breast Density. J Am Coll Radiol 2021; 18:S456-S473. [PMID: 34794600 DOI: 10.1016/j.jacr.2021.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
Mammography remains the only validated screening tool for breast cancer, however, there are limitations to mammography. One of the limitations of mammography is the variable sensitivity based on breast density. Supplemental screening may be considered based on the patient's risk level and breast density. For average-risk women with nondense breasts, the sensitivity of digital breast tomosynthesis (DBT) screening is high; additional supplemental screening is not warranted in this population. For average-risk women with dense breasts, given the decreased sensitivity of mammography/DBT, this population may benefit from additional supplemental screening with contrast-enhanced mammography, screening ultrasound (US), breast MRI, or abbreviated breast MRI. In intermediate-risk women, there is emerging evidence suggesting that women in this population may benefit from breast MRI or abbreviated breast MRI. In intermediate-risk women with dense breasts, given the decreased sensitivity of mammography/DBT, this population may benefit from additional supplemental screening with contrast-enhancedmammography or screening US. There is strong evidence supporting screening high-risk women with breast MRI regardless of breast density. Contrast-enhanced mammography, whole breast screening US, or abbreviated breast MRI may be also considered. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Susan P Weinstein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Priscilla J Slanetz
- Panel Chair, Boston University School of Medicine, Boston, Massachusetts; and President, Massachusetts Radiological Society
| | - Alana A Lewin
- Panel Vice-Chair, New York University School of Medicine, New York, New York
| | - Tracy Battaglia
- Director, Womens Health Unit, Associate Director, Belkin Breast Health Center, Boston Medical Center and Boston University School of Medicine and Public Health, Boston, Massachusetts; and Chair, National Navigation Roundtable
| | - Anees B Chagpar
- Yale School of Medicine, New Haven, Connecticut; Society of Surgical Oncology
| | - Sandra Dayaratna
- Thomas Jefferson University Hospital, Robbinsville, New Jersey; American College of Obstetricians and Gynecologists
| | | | - Mita Sanghavi Goel
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois; American College of Physicians
| | | | | | - Huong T Le-Petross
- The University of Texas MD Anderson Cancer Center, Houston, Texas; and Breast Imaging Lead in Prevention, Breast Committee, DI Committee of the Alliance
| | - Mary S Newell
- Emory University Hospital, Atlanta, Georgia; Governor, ABR; and Board Member, SBI
| | | | - John R Scheel
- Fellowship Director, University of Washington, Seattle, Washington
| | - Nina S Vincoff
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Katherine Yao
- NorthShore University HealthSystem, Evanston, Illinois; Vice Chair, National Accreditation Program for Breast Centers; and American College of Surgeons
| | - Linda Moy
- Specialty Chair, NYU Clinical Cancer Center, New York, New York; Chair, ACR NMD Registry; Senior Deputy Editor, Radiology; and Advisory Board, iCAD and Lunit
| |
Collapse
|
20
|
Verburg E, van Gils CH, van der Velden BHM, Bakker MF, Pijnappel RM, Veldhuis WB, Gilhuijs KGA. Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial. Radiology 2021; 302:29-36. [PMID: 34609196 DOI: 10.1148/radiol.2021203960] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Supplemental screening with MRI has proved beneficial in women with extremely dense breasts. Most MRI examinations show normal anatomic and physiologic variation that may not require radiologic review. Thus, ways to triage these normal MRI examinations to reduce radiologist workload are needed. Purpose To determine the feasibility of an automated triaging method using deep learning (DL) to dismiss the highest number of MRI examinations without lesions while still identifying malignant disease. Materials and Methods This secondary analysis of data from the Dense Tissue and Early Breast Neoplasm Screening, or DENSE, trial evaluated breast MRI examinations from the first screening round performed in eight hospitals between December 2011 and January 2016. A DL model was developed to differentiate between breasts with lesions and breasts without lesions. The model was trained to dismiss breasts with normal phenotypical variation and to triage lesions (Breast Imaging Reporting and Data System [BI-RADS] categories 2-5) using eightfold internal-external validation. The model was trained on data from seven hospitals and tested on data from the eighth hospital, alternating such that each hospital was used once as an external test set. Performance was assessed using receiver operating characteristic analysis. At 100% sensitivity for malignant disease, the fraction of examinations dismissed from radiologic review was estimated. Results A total of 4581 MRI examinations of extremely dense breasts from 4581women (mean age, 54.3 years; interquartile range, 51.5-59.8 years) were included. Of the 9162 breasts, 838 had at least one lesion (BI-RADS category 2-5, of which 77 were malignant) and 8324 had no lesions. At 100% sensitivity for malignant lesions, the DL model considered 90.7% (95% CI: 86.7, 94.7) of the MRI examinations with lesions to be nonnormal and triaged them to radiologic review. The DL model dismissed 39.7% (95% CI: 30.0, 49.4) of the MRI examinations without lesions. The DL model had an average area under the receiver operating characteristic curve of 0.83 (95% CI: 0.80, 0.85) in the differentiation between normal breast MRI examinations and MRI examinations with lesions. Conclusion Automated analysis of breast MRI examinations in women with dense breasts dismissed nearly 40% of MRI scans without lesions while not missing any cancers. ClinicalTrials.gov: NCT01315015 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Joe in this issue.
Collapse
Affiliation(s)
- Erik Verburg
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Carla H van Gils
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Bas H M van der Velden
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Marije F Bakker
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Ruud M Pijnappel
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Wouter B Veldhuis
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Kenneth G A Gilhuijs
- From the Image Sciences Institute (E.V., B.H.M.v.d.V., K.G.A.G.), Julius Center for Health Sciences and Primary Care (C.H.v.G., M.F.B.), and Department of Radiology (R.M.P., W.B.V.), University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| |
Collapse
|
21
|
Gilbert FJ, Hickman SE, Baxter GC, Allajbeu I, James J, Caraco C, Vinnicombe S. Opportunities in cancer imaging: risk-adapted breast imaging in screening. Clin Radiol 2021; 76:763-773. [PMID: 33820637 DOI: 10.1016/j.crad.2021.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
In the UK, women between 50-70 years are invited for 3-yearly mammography screening irrespective of their likelihood of developing breast cancer. The only risk adaption is for women with >30% lifetime risk who are offered annual magnetic resonance imaging (MRI) and mammography, and annual mammography for some moderate-risk women. Using questionnaires, breast density, and polygenic risk scores, it is possible to stratify the population into the lowest 20% risk, who will develop <4% of cancers and the top 4%, who will develop 18% of cancers. Mammography is a good screening test but has low sensitivity of 60% in the 9% of women with the highest category of breast density (BIRADS D) who have a 2.5- to fourfold breast cancer risk. There is evidence that adding ultrasound to the screening mammogram can increase the cancer detection rate and reduce advanced stage interval and next round cancers. Similarly, alternative tests such as contrast-enhanced mammography (CESM) or abbreviated MRI (ABB-MRI) are much more effective in detecting cancer in women with dense breasts. Scintimammography has been shown to be a viable alternative for dense breasts or for follow-up in those with a personal history of breast cancer and scarring as result of treatment. For supplemental screening to be worthwhile in these women, new technologies need to reduce the number of stage II cancers and be cost effective when tested in large scale trials. This article reviews the evidence for supplemental imaging and examines whether a risk-stratified approach is feasible.
Collapse
Affiliation(s)
- F J Gilbert
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK; Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S E Hickman
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - G C Baxter
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - I Allajbeu
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK; Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J James
- Nottingham Breast Institute, City Hospital, Nottingham, UK
| | - C Caraco
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - S Vinnicombe
- Thirlestaine Breast Centre, Cheltenham, UK; Ninewells Hospital and Medical School, University of Dundee, UK
| |
Collapse
|
22
|
Recalibrating the decision for MRI-directed breast ultrasound in patients with newly diagnosed breast cancer, factors predicting sonographic success. Clin Imaging 2021; 80:391-399. [PMID: 34530358 DOI: 10.1016/j.clinimag.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Evaluate utilization of MRI-directed breast ultrasound (US) in patients with newly diagnosed breast cancer and refine practices to increase success of sonographic lesion detection. METHODS This retrospective single-institution review was restricted to women with breast cancer who underwent MRI from November 2006 to January 2017. Enhancing breast lesions, separate from the index tumor, recommended for MRI-directed US were assessed to see which were detected and which characteristics predicted success in detection. Univariate mixed-effects logistic modeling predicted likelihood of finding breast lesions with US, with odds ratios reported. All tests were two-sided with p < 0.05 considered significant. RESULTS A total of 275 patients underwent MRI-directed US for 361 breast lesions, of which 187 (51.8%) were found on US. Of those detected, 171 (91.4%) were masses and 16 (8.6%) were nonmass enhancement (NME), with masses 14 times more likely to be seen (p < 0.001). Size alone was not a significant predictor but achieved significance when associated with lesion type (mass size, p < 0.001). Masses with irregular shapes or margins and invasive carcinomas were more frequently detected. Patient age, internal enhancement pattern, and distribution of NME were not significant predictors in sonographic detection. A presumed sonographic correlate for NME was found for 16 (16.2%) of 99 attempted lesions. CONCLUSION As MRI access expands, utilization of MRI-directed US should be scrutinized to avoid downstream practice inefficiencies. Sonographic detection rates for NME remain low for women undergoing MRI for disease extent, with NME often better suited for MRI-guided biopsy.
Collapse
|
23
|
Vinnicombe S, Harvey H, Healy NA, Papalouka V, Schiller A, Moyle P, Kilburn-Toppin F, Allajbeu I, Sharma N, Maxwell AJ, Payne N, Graves M, Gilbert FJ. Introduction of an abbreviated breast MRI service in the UK as part of the BRAID trial: practicalities, challenges, and future directions. Clin Radiol 2021; 76:427-433. [PMID: 33712291 DOI: 10.1016/j.crad.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Affiliation(s)
- S Vinnicombe
- Thirlestaine Breast Centre, Gloucestershire NHS Foundation Trust, Thirlestaine Road, Cheltenham, GL53 7AS, UK
| | - H Harvey
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - N A Healy
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - V Papalouka
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - A Schiller
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - P Moyle
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - F Kilburn-Toppin
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - I Allajbeu
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - N Sharma
- Breast Unit, Level 1 Chancellor Wing, St James Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - A J Maxwell
- Nightingale Centre, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT, UK; Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - N Payne
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - M Graves
- MRIS, Cambridge University Hospitals, Box 216, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - F J Gilbert
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
24
|
Samreen N, Mercado C, Heacock L, Chacko C, Partridge SC, Chhor C. Screening Breast MRI Primer: Indications, Current Protocols, and Emerging Techniques. JOURNAL OF BREAST IMAGING 2021; 3:387-398. [PMID: 38424773 DOI: 10.1093/jbi/wbaa116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 03/02/2024]
Abstract
Breast dynamic contrast-enhanced MRI (DCE-MRI) is the most sensitive imaging modality for the detection of breast cancer. Screening MRI is currently performed predominantly in patients at high risk for breast cancer, but it could be of benefit in patients at intermediate risk for breast cancer and patients with dense breasts. Decreasing scan time and image interpretation time could increase cost-effectiveness, making screening MRI accessible to a larger group of patients. Abbreviated breast MRI (Ab-MRI) reduces scan time by decreasing the number of sequences obtained, but as multiple delayed contrast enhanced sequences are not obtained, no kinetic information is available. Ultrafast techniques rapidly acquire multiple sequences during the first minute of gadolinium contrast injection and provide information about both lesion morphology and vascular kinetics. Diffusion-weighted imaging is a noncontrast MRI technique with the potential to detect mammographically occult cancers. This review article aims to discuss the current indications of breast MRI as a screening tool, examine the standard breast DCE-MRI technique, and explore alternate screening MRI protocols, including Ab-MRI, ultrafast MRI, and noncontrast diffusion-weighted MRI, which can decrease scan time and interpretation time.
Collapse
Affiliation(s)
- Naziya Samreen
- New York University, Department of Radiology, Garden City, NY, USA
| | - Cecilia Mercado
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Laura Heacock
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Celin Chacko
- New York University, Department of Radiology, Garden City, NY, USA
| | | | - Chloe Chhor
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| |
Collapse
|
25
|
Osei KV, Mehta AK, Thigpen DM, Rapelyea J, Friedman S, Brem RF. Abbreviated Breast MRI for Screening High-risk Women: Comparison with the Full Clinical Protocol. JOURNAL OF BREAST IMAGING 2021; 3:196-200. [PMID: 38424819 DOI: 10.1093/jbi/wbaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To compare cancer detection rate (CDR), patient recall, and interpretation time of a full protocol MRI (fpMRI) to an abbreviated MRI protocol (abMRI) in high-risk women. METHODS This retrospective study was approved by the IRB. All sequential high-risk screening MRI examinations performed between January 1, 2013, and December 31, 2016, were included. Breast radiologists reviewed patient history, prior images, and abMRI images and recorded their interpretation. Time for interpretation reflected review of the MRI study but not dictation or report generation. Following a minimum 30-day washout period, radiologists interpreted the fpMRI, with interpretation and timing recorded. Data collected included CDR, interpretation time, and patient recall rate. Statistical analyses utilized were Cohen's kappa coefficient, Student's t-test, and McNemar's test. RESULTS Included were 334 MRI examinations of 286 women. Interpretation time was 60.7 seconds for the abMRI compared to 99.4 seconds for the fpMRI, with an average difference of 38.7 ± 5.4 seconds per patient (P < 0.0001). Recall rates were comparable: the abMRI recall rate was 82/334 (24.6%) and the fpMRI 81/334 (24.3%). All five cancers included were detected by both protocols with equal recall rate. However, there were more recommendations for biopsy with the fpMRI, although this difference was not statistically significant. CONCLUSION The abMRI demonstrated comparable CDR to fpMRI, with shortened interpretation time and similar recall rates. Implementing an abMRI to screen high-risk women reduces imaging and interpretation time, thereby improving cost-effectiveness and the patient experience without reduction in cancer detection.
Collapse
Affiliation(s)
- Kendrah V Osei
- The George Washington University, School of Medicine & Health Sciences, Washington, DC
| | - Anita K Mehta
- The George Washington University, Department of Radiology, Washington, DC
| | - Denise M Thigpen
- The George Washington University, Department of Radiology, Washington, DC
| | - Jocelyn Rapelyea
- The George Washington University, Department of Radiology, Washington, DC
| | - Steven Friedman
- The George Washington University, Department of Statistics, Washington, DC
- New York University School of Medicine, Department of Population Health, New York, NY
| | - Rachel F Brem
- The George Washington University, Department of Radiology, Washington, DC
| |
Collapse
|
26
|
Kwon MR, Choi JS, Won H, Ko EY, Ko ES, Park KW, Han BK. Breast Cancer Screening with Abbreviated Breast MRI: 3-year Outcome Analysis. Radiology 2021; 299:73-83. [PMID: 33620293 DOI: 10.1148/radiol.2021202927] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Data are limited regarding the performance of abbreviated screening breast MRI during consecutive years and the characteristics of breast cancers missed and detected with it. Purpose To assess the longitudinal diagnostic performance of abbreviated screening MRI and to determine whether the screening outcomes of abbreviated MRI differed between yearly time periods for 3 consecutive years. Materials and Methods This retrospective study included 1975 consecutive women who underwent abbreviated screening MRI between September 2015 and August 2018. Breast Imaging Reporting and Data System (BI-RADS) categories 3-5 defined positive results, and BI-RADS categories 1-2 defined negative results. Cancer detection rate (CDR), sensitivity, specificity, positive predictive value (PPV), abnormal interpretation rate (AIR), and interval cancer rate were assessed annually. Yearly performance measures were compared with the Fisher exact test by using the permutation method. Clinical-pathologic and imaging characteristics of the missed and detected cancers were compared by using the Fisher exact test and the Wilcoxon rank sum test. Results A total of 1975 women (median age, 49 years; interquartile range, 44-56 years) underwent 3037 abbreviated MRI examinations over 3 years. CDR (year 1 to year 3, 6.9-10.7 per 1000 examinations), positive predictive value for recall (9.7% [six of 62] to 15.6% [12 of 77]), positive predictive value for biopsy (31.6% [six of 19] to 63.2% [12 of 19]), sensitivity (75.0% [six of eight] to 80.0% [12 of 15]), and specificity (93.5% [807 of 863] to 94.1% [1041 of 1106]) were highest in year 3, and AIR (7.1% [62 of 871] to 6.9% [77 of 1121]) was lowest in year 3. However, all outcome measures did not differ statistically between years 1, 2, and 3 (all P > .05). The interval cancer rate was 0.66 per 1000 examinations (two of 3037). Thirty-eight breast cancers were identified in 36 women; 29 were detected with abbreviated MRI, but nine were missed. Of these, seven were detected with other imaging modalities after negative results at the last screening MRI examination, and two were interval cancers. All missed cancers were node-negative early-stage invasive cancers and were smaller (median size, 0.8 cm vs 1.2 cm; P = .01) than detected cancers. Conclusion Screening outcome measures of abbreviated MRI were sustained without significant differences between 3 consecutive years. All cancers missed at abbreviated MRI were node-negative invasive cancers and tended to be smaller than detected cancers. © RSNA, 2021 See also the editorial by Lee in this issue. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Mi-Ri Kwon
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Ji Soo Choi
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Hojeong Won
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Eun Young Ko
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Eun Sook Ko
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Ko Woon Park
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Boo-Kyung Han
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| |
Collapse
|
27
|
Baxter GC, Selamoglu A, Mackay JW, Bond S, Gray E, Gilbert FJ. A meta-analysis comparing the diagnostic performance of abbreviated MRI and a full diagnostic protocol in breast cancer. Clin Radiol 2021; 76:154.e23-154.e32. [PMID: 33032820 DOI: 10.1016/j.crad.2020.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
AIM To undertake a meta-analysis of the diagnostic performance of abbreviated (ABB) magnetic resonance imaging (MRI) and full diagnostic protocol MRI (FDP-MRI) in breast cancer. MATERIALS AND METHODS This meta-analysis was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guidelines. The PubMed and EMBASE databases were searched through August 2019 for studies comparing the diagnostic performance of ABB-MRI and FDP-MRI in the breast. Studies were reviewed by two authors independently according to eligibility and exclusion criteria and split into two subgroups (screening population studies and studies using cohorts enriched with known cancers) to avoid bias. Quality assessment and bias for diagnostic accuracy was determined with Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The diagnostic accuracy for each subgroup was pooled using a bivariate random effects model and summary receiver operating characteristic (sROC) curves produced. Sensitivities and specificities were compared using a paired t-test. RESULTS Five screening (62/2,588 cancers/patients) and eight enriched cohort (540/1,432 cancers/patients) studies were included in the meta-analysis. QUADAS-2 assessment showed a low risk of bias in most studies. The pooled sensitivity/specificity/area under the receiver operating characteristic curve (AUC) for screening studies was 0.90/0.92/0.94 for ABB-MRI and 0.92/0.95/0.97 for FDP-MRI. The pooled sensitivity/specificity/AUC for enriched cohort studies was 0.93/0.83/0.94 for ABB-MRI and 0.93/0.84/0.95 for FDP-MRI. There was no significant difference in sensitivity or specificity using ABB-MRI or FDP-MRI (p=0.18 and 0.27, p=0.18 and 0.93, respectively). CONCLUSION The diagnostic performances of the ABB-MRI and FDP-MRI protocols used in either screening or enriched cohorts were comparable. There was a large variation in patient population, study methodology, and abbreviated protocols reported.
Collapse
Affiliation(s)
- G C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - A Selamoglu
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - J W Mackay
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - S Bond
- National Institute for Health Research, Cambridge Clinical Trials Unit, Cambridge, UK
| | - E Gray
- University of Edinburgh, Edinburgh, UK
| | - F J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; National Institute for Health Research, Cambridge Clinical Trials Unit, Cambridge, UK.
| |
Collapse
|
28
|
Liu Z, Li X, Long W. Editorial for "Simultaneous multislice readout-segmented echo planar imaging for diffusion-weighted MR imaging in patients with invasive breast cancers". J Magn Reson Imaging 2021; 53:1116-1117. [PMID: 33421210 DOI: 10.1002/jmri.27506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zhuangsheng Liu
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Xiaoping Li
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Wansheng Long
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| |
Collapse
|
29
|
Abstract
Breast MR imaging is the most sensitive imaging method for the detection of breast cancer and detects more aggressive malignancies than mammography and ultrasound examination. Despite these advantages, breast MR imaging has low use rates for breast cancer screening. Abbreviated breast MR imaging, in which a limited number of breast imaging sequences are obtained, has been proposed as a way to solve cost and patient tolerance issues while preserving the high cancer detection rate of breast MR imaging. This review discusses abbreviated breast MR imaging, including protocols, multicenter clinical trial results, clinical workflow implementation challenges, and future directions.
Collapse
Affiliation(s)
- Laura Heacock
- Department of Radiology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | - Alana A Lewin
- Department of Radiology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Hildegard K Toth
- Department of Radiology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Linda Moy
- Department of Radiology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Beatriu Reig
- Department of Radiology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
30
|
Hernández ML, Osorio S, Florez K, Ospino A, Díaz GM. Abbreviated magnetic resonance imaging in breast cancer: A systematic review of literature. Eur J Radiol Open 2020; 8:100307. [PMID: 33364260 PMCID: PMC7750142 DOI: 10.1016/j.ejro.2020.100307] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND : magnetic resonance imaging (MRI) has been increasingly used to study breast cancer for screening high-risk cases, pre-operative staging, and problem-solving because of its high sensitivity. However, its cost-effectiveness is still debated. Thus, the concept of abbreviated MRI (ABB-MRI) protocols was proposed as a possible solution for reducing MRI costs. PURPOSE : to investigate the role of the abbreviated MRI protocols in detecting and staging breast cancer. METHODS : a systematic search of the literature was carried out in the bibliographic databases: Scopus, PubMed, Medline, and Science Direct. RESULTS : forty-one articles were included, which described results of the assessment of fifty-three abbreviated protocols for screening, staging, recurrence assessing, and problem-solving or clarification. CONCLUSIONS : the use of ABB-MRI protocols allows reducing the acquisition and reading times, maintaining a high concordance with the final interpretation, in comparison to a complete protocol. However, larger prospective and multicentre trials are necessary to validate the performance in specific clinical environments.
Collapse
Affiliation(s)
- María Liliana Hernández
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
| | - Santiago Osorio
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
- Especialización en Radiología, Universidad CES, Medellín, Colombia
| | - Katherine Florez
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
- Especialización en Radiología, Universidad CES, Medellín, Colombia
| | - Alejandra Ospino
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
| | - Gloria M. Díaz
- MIRP Lab–Parque i, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
31
|
Kim ES, Cho N, Kim SY, Kwon BR, Yi A, Ha SM, Lee SH, Chang JM, Moon WK. Comparison of Abbreviated MRI and Full Diagnostic MRI in Distinguishing between Benign and Malignant Lesions Detected by Breast MRI: A Multireader Study. Korean J Radiol 2020; 22:297-307. [PMID: 33289355 PMCID: PMC7909852 DOI: 10.3348/kjr.2020.0311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To compare the performance of simulated abbreviated breast MRI (AB-MRI) and full diagnostic (FD)-MRI in distinguishing between benign and malignant lesions detected by MRI and investigate the features of discrepant lesions of the two protocols. Materials and Methods An AB-MRI set with single first postcontrast images was retrospectively obtained from an FD-MRI cohort of 111 lesions (34 malignant, 77 benign) detected by contralateral breast MRI in 111 women (mean age, 49.8. ± 9.8; range, 28–75 years) with recently diagnosed breast cancer. Five blinded readers independently classified the likelihood of malignancy using Breast Imaging Reporting and Data System assessments. McNemar tests and area under the receiver operating characteristic curve (AUC) analyses were performed. The imaging and pathologic features of the discrepant lesions of the two protocols were analyzed. Results The sensitivity of AB-MRI for lesion characterization tended to be lower than that of FD-MRI for all readers (58.8–82.4% vs. 79.4–100%), although the findings of only two readers were significantly different (p < 0.05). The specificity of AB-MRI for lesion characterization was higher than that of FD-MRI for 80% of readers (39.0–74.0% vs. 19.5–45.5%, p ≤ 0.001). The AUC of AB-MRI was comparable to that of FD-MRI for all readers (p > 0.05). Fifteen percent (5/34) of the cancers were false-negatives on AB-MRI. More suspicious margins or internal enhancement on the delayed phase images were related to the discrepancies. Conclusion The overall performance of AB-MRI was similar to that of FD-MRI in distinguishing between benign and malignant lesions. AB-MRI showed lower sensitivity and higher specificity than FD-MRI, as 15% of the cancers were misclassified compared to FD-MRI.
Collapse
Affiliation(s)
- Eun Sil Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Soo Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Bo Ra Kwon
- Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Ann Yi
- Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Su Min Ha
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
32
|
Marshall HN, Plecha DM. Setting Up an Abbreviated Breast MRI Program: Our Two-year Implementation Experience. JOURNAL OF BREAST IMAGING 2020; 2:603-608. [PMID: 38424848 DOI: 10.1093/jbi/wbaa060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 03/02/2024]
Abstract
Mammography is the long-standing screening tool for detecting breast cancer. Breast MRI is the most sensitive screening modality; however, it has been reserved for patients who are at an increased risk of developing breast cancer. Abbreviated breast MRI (AB-MRI) overcomes the limitations of cost and scanner time when considering screening patients at average or slightly elevated risk. This paper discusses the practical considerations for implementing an AB-MRI program on many levels, after our two-year experience. One of the first steps in introducing an AB-MRI program, since there is no standardized protocol, is determining and implementing a protocol. Since there is no Current Procedural Terminology code for an AB-MRI, a self-pay charge should be established. Adjusting MRI scheduling templates to accommodate the 10-minute AB-MRI exam is helpful. Communication with the breast team and the education of referring physicians is a key step to ensure awareness of a new screening option. As the AB-MRI program is incorporated into a practice, auditing of routine screening outcomes several months after commencement is invaluable to the continued success of the program.
Collapse
Affiliation(s)
- Holly N Marshall
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH
| | - Donna M Plecha
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH
| |
Collapse
|
33
|
Gao Y, Heller SL. Abbreviated and Ultrafast Breast MRI in Clinical Practice. Radiographics 2020; 40:1507-1527. [DOI: 10.1148/rg.2020200006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yiming Gao
- From the Department of Radiology, New York University School of Medicine, 160 E 34th St, New York, NY 10016
| | - Samantha L. Heller
- From the Department of Radiology, New York University School of Medicine, 160 E 34th St, New York, NY 10016
| |
Collapse
|
34
|
Geach R, Jones LI, Harding SA, Marshall A, Taylor-Phillips S, McKeown-Keegan S, Dunn JA. The potential utility of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: a systematic review and meta-analysis. Clin Radiol 2020; 76:154.e11-154.e22. [PMID: 33010932 DOI: 10.1016/j.crad.2020.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022]
Abstract
AIM To synthesise evidence comparing abbreviated breast magnetic resonance imaging (abMRI) to full-protocol MRI (fpMRI) in breast cancer screening. MATERIALS AND METHODS A systematic search was undertaken in multiple databases. Cohort studies without enrichment, presenting accuracy data of abMRI in screening, for any level of risk (population, moderate, high risk) were included. Level of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses (bivariate random effects model) were performed for abMRI, with fpMRI and histology from fpMRI-positive cases as reference standard, and with follow-up to symptomatic detection added to the fpMRI. The review also covers evidence comparing abMRI with mammographic techniques. RESULTS The title and abstract review retrieved 23 articles. Five studies (six articles) were included (2,763 women, 3,251 screening rounds). GRADE assessment of the evidence was very low because the reference standard was interpreted with knowledge of the index test and biopsy was not obtained for all abMRI positives. The overall sensitivity for abMRI, with fpMRI (and histology for fpMRI positives) as reference standard, was 94.8% (95% confidence interval [CI] 85.5-98.2) and specificity as 94.6% (95% CI: 91.5-96.6). Three studies (1,450 women, 1,613 screening rounds) presented follow-up data, enabling comparison between abMRI and fpMRI. Sensitivities and specificities for abMRI did not differ significantly from those for fpMRI (p=0.83 and p=0.37, respectively). CONCLUSION A very low level of evidence suggests abMRI could be accurate for breast cancer screening. Research is required, with follow-up to interval cancer, to determine the effect its use could have on clinical outcome.
Collapse
Affiliation(s)
- R Geach
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - L I Jones
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK.
| | - S A Harding
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - A Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | - S Taylor-Phillips
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | - S McKeown-Keegan
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - J A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
35
|
Weinstein SP, Korhonen K, Cirelli C, Schnall MD, McDonald ES, Pantel AR, Zuckerman S, Borthakur A, Conant EF. Abbreviated Breast Magnetic Resonance Imaging for Supplemental Screening of Women With Dense Breasts and Average Risk. J Clin Oncol 2020; 38:3874-3882. [PMID: 32931396 DOI: 10.1200/jco.19.02198] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Although mammography is the standard of care for breast cancer screening, dense breast tissue decreases mammographic sensitivity. We report the prevalent cancer detection rate (CDR) from the first clinical implementation of abbreviated breast magnetic resonance imaging (AB-MR) as a supplemental screening test in women with dense breasts. METHODS The study was approved by the institutional review board and is Health Insurance Portability and Accountability Act complaint. This retrospective review includes women who were imaged between January 1, 2016 and February 28, 2019. On a 1.5 Tesla magnet, the imaging protocol consisted of three sequences: Short-TI Inversion Recovery (STIR), precontrast, and postcontrast. A subtraction sequence and a maximum intensity projection were generated. We report the patient-level CDR and the positive predictive value of AB-MR examinations after negative/benign digital breast tomosynthesis (DBT). RESULTS Out of 511 prevalent rounds of AB-MR examinations, 36 women were excluded. The remaining 475 asymptomatic women with dense breasts had negative/benign DBT examinations before the AB-MR. There were 420 of 475 (88.4%) benign/negative examinations, 13 of 475 (2.7%) follow-up recommendations, and 42 biopsy recommendations. Thirty-nine biopsies were completed, resulting in 12/39 (30.8%) malignancies in 12 women: seven invasive carcinomas and five ductal carcinoma in situ. One additional patient was diagnosed with invasive ductal carcinoma at the time of 6-month follow-up. The CDR was 27.4 per 1,000 (13 of 475; 95% CI, 16.1 to 46.3). The size of invasive carcinomas ranged from 0.6-1.0 cm (mean, 0.5 cm). Of the seven women who underwent surgical evaluation of the axilla, zero of seven patients had positive nodes. There were no interval cancers at 1-year follow-up. CONCLUSION Preliminary results from clinical implementation of screening AB-MR resulted in a CDR of 27.4/1,000 at the patient level after DBT in women with dense breasts. Additional evaluation is warranted.
Collapse
Affiliation(s)
- Susan P Weinstein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katrina Korhonen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Claire Cirelli
- Department of Computer Science, Arizona State University, Tempe, AZ
| | - Mitchell D Schnall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Samantha Zuckerman
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ari Borthakur
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emily F Conant
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
Scoggins ME, Arun BK, Candelaria RP, Dryden MJ, Wei W, Son JB, Ma J, Dogan BE. Should abbreviated breast MRI be compliant with American College of Radiology requirements for MRI accreditation? Magn Reson Imaging 2020; 72:87-94. [PMID: 32622851 DOI: 10.1016/j.mri.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate non-inferiority and diagnostic performance of an American College of Radiology compliant abbreviated MRI protocol (AB-MRI) compared with standard-of-care breast MRI (SOC-BMRI) in patients with increased breast cancer risk. MATERIAL AND METHODS Women with increased lifetime breast cancer risk by American Cancer Society guidelines underwent breast MRI at a single institution between October 2015 and February 2018. AB-MRI was acquired at 3.0 T with T2-weighted extended fast spin echo triple-echo Dixon and pre- and post-contrast 3D dual-echo fast spoiled gradient echo two-point Dixon sequences with an 8-channel breast coil 1-7 days after SOC-BMRI. Three readers independently reviewed AB-MRI and assigned BI-RADS categories for maximum intensity projection images (AB1), dynamic contrast-enhanced (DCE) images (AB2), and DCE and non-contrast T2 and fat-only images (AB3). These scores were compared to those from SOC-BMRI. RESULTS Cancer yield was 14 per 1000 (women-years) in 73 women aged 26-75 years (mean 53.5 years). AB-MRI acquisition times (mean 9.63 min) and table times (mean 15.07 min) were significantly shorter than those of SOC-BMRI (means 19.46 and 36.3 min, respectively) (p < .001). Accuracy, sensitivity, specificity, and positive and negative predictive values were identical for AB3 and SOC-BMRI (93%, 100%, 93%, 16.7%, and 100%, respectively). AB-MRI with AB1 and AB2 had significantly lower specificity (AB1 = 73.6%, AB2 = 77.8%), positive predictive values (AB1 = 5%, AB2 = 5.9%), and accuracy (AB1 = 74%, AB2 = 78%) than those of SOC-BMRI (p = .002 for AB1, p = .01 for AB2). CONCLUSION AB-MRI was acquired significantly faster than SOC-BMRI and its diagnostic performance was non-inferior. Inclusion of T2 and fat-only images was necessary to achieve non-inferiority by multireader evaluation.
Collapse
Affiliation(s)
- Marion E Scoggins
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX 77030-4009, United States of America.
| | - Rosalind P Candelaria
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Mark J Dryden
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Wei Wei
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States of America.
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1472, Houston, TX 77030-4009, United States of America.
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1472, Houston, TX 77030-4009, United States of America.
| | - Basak E Dogan
- Department of Diagnostic Radiology, UT Southwestern Medical Center, 2201 Inwood Rd, Dallas, TX 75390-8585, United States of America.
| |
Collapse
|
37
|
Dynamic contrast-enhanced magnetic resonance imaging for risk-stratified screening in women with BRCA mutations or high familial risk for breast cancer: are we there yet? Breast Cancer Res Treat 2020; 183:243-250. [PMID: 32621252 DOI: 10.1007/s10549-020-05759-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Women at an elevated lifetime risk for breast cancer (BC), including carriers of pathogenic mutations in BC predisposition genes, are recommended intensified BC screening that includes annual mammography (MG) and annual breast MRI. Controversy exists regarding the clinical utility of MRI as a screening tool in high-risk women. This paper is intended to review recent advances and remaining areas of uncertainty in order to further facilitate the incorporation of breast MRI into an intensified BC screening protocol for women at high familial risk and BRCA carriers. METHODS A multidisciplinary team of medical oncologists and a radiologist specializing in the treatment of BC and high-risk patients searched PubMed to identify studies deemed to have the highest scientific value. Since none of the initial MRI studies were randomized, meta-analyses examining breast MRI screening in high-risk women were prioritized for inclusion. RESULTS Breast MRI performs well in high-risk women, including mutation carriers. Breast MRI screening allows for the detection of early stage, likely curable invasive BC. It is mandatory that radiologists receive appropriate MRI training to reduce false positives and unnecessary biopsies. MRI screening is cost-effective in the highest risk patients and new clinical trials are open examining abbreviated and ultra-fast MRI techniques as a tool to drive down costs and improve specificity. CONCLUSIONS As breast MRI is recommended as part of an intensified screening program in addition to mammography for high-risk women, it important that health care providers understand the benefits and limitations of this screening modality for high-risk women, as well as areas for further investigation.
Collapse
|
38
|
Alonso Roca S, Delgado Laguna A, Arantzeta Lexarreta J, Cajal Campo B, Santamaría Jareño S. Screening in patients with increased risk of breast cancer (part 1): Pros and cons of MRI screening. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Heacock L, Reig B, Lewin AA, Toth HK, Moy L, Lee CS. Abbreviated Breast MRI: Road to Clinical Implementation. JOURNAL OF BREAST IMAGING 2020; 2:201-214. [PMID: 38424988 DOI: 10.1093/jbi/wbaa020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 03/02/2024]
Abstract
Breast MRI offers high sensitivity for breast cancer detection, with preferential detection of high-grade invasive cancers when compared to mammography and ultrasound. Despite the clear benefits of breast MRI in cancer screening, its cost, patient tolerance, and low utilization remain key issues. Abbreviated breast MRI, in which only a select number of sequences and postcontrast imaging are acquired, exploits the high sensitivity of breast MRI while reducing table time and reading time to maximize availability, patient tolerance, and accessibility. Worldwide studies of varying patient populations have demonstrated that the comparable diagnostic accuracy of abbreviated breast MRI is comparable to a full diagnostic protocol, highlighting the emerging role of abbreviated MRI screening in patients with an intermediate and high lifetime risk of breast cancer. The purpose of this review is to summarize the background and current literature relating to abbreviated MRI, highlight various protocols utilized in current multicenter clinical trials, describe workflow and clinical implementation issues, and discuss the future of abbreviated protocols, including advanced MRI techniques.
Collapse
Affiliation(s)
- Laura Heacock
- New York University Langone Health, Department of Radiology, New York, NY
| | - Beatriu Reig
- New York University Langone Health, Department of Radiology, New York, NY
| | - Alana A Lewin
- New York University Langone Health, Department of Radiology, New York, NY
| | - Hildegard K Toth
- New York University Langone Health, Department of Radiology, New York, NY
| | - Linda Moy
- New York University Langone Health, Department of Radiology, New York, NY
- New York University Langone, Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY
| | - Cindy S Lee
- New York University Langone Health, Department of Radiology, New York, NY
| |
Collapse
|
40
|
Choudhery S, Chou SHS, Chang K, Kalpathy-Cramer J, Lehman CD. Kinetic Analysis of Lesions Identified on a Rapid Abridged Multiphase (RAMP) Breast MRI Protocol. Acad Radiol 2020; 27:672-681. [PMID: 31147233 PMCID: PMC6879810 DOI: 10.1016/j.acra.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES We implemented a rapid abridged multiphase (RAMP) breast magnetic resonance imaging (MRI) protocol to reduce scan time and increase workflow efficiency. In this study, we compared delayed-phase kinetic analyses of benign and malignant lesions on the RAMP protocol versus a full dynamic contrast-enhanced (DCE) MRI protocol. MATERIALS AND METHODS Consecutive breast MRI examinations obtained from October 2015 to August 2016 with tissue diagnoses of suspicious MRI lesions were identified. RAMP MRI included one precontrast and two postcontrast phases. Full DCE MRI included one precontrast and at least three postcontrast phases. Lesion kinetic analyses including mean delayed-phase volume percentage of washout, predominant curve type, and worst curve type were assessed. Kinetic analyses assessed on RAMP and DCE MRI protocols were compared using Wilcoxon rank-sum test and Chi-Square test. Receiver operating characteristic analysis was performed to discriminate benign and malignant lesions based on delayed-phase parameters. RESULTS The study included 177 consecutive breast lesions (50 benign, 127 malignant) in 162 women. RAMP MRI (23 benign, 61 malignant) and DCE MRI examinations (27 benign, 66 malignant) demonstrated 8.4% vs 9.3% washout (p = 0.36) for benign lesions and 18.5% vs 17% washout (p = 0.66) for malignancies, respectively. There was no difference in the predominant and worst curve types for malignant and benign lesions or in area under the receiver operating characteristic curves for delayed-phased parameters between the two protocols (p > 0.05). CONCLUSION Lesion kinetic analyses from the RAMP MRI protocol can achieve the same discriminatory ability as the full DCE protocol. By reducing scan time, the RAMP MRI protocol improves patient comfort and enhances workflow efficiency and can be easily implemented in any clinical setting.
Collapse
Affiliation(s)
- Sadia Choudhery
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shinn-Huey S Chou
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, WAC 240, Boston, Massachusetts.
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Constance D Lehman
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, WAC 240, Boston, Massachusetts
| |
Collapse
|
41
|
Alonso Roca S, Delgado Laguna AB, Arantzeta Lexarreta J, Cajal Campo B, Santamaría Jareño S. Screening in patients with increased risk of breast cancer (part 1): pros and cons of MRI screening. RADIOLOGIA 2020; 62:252-265. [PMID: 32241593 DOI: 10.1016/j.rx.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Screening plays an important role in women with a high risk of breast cancer. Given this population's high incidence of breast cancer and younger age of onset compared to the general population, it is recommended that screening starts earlier. There is ample evidence that magnetic resonance imaging (MRI) is the most sensitive diagnostic tool, and American and the European guidelines both recommend annual MRI screening (with supplementary annual mammography) as the optimum screening modality. Nevertheless, the current guidelines do not totally agree about the recommendations for MRI screening in some subgroups of patients. The first part of this article on screening in women with increased risk of breast cancer reviews the literature to explain and evaluate the advantages of MRI screening compared to screening with mammography alone: increased detection of smaller cancers with less associated lymph node involvement and a reduction in the rate of interval cancers, which can have an impact on survival and mortality (with comparable effects to other preventative measures). At the same time, however, we would like to reflect on the drawbacks of MRI screening that affect its applicability.
Collapse
Affiliation(s)
- S Alonso Roca
- Servicio de Radiodiagnóstico, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España.
| | - A B Delgado Laguna
- Servicio de Radiodiagnóstico, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - J Arantzeta Lexarreta
- Servicio de Radiodiagnóstico, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - B Cajal Campo
- Servicio de Radiodiagnóstico, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - S Santamaría Jareño
- Servicio de Radiodiagnóstico, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| |
Collapse
|
42
|
Kwon MR, Ko EY, Han BK, Ko ES, Choi JS, Park KW. Diagnostic performance of abbreviated breast MRI for screening of women with previously treated breast cancer. Medicine (Baltimore) 2020; 99:e19676. [PMID: 32311941 PMCID: PMC7220756 DOI: 10.1097/md.0000000000019676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE AND OBJECTIVES To evaluate the diagnostic performance of abbreviated screening breast magnetic resonance imaging (AB-MRI) for screening in women with previously treated breast cancer. MATERIALS AND METHODS This retrospective study included consecutive AB-MRI from September 2015 to December 2016 in patients with previously treated breast cancer. Longitudinal medical record of patients' demographics, outcomes of imaging surveillance and results of biopsy was reviewed. Protocol consisted of T2-weighted scanning and dynamic contrast-enhanced imaging including one pre-contrast and two post-contrast scans. A positive examination was defined as final assessment of BI-RADS 4 or 5 and negative was defined as BI-RADS 1, 2, or 3. Abnormal interpretation rate, cancer detection rate (CDR), sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were analyzed. RESULTS Among total 1043 AB-MRI, 29 (2.8%) AB-MRI had suspicious findings including 26 (2.5%) BI-RADS 4 and 3 (0.3%) BI-RADS 5 assessments. CDR was 9.59 per 1000. Performance outcomes were as follows: sensitivity, 71.4%; specificity, 98.2%; accuracy, 97.8%; PPV 1, 35.7%; PPV3 50%; and NPV 99.6%. Four cancers with false negative MRI were all early cancers of <1.0 cm with node negative. One was palpable interval cancer while the others were alternative screening modality-detected asymptomatic cancers before the next MRI screening. CONCLUSION AB-MRI showed high accuracy and NPV for detecting cancer recurrence in women with previously treated breast cancer. Missed cancers were all minimal cancers with node negative.
Collapse
Affiliation(s)
- Mi-ri Kwon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Young Ko
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Boo-Kyung Han
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Eun Sook Ko
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Ji Soo Choi
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Ko Woon Park
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
43
|
Lee-Felker S, Joines M, Storer L, Li B, DeBruhl N, Sayre J, Hoyt A. Abbreviated Breast MRI for Estimating Extent of Disease in Newly Diagnosed Breast Cancer. JOURNAL OF BREAST IMAGING 2020; 2:43-49. [PMID: 38424993 DOI: 10.1093/jbi/wbz071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/01/2019] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To evaluate extent of disease estimation of abbreviated protocol (ap) magnetic resonance imaging (MRI) compared with full protocol (fp) MRI in newly diagnosed breast cancer. METHODS In this institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, retrospective study of women with breast cancer who underwent pretreatment fpMRI on a 3 Tesla MRI in 2013, axial fat-saturated pre- and first postcontrast T1, maximum-intensity projection, and subtraction sequences were interpreted independently by three breast radiologists in two sessions, without and with prior imaging, respectively. Agreement was calculated using Cohen's kappa. Interpretations were compared with histology or clinical stability. Diagnostic performances were compared using Bennett's statistic. P < 0.05 was significant. RESULTS Eighty-one women (mean age 56 years, range 32-92 years), 116 lesions, and 95 cancers (mean size 27 mm, range 4-110 mm) were included. Agreement among radiologists for lesion assessment was excellent (0.83). apMRI cancer detection improved with prior imaging (mean sensitivity from 95% to 99%, specificity from 91% to 97%, positive predictive value [PPV] from 92% to 98%, and negative predictive value [NPV] from 95% to 99%) versus fpMRI (sensitivity 98% [93/95], specificity 94% [76/81], PPV 95% [93/98], and NPV 97% [76/78]). apMRI detected all multifocal, multicentric, and contralateral disease seen in 19% (15/81) of women to the same extent as fpMRI. apMRI axillary metastases detection improved with prior imaging (mean sensitivity from 78% to 86%, specificity from 90% to 92%, PPV from 76% to 82%, and NPV from 89% to 94%) versus fpMRI (sensitivity 71% [17/24], specificity 88% [51/58]), PPV 71% [17/24], and NPV 88% [51/58]). CONCLUSION apMRI may be acceptable for women with newly diagnosed cancer.
Collapse
Affiliation(s)
- Stephanie Lee-Felker
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Melissa Joines
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Lindsey Storer
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Bo Li
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Nanette DeBruhl
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - James Sayre
- University of California, Los Angeles, Fielding School of Public Health, Department of Biostatistics, Los Angeles, CA
| | - Anne Hoyt
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| |
Collapse
|
44
|
Update on Breast Density, Risk Estimation, and Supplemental Screening. AJR Am J Roentgenol 2020; 214:296-305. [DOI: 10.2214/ajr.19.21994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Abstract
OBJECTIVE. Fast breast MRI protocols have the same sensitivity as conventional protocols, but their specificity is variable and can be inadequate. An ultrafast sequence provides early enhancement of lesion characteristics that optimize the characterization of the fast protocol, increasing positive predictive values without increasing time. CONCLUSION. These new abbreviated protocols could constitute a viable screening tool both for women at high risk of breast cancer and for those at intermediate risk with high breast density.
Collapse
|
46
|
Kuhl CK. Abbreviated Magnetic Resonance Imaging (MRI) for Breast Cancer Screening: Rationale, Concept, and Transfer to Clinical Practice. Annu Rev Med 2019; 70:501-519. [PMID: 30691370 DOI: 10.1146/annurev-med-121417-100403] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the increasing understanding of cancer as a heterogeneous group of diseases, detection methods should offer a sensitivity profile that ensures perfect sensitivity for biologically important cancers while screening out self-limiting pseudocancers. However, mammographic screening is biased toward detection of ductal carcinoma in situ and slowly growing cancers-and thus frequently fails to detect biologically aggressive cancers. This explains the persistently high rates of interval cancers and high rates of breast cancer mortality observed in spite of decades of mammographic screening. Magnetic resonance imaging (MRI), in contrast, has a sensitivity profile that matches clinical needs. Conventional MRI is not suitable for population-wide screening due to high cost, limited tolerability, and lack of availability. We introduced abbreviated MRI in 2014. Abbreviated MRI will change the way MRI is used in clinical medicine. This article describes the rationale to use MRI in general, and abbreviated MRI in particular, for breast cancer screening.
Collapse
Affiliation(s)
- Christiane K Kuhl
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
47
|
Partovi S, Sin D, Lu Z, Sieck L, Marshall H, Pham R, Plecha D. Fast MRI breast cancer screening - Ready for prime time. Clin Imaging 2019; 60:160-168. [PMID: 31927171 DOI: 10.1016/j.clinimag.2019.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The manuscript discusses landmark studies using abbreviated MRI for breast cancer screening. This includes abbreviated dynamic contrast enhanced MRI and diffusion weighted imaging. Our institutional experience with abbreviated MR protocol for breast cancer screening is also described. CONCLUSION Abbreviated MRI protocols were found to demonstrate value for screening of breast cancer. It has been shown that abbreviated protocol MRI provides similar diagnostic sensitivities to full protocol MRI for breast cancer in women with increased lifetime risk. Our institutional abbreviated MRI protocol for breast cancer offers improved time and workflow efficiencies and has the potential to increase the number of breast cancers detected and the detection of pathologically relevant invasive breast cancer at earlier stages.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America.
| | - David Sin
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ziang Lu
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Leah Sieck
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Holly Marshall
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ramya Pham
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Donna Plecha
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
48
|
|
49
|
Implementing Abbreviated MRI Screening Into a Breast Imaging Practice. AJR Am J Roentgenol 2019; 213:234-237. [DOI: 10.2214/ajr.18.20396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Screening Modalities for Women at Intermediate and High Risk for Breast Cancer. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00319-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|