1
|
Vu P, Becks L. Community Trait Variation Drives Selection on Species Diversity Through Feedback With Predator Density. Ecol Evol 2024; 14:e70477. [PMID: 39450152 PMCID: PMC11499210 DOI: 10.1002/ece3.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Identifying the processes underlying community assembly and dynamics remains a central goal in ecology. Although much research has been devoted to analyzing how environments affect species diversity, fewer studies have resolved the link between the fundamental process of ecological selection and species diversity. It has been suggested that identifying ecological selection by estimating changes in community-weighted variance (CWV) and mean (CWM) of functional traits may help to identify more general rules of community assembly. Here, we asked whether and how selection by predation and competition affect species diversity, and how this is determined by the initial CWV and CWM for traits governing species interactions, as in our case: Competitiveness and defense against a predator. We tracked experimental five-species phytoplankton communities in the presence and absence of a rotifer predator over time. We manipulated the initial community composition so that communities shared at least three of the five species but differed in CWV and CWM for defense against predation. We found that species diversity was highest with higher initial trait distributions and that temporal changes in diversity correlated with trait selection. The initial distributions determined the form of selection over time, with directional selection for defense and competitiveness, followed by reduced selection and an increase in niche availability when the initial trait distribution was low or high. For intermediate initial trait distributions, we observed directional selection in only one trait, followed by stabilizing selection. Differences and changes in selection for defense, competitiveness, and species diversity correlated with the changes in predator density over time. This suggests that the initial trait distribution determined species diversity through a feedback loop with changes in selection on traits and predator density. Overall, our study shows that identifying ecological selection on functional traits can provide a mechanistic understanding of community assembly.
Collapse
Affiliation(s)
- Phuong‐Anh Vu
- Aquatic Ecology and EvolutionUniversity of KonstanzKonstanzGermany
| | - Lutz Becks
- Aquatic Ecology and EvolutionUniversity of KonstanzKonstanzGermany
| |
Collapse
|
2
|
Plum K, Tarkington J, Zufall RA. Experimental Evolution in Tetrahymena. Microorganisms 2022; 10:414. [PMID: 35208869 PMCID: PMC8877770 DOI: 10.3390/microorganisms10020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes.
Collapse
Affiliation(s)
- Karissa Plum
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Jason Tarkington
- Department of Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
3
|
Sun A, Jiao XY, Chen Q, Trivedi P, Li Z, Li F, Zheng Y, Lin Y, Hu HW, He JZ. Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environ Microbiol 2021; 23:2169-2183. [PMID: 33400366 DOI: 10.1111/1462-2920.15385] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant-soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.
Collapse
Affiliation(s)
- Anqi Sun
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao-Yan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Qinglin Chen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Zixin Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yong Zheng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| |
Collapse
|
4
|
Nguyen BAT, Chen QL, He JZ, Hu HW. Oxytetracycline and Ciprofloxacin Exposure Altered the Composition of Protistan Consumers in an Agricultural Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9556-9563. [PMID: 32649822 DOI: 10.1021/acs.est.0c02531] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protists, an integral component of soil microbiome, are one of the main predators of bacteria. Bacteria can produce toxic secondary metabolites, e.g., antibiotics to fight stress under the predation pressure of protists; however, impacts of antibiotics on the profile of protists in soils remain unclear. Here, we constructed a microcosm incubation to investigate the effects of two common antibiotics, oxytetracycline and ciprofloxacin, on the protistan and bacterial communities in an arable soil. Rhizaria were the most abundant protist supergroup, followed by Amoebozoa, Stramenopiles, and Aveolata. Among trophic functional groups, consumers were predominant within the protistan community. The protistan alpha-diversity was not significantly changed, while the bacterial alpha-diversity was decreased under the pressure of antibiotics. Nevertheless, the antibiotic exposure considerably reduced the relative abundance of protistan lineages in Rhizaria and Amoebozoa, which were the dominant supergroups of protistan consumers, while increased the relative abundance of other consumer and phototrophic protists. Altogether, we provide novel experimental evidence that the bacterivorous consumers, an important functional group of protists, were more sensitive to antibiotics than other functional groups. Our findings have potential implications for the induced alterations of protistan community and their ecological functions under the scenarios of projected increasing global antibiotic usage.
Collapse
Affiliation(s)
- Bao-Anh T Nguyen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Kloock A, Bonsall MB, King KC. Evolution and maintenance of microbe-mediated protection under occasional pathogen infection. Ecol Evol 2020; 10:8634-8642. [PMID: 32884646 PMCID: PMC7452762 DOI: 10.1002/ece3.6555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
Every host is colonized by a variety of microbes, some of which can protect their hosts from pathogen infection. However, pathogen presence naturally varies over time in nature, such as in the case of seasonal epidemics. We experimentally coevolved populations of Caenorhabditis elegans worm hosts with bacteria possessing protective traits (Enterococcus faecalis), in treatments varying the infection frequency with pathogenic Staphylococcus aureus every host generation, alternating host generations, every fifth host generation, or never. We additionally investigated the effect of initial pathogen presence at the formation of the defensive symbiosis. Our results show that enhanced microbe-mediated protection evolved during host-protective microbe coevolution when faced with rare infections by a pathogen. Initial pathogen presence had no effect on the evolutionary outcome of microbe-mediated protection. We also found that protection was only effective at preventing mortality during the time of pathogen infection. Overall, our results suggest that resident microbes can be a form of transgenerational immunity against rare pathogen infection.
Collapse
Affiliation(s)
- Anke Kloock
- Department of ZoologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
6
|
Nguyen BAT, Chen QL, He JZ, Hu HW. Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135882. [PMID: 31818598 DOI: 10.1016/j.scitotenv.2019.135882] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change.
Collapse
Affiliation(s)
- Bao-Anh Thi Nguyen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Merikanto I, Laakso JT, Kaitala V. Outside-host phage therapy as a biological control against environmental infectious diseases. Theor Biol Med Model 2018; 15:7. [PMID: 29879998 PMCID: PMC5992827 DOI: 10.1186/s12976-018-0079-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Environmentally growing pathogens present an increasing threat for human health, wildlife and food production. Treating the hosts with antibiotics or parasitic bacteriophages fail to eliminate diseases that grow also in the outside-host environment. However, bacteriophages could be utilized to suppress the pathogen population sizes in the outside-host environment in order to prevent disease outbreaks. Here, we introduce a novel epidemiological model to assess how the phage infections of the bacterial pathogens affect epidemiological dynamics of the environmentally growing pathogens. We assess whether the phage therapy in the outside-host environment could be utilized as a biological control method against these diseases. We also consider how phage-resistant competitors affect the outcome, a common problem in phage therapy. The models give predictions for the scenarios where the outside-host phage therapy will work and where it will fail to control the disease. Parameterization of the model is based on the fish columnaris disease that causes significant economic losses to aquaculture worldwide. However, the model is also suitable for other environmentally growing bacterial diseases. RESULTS Transmission rates of the phage determine the success of infectious disease control, with high-transmission phage enabling the recovery of the host population that would in the absence of the phage go asymptotically extinct due to the disease. In the presence of outside-host bacterial competition between the pathogen and phage-resistant strain, the trade-off between the pathogen infectivity and the phage resistance determines phage therapy outcome from stable coexistence to local host extinction. CONCLUSIONS We propose that the success of phage therapy strongly depends on the underlying biology, such as the strength of trade-off between the pathogen infectivity and the phage-resistance, as well as on the rate that the phages infect the bacteria. Our results indicate that phage therapy can fail if there are phage-resistant bacteria and the trade-off between pathogen infectivity and phage resistance does not completely inhibit the pathogen infectivity. Also, the rate that the phages infect the bacteria should be sufficiently high for phage-therapy to succeed.
Collapse
Affiliation(s)
- Ilona Merikanto
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Department of Psychology and logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- National Institute for Health and Welfare, Helsinki, Finland.
| | - Jouni T Laakso
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland
| | - Veijo Kaitala
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Cairns J, Ruokolainen L, Hultman J, Tamminen M, Virta M, Hiltunen T. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun Biol 2018; 1:35. [PMID: 30271921 PMCID: PMC6123812 DOI: 10.1038/s42003-018-0041-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/28/2018] [Indexed: 01/20/2023] Open
Abstract
Low concentrations of antibiotics have numerous effects on bacteria. However, it is unknown whether ecological factors such as trophic interactions and spatial structuring influence the effects of low concentrations of antibiotics on multispecies microbial communities. Here, we address this question by investigating the effects of low antibiotic concentration on community composition and horizontal transfer of an antibiotic resistance plasmid in a 62-strain bacterial community in response to manipulation of the spatial environment and presence of predation. The strong effects of antibiotic treatment on community composition depend on the presence of predation and spatial structuring that have strong community effects on their own. Overall, we find plasmid transfer to diverse recipient taxa. Plasmid transfer is likely to occur to abundant strains, occurs to a higher number of strains in the presence of antibiotic, and also occurs to low-abundance strains in the presence of spatial structures. These results fill knowledge gaps concerning the effects of low antibiotic concentrations in complex ecological settings.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Manu Tamminen
- Department of Aquatic Ecology, Eawag, Dubendorf, 8600, Zurich, Switzerland.,Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Ferris C, Best A. The evolution of host defence to parasitism in fluctuating environments. J Theor Biol 2017; 440:58-65. [PMID: 29221891 DOI: 10.1016/j.jtbi.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022]
Abstract
Given rapidly changing environments, it is important for us to understand how the evolution of host defence responds to fluctuating environments. Here we present the first theoretical study of evolution of host resistance to parasitism in a classic epidemiological model where the host birth rate varies seasonally. We show that this form of seasonality has clear qualitative and quantitative impacts on the evolution of resistance. When the host can recover from infection, it evolves a lower level of defence when the amplitude is high. However, when recovery is absent, the host increases its defence for higher amplitudes. Between these different behaviours we find a region of parameter space that allows evolutionary bistability. When this occurs, the level of defence the host evolves depends on initial conditions, and in some cases a switch between attractors can lead to different periods in the population dynamics at each of the evolutionary stable strategies. Crucially, we find that evolutionary behaviour found in a constant environment for this model doesn't always hold for hosts with highly variable birth rates. Hence we argue that seasonality must be taken into account if we want to make predictions about evolutionary trends in real-world host-parasite systems.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
| |
Collapse
|
10
|
Merikanto I, Laakso JT, Kaitala V. Outside-host predation as a biological control against an environmental opportunist disease. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Hiltunen T, Ayan GB, Becks L. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system. Proc Biol Sci 2016; 282:20150013. [PMID: 25994670 DOI: 10.1098/rspb.2015.0013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.
Collapse
Affiliation(s)
- Teppo Hiltunen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Gökçe B Ayan
- Department of Evolutionary Ecology, Community Dynamics Group, Max Planck Institute for Evolutionary Biology, August Thienemann Street 2, Plön 24306, Germany
| | - Lutz Becks
- Department of Evolutionary Ecology, Community Dynamics Group, Max Planck Institute for Evolutionary Biology, August Thienemann Street 2, Plön 24306, Germany
| |
Collapse
|
12
|
Merikanto I, Laakso JT, Kaitala V. Invasion ability and disease dynamics of environmentally growing opportunistic pathogens under outside-host competition. PLoS One 2014; 9:e113436. [PMID: 25415341 PMCID: PMC4240615 DOI: 10.1371/journal.pone.0113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Most theories of the evolution of virulence concentrate on obligatory host-pathogen relationship. Yet, many pathogens replicate in the environment outside-host where they compete with non-pathogenic forms. Thus, replication and competition in the outside-host environment may have profound influence on the evolution of virulence and disease dynamics. These environmentally growing opportunistic pathogens are also a logical step towards obligatory pathogenicity. Efficient treatment methods against these diseases, such as columnaris disease in fishes, are lacking because of their opportunist nature. We present a novel epidemiological model in which replication and competition in the outside-host environment influences the invasion ability of a novel pathogen. We also analyze the long-term host-pathogen dynamics. Model parameterization is based on the columnaris disease, a bacterial fresh water fish disease that causes major losses in fish farms worldwide. Our model demonstrates that strong competition in the outside-host environment can prevent the invasion of a new environmentally growing opportunist pathogen and long-term disease outbreaks.
Collapse
Affiliation(s)
- Ilona Merikanto
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Jouni T. Laakso
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland
| | - Veijo Kaitala
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Friman VP, Jousset A, Buckling A. Rapid prey evolution can alter the structure of predator-prey communities. J Evol Biol 2013; 27:374-80. [DOI: 10.1111/jeb.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- V.-P. Friman
- Department of Biosciences; University of Exeter; Penryn UK
- Imperial College London; Ascot UK
| | - A. Jousset
- Division of Ecology and Biodiversity; Utrecht University; Utrecht The Netherlands
| | - A. Buckling
- Department of Biosciences; University of Exeter; Penryn UK
| |
Collapse
|
14
|
Harrison E, Laine AL, Hietala M, Brockhurst MA. Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps. Proc Biol Sci 2013; 280:20130937. [PMID: 23760864 PMCID: PMC3712419 DOI: 10.1098/rspb.2013.0937] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although pervasive, the impact of temporal environmental heterogeneity on coevolutionary processes is poorly understood. Productivity is a key temporally heterogeneous variable, and increasing productivity has been shown to increase rates of antagonistic arms race coevolution, and lead to the evolution of more broadly resistant hosts and more broadly infectious parasites. We investigated the effects of the grain of environmental heterogeneity, in terms of fluctuations in productivity, on bacteria–phage coevolution. Our findings demonstrate that environmental heterogeneity could constrain antagonistic coevolution, but that its effect was dependent upon the grain of heterogeneity, such that both the rate and extent of coevolution were most strongly limited in fine-grained, rapidly fluctuating heterogeneous environments. We further demonstrate that rapid environmental fluctuations were likely to have impeded selective sweeps of resistance alleles, which occurred over longer durations than the fastest, but not the slowest, frequency of fluctuations used. Taken together our results suggest that fine-grained environmental heterogeneity constrained the coevolutionary arms race by impeding selective sweeps.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Biology, University of York, York YO10 5DD, UK
| | | | | | | |
Collapse
|
15
|
Merikanto I, Laakso J, Kaitala V. Outside-host growth of pathogens attenuates epidemiological outbreaks. PLoS One 2012; 7:e50158. [PMID: 23226245 PMCID: PMC3511454 DOI: 10.1371/journal.pone.0050158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Opportunist saprotrophic pathogens differ from obligatory pathogens due to their capability in host-independent growth in environmental reservoirs. Thus, the outside-host environment potentially influences host-pathogen dynamics. Despite the socio-economical importance of these pathogens, theory on their dynamics is practically missing. We analyzed a novel epidemiological model that couples outside-host density-dependent growth to host-pathogen dynamics. Parameterization was based on columnaris disease, a major hazard in fresh water fish farms caused by saprotrophic Flavobacterium columnare. Stability analysis and numerical simulations revealed that the outside-host growth maintains high proportion of infected individuals, and under some conditions can drive host extinct. The model can show stable or cyclic dynamics, and the outside-host growth regulates the frequency and intensity of outbreaks. This result emerges because the density-dependence stabilizes dynamics. Our analysis demonstrates that coupling of outside-host growth and traditional host-pathogen dynamics has profound influence on disease prevalence and dynamics. This also has implications on the control of these diseases.
Collapse
Affiliation(s)
- Ilona Merikanto
- Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|