1
|
Docampo R, Vercesi AE, Huang G, Lander N, Chiurillo MA, Bertolini M. Mitochondrial Ca 2+ homeostasis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:261-289. [PMID: 34253297 PMCID: PMC10424509 DOI: 10.1016/bs.ircmb.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| | - Anibal E Vercesi
- Departamento de Patologia Clinica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Mayara Bertolini
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Huang G, Docampo R. The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans. mBio 2020; 11:e00268-20. [PMID: 32184243 PMCID: PMC7078472 DOI: 10.1128/mbio.00268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells.IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K, Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 2019; 316:C657-C667. [PMID: 30811221 DOI: 10.1152/ajpcell.00303.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).
Collapse
Affiliation(s)
- Kati Mado
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| |
Collapse
|
4
|
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep 2018; 8:9698. [PMID: 29946152 PMCID: PMC6018760 DOI: 10.1038/s41598-018-28039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
In mitochondrial oxidative phosphorylation, electron transfer from NADH or succinate to oxygen by a series of large protein complexes in the inner mitochondrial membrane (complexes I-IV) is coupled to the generation of an electrochemical proton gradient, the energy of which is utilized by complex V to generate ATP. In Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes, these respiratory complexes totalize more than 40 Euglenozoa-specific subunits along with about 50 classical subunits described in other eukaryotes. In the present study the Euglena proton-pumping complexes I, III, and IV were purified from isolated mitochondria by a two-steps liquid chromatography approach. Their atypical subunit composition was further resolved and confirmed using a three-steps PAGE analysis coupled to mass spectrometry identification of peptides. The purified complexes were also observed by electron microscopy followed by single-particle analysis. Even if the overall structures of the three oxidases are similar to the structure of canonical enzymes (e.g. from mammals), additional atypical domains were observed in complexes I and IV: an extra domain located at the tip of the peripheral arm of complex I and a "helmet-like" domain on the top of the cytochrome c binding region in complex IV.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - L Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - F Bouillenne
- InBioS/Center for Protein Engineering, Université de Liège, Liege, Belgium
| | - H Degand
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - P Cardol
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium.
| |
Collapse
|
5
|
The role of membrane transporters in Leishmania virulence. Emerg Top Life Sci 2017; 1:601-611. [DOI: 10.1042/etls20170119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022]
Abstract
Leishmania are parasitic protozoa which infect humans and cause severe morbidity and mortality. Leishmania parasitise as extracellular promastigotes in the insect vector and as intracellular amastigotes in the mammalian host. Cycling between hosts involves implementation of stringent and co-ordinated responses to shifting environmental conditions. One of the key dynamic aspects of Leishmania biology is substrate acquisition and metabolism. Genomic analyses have revealed that Leishmania encode many putative membrane transporters, many of which are differentially expressed during the parasite life cycle. Only a small fraction of these transporters, however, have been functionally characterised. Currently, most information is available about nutrient transporters, mainly involved in carbohydrate, amino acid, nucleobase and nucleoside, cofactor, and ion acquisition. Several have apparent roles in Leishmania virulence and will be discussed in this perspective.
Collapse
|
6
|
Yadav KS, Miranda-Astudillo HV, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, González-Halphen D, Boekema EJ, Cardol P. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:267-275. [DOI: 10.1016/j.bbabio.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 11/26/2022]
|
7
|
Konstantinov YM, Dietrich A, Weber-Lotfi F, Ibrahim N, Klimenko ES, Tarasenko VI, Bolotova TA, Koulintchenko MV. DNA import into mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1044-1056. [DOI: 10.1134/s0006297916100035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nucleic acid import into mitochondria: New insights into the translocation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3165-81. [DOI: 10.1016/j.bbamcr.2015.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022]
|
9
|
Mitochondrial ATP synthasome: Expression and structural interaction of its components. Biochem Biophys Res Commun 2015; 464:787-93. [PMID: 26168732 DOI: 10.1016/j.bbrc.2015.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022]
Abstract
Mitochondrial ATP synthase, ADP/ATP translocase (ANT), and inorganic phosphate carrier (PiC) are supposed to form a supercomplex called ATP synthasome. Our protein and transcript analysis of rat tissues indicates that the expression of ANT and PiC is transcriptionally controlled in accordance with the biogenesis of ATP synthase. In contrast, the content of ANT and PiC is increased in ATP synthase deficient patients' fibroblasts, likely due to a post-transcriptional adaptive mechanism. A structural analysis of rat heart mitochondria by immunoprecipitation, blue native/SDS electrophoresis, immunodetection and MS analysis revealed the presence of ATP synthasome. However, the majority of PiC and especially ANT did not associate with ATP synthase, suggesting that most of PiC, ANT and ATP synthase exist as separate entities.
Collapse
|
10
|
The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei. EUKARYOTIC CELL 2015; 14:297-310. [PMID: 25616281 DOI: 10.1128/ec.00238-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.
Collapse
|
11
|
Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci U S A 2013; 110:14741-6. [PMID: 23959897 DOI: 10.1073/pnas.1305404110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Viability of the tsetse fly-transmitted African trypanosome Trypanosoma brucei depends on maintenance and expression of its kinetoplast (kDNA), the mitochondrial genome of this parasite and a putative target for veterinary and human antitrypanosomatid drugs. However, the closely related animal pathogens T. evansi and T. equiperdum are transmitted independently of tsetse flies and survive without a functional kinetoplast for reasons that have remained unclear. Here, we provide definitive evidence that single amino acid changes in the nuclearly encoded F1FO-ATPase subunit γ can compensate for complete physical loss of kDNA in these parasites. Our results provide insight into the molecular mechanism of compensation for kDNA loss by showing FO-independent generation of the mitochondrial membrane potential with increased dependence on the ADP/ATP carrier. Our findings also suggest that, in the pathogenic bloodstream stage of T. brucei, the huge and energetically demanding apparatus required for kDNA maintenance and expression serves the production of a single F1FO-ATPase subunit. These results have important implications for drug discovery and our understanding of the evolution of these parasites.
Collapse
|
12
|
Povelones ML, Tiengwe C, Gluenz E, Gull K, Englund PT, Jensen RE. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1. Mol Microbiol 2013; 87:713-29. [PMID: 23336702 DOI: 10.1111/mmi.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/01/2023]
Abstract
In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.
Collapse
Affiliation(s)
- Megan L Povelones
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
13
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
14
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Weber-Lotfi F, Ibrahim N, Boesch P, Cosset A, Konstantinov Y, Lightowlers RN, Dietrich A. Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:320-7. [PMID: 19056337 PMCID: PMC2706985 DOI: 10.1016/j.bbabio.2008.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/17/2022]
Abstract
Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter.
Collapse
Affiliation(s)
- Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Noha Ibrahim
- Institut de Biologie Moléculaire des Plantes, CNRS and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Pierre Boesch
- Institut de Biologie Moléculaire des Plantes, CNRS and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Anne Cosset
- Institut de Biologie Moléculaire des Plantes, CNRS and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri Konstantinov
- Institute of Plant Physiology and Biochemistry, Russian Academy of Science, Ul. Lermontova 132, Irkutsk 664033, Russia
| | - Robert N. Lightowlers
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
16
|
Radichev IA, Remacle AG, Sounni NE, Shiryaev SA, Rozanov DV, Zhu W, Golubkova NV, Postnova TI, Golubkov VS, Strongin AY. Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells. Biochem J 2009; 420:37-47. [PMID: 19232058 PMCID: PMC2737480 DOI: 10.1042/bj20090082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhong Zhu
- Burnham Institute for Medical Research, La Jolla, CA 92037, U.S.A
| | | | | | | | - Alex Y. Strongin
- Burnham Institute for Medical Research, La Jolla, CA 92037, U.S.A
| |
Collapse
|