1
|
Braz WR, de Souza MGM, da Silva LM, de Azevedo CB, Ribeiro AB, Barbosa DCT, Molina EF, de Faria EH, Ciuffi KJ, Rocha LA, Martins CHG, Santiago MB, Santos ALO, Nassar EJ. Antitumoral action of carvedilol-a repositioning study of the drug incorporated into mesoporous silica MCM-41. NANOTECHNOLOGY 2024; 36:055703. [PMID: 39545770 DOI: 10.1088/1361-6528/ad902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
We have studied repositioning of carvedilol (an antihypertensive drug) incorporated into MCM-41 mesoporous silica. The repositioning proposes a reduction in the slow pace of discovery of new drugs, as well as toxicological safety and a significant reduction in high research costs, making it an attractive strategy for researchers and large pharmaceutical companies. We obtained MCM-41 bytemplatesynthesis and functionalized it by post-synthesis grafting with aminopropyltriethoxysilane (APTES) only or with folic acid (FA), which gave MCM-41-APTES and MCM-41-APTES-FA, respectively. We characterized the materials by scanning and transmission electron microscopy, zeta potential (ZP) measurements, Fourier transform infrared absorption spectroscopy, x-ray diffractometry, nitrogen gas adsorption, and CHNS elemental analysis. We quantified the percentage of drug that was incorporated into the MCM-41 materials by thermogravimetric analysis and evaluated their cytotoxic activity in non-tumor human lung fibroblasts and the tumor human melanoma and human cervical adenocarcinoma cell lines by XTT salt reduction (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-arboxanilide). The x-ray diffractograms of the MCM-41 materials displayed low-angle peaks in the 2θrange between 2° and 3°, and the materials presented type IV nitrogen adsorption isotherms and H2 hysteresis typical of the MCM-41hexagonal network. The infrared spectra, the charge changes revealed by ZP measurements, and the CHN ratios obtained from elemental analysis showed that MCM-41 was amino-functionalized, and that carvedilol was incorporated into it. MCM-41-APTES incorporated 23.80% carvedilol, whereas MCM-41 and MCM-41-APTES-FA incorporated 18.69% and 12.71% carvedilol, respectively. Incorporated carvedilol was less cytotoxic to tumor and non-tumor cells than the pure drug. Carvedilol repositioning proved favorable and encourages further studies aimed at reducing its cytotoxicity to non-tumor cells. Such studies may allow for larger carvedilol incorporation into drug carriers or motivate the search for a new drug nanocarrier to optimize the carvedilol antitumoral activity.
Collapse
Affiliation(s)
- Wilson Rodrigues Braz
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | - Liziane Marçal da Silva
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Caroline Borges de Azevedo
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Arthur Barcelos Ribeiro
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | - Eduardo Ferreira Molina
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Emerson Henrique de Faria
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Katia Jorge Ciuffi
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Lucas Alonso Rocha
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | | | | | - Eduardo José Nassar
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| |
Collapse
|
2
|
Alves OJA, Ozelin SD, Magalhães LF, Candido ACBB, Gimenez VMM, Silva MLAE, Cunha WR, Januário AH, Tavares DC, Magalhães LG, Pauletti PM. HPLC method for quantifying verbascoside in Stizophyllum perforatum and assessment of verbascoside acute toxicity and antileishmanial activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1324680. [PMID: 38143582 PMCID: PMC10749199 DOI: 10.3389/fpls.2023.1324680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
We report the chemical composition of the crude leaf extracts obtained from Stizophyllum perforatum (Cham.) Miers (Bignoniaceae), a simple high-performance liquid chromatography-diode array detection (HPLC-DAD) method based on mangiferin as an internal standard to quantify verbascoside, and the verbascoside acute oral toxicity and antileishmanial activity. HPLC-high-resolution mass spectrometry-DAD (HPLC-HRMS-DAD) analyses of the crude ethanol S. perforatum leaf extracts (CE-1 and CE-2) revealed that verbascoside was the major constituent in both extracts. CE-1 was purified, and verbascoside and casticin, among other compounds, were isolated. The developed HPLC-DAD method was validated and met the required standards. Investigation of the CE-2 acute toxicity indicated a lethal dose (LD50) greater than 2,000 mg/kg of body weight. Both CE-1 and CE-2 exhibited antileishmanial activity. The isolated compounds, verbascoside and casticin, also displayed antileishmanial activity with effective concentrations (IC50) of 6.23 and 24.20 µM against promastigote forms and 3.71 and 18.97 µM against amastigote forms of Leishmania amazonensis, respectively, but they were not cytotoxic to J774A.1 macrophages. Scanning electron microscopy of the L. amazonensis promastigotes showed that the parasites became more rounded and that their plasma membrane was altered in the presence of verbascoside. Additionally, transmission electron microscopy demonstrated that vacuoles emerged, lipids accumulated, kinetoplast size increased, and interstitial extravasation occurred in L. amazonensis promastigotes exposed to verbascoside. These findings suggest that S. perforatum is a promising candidate for further in vivo investigations against L. amazonensis.
Collapse
Affiliation(s)
| | - Saulo Duarte Ozelin
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | | | | | - Valéria Maria Melleiro Gimenez
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Wilson Roberto Cunha
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Ana Helena Januário
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Denise Crispim Tavares
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Lizandra Guidi Magalhães
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Patricia Mendonça Pauletti
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
3
|
Moreira-Filho JT, Neves BJ, Cajas RA, Moraes JD, Andrade CH. Artificial intelligence-guided approach for efficient virtual screening of hits against Schistosoma mansoni. Future Med Chem 2023; 15:2033-2050. [PMID: 37937522 DOI: 10.4155/fmc-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background: The impact of schistosomiasis, which affects over 230 million people, emphasizes the urgency of developing new antischistosomal drugs. Artificial intelligence is vital in accelerating the drug discovery process. Methodology & results: We developed classification and regression machine learning models to predict the schistosomicidal activity of compounds not experimentally tested. The prioritized compounds were tested on schistosomula and adult stages of Schistosoma mansoni. Four compounds demonstrated significant activity against schistosomula, with 50% effective concentration values ranging from 9.8 to 32.5 μM, while exhibiting no toxicity in animal and human cell lines. Conclusion: These findings represent a significant step forward in the discovery of antischistosomal drugs. Further optimization of these active compounds can pave the way for their progression into preclinical studies.
Collapse
Affiliation(s)
- José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
| | - Rayssa Araujo Cajas
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases (NPDN), Universidade Guarulhos, Guarulhos, 07023-070, Brazil
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, 74605-170, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Silva DVSPD, Nascimento PHDB, Rocha JVRD, Marques DSC, Brayner FA, Alves LC, Araújo HDAD, Cruz Filho IJD, Albuquerque MCPDA, Lima MDCAD, Aires ADL. In vitro activity, ultrastructural analysis and in silico pharmacokinetic properties (ADMET) of thiazole compounds against adult worms of Schistosoma mansoni. Acta Trop 2023; 245:106965. [PMID: 37295486 DOI: 10.1016/j.actatropica.2023.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 μM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 μM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.
Collapse
Affiliation(s)
| | - Pedro Henrique do Bomfim Nascimento
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - João Victor Ritinto da Rocha
- Centro de Ciências Médicas - Programa de Pós-graduação em Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - Fábio André Brayner
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil
| | - Luiz Carlos Alves
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil; Departamento de Bioquímica. Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50.670-901, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Departamento de Parasitologia, Instituto Aggeu Magalhães, Avenida Prof. Moraes Rego, 1235, Cidade Universitária. CEP 50670-901, Recife, PE, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil; Centro de Ciências Médicas - Programa de Pós-graduação em Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Instituto Keizo Asami - iLIKA, UFPE, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife-PE, Brazil.
| |
Collapse
|
5
|
Lima TC, Magalhães LG, de L Paula LA, Cunha WR, Januário AH, Pauletti PM, Bastos JK, Mnuquian HA, Forim MR, Morais-Urano RP, Laurentiz RS, Tondato WN, Molina EF, Santos MFC, E Silva MLA. In vivo schistosomicidal activity of (±)-licarin A-loaded poly(ε-caprolactone) nanoparticles. Exp Parasitol 2022; 241:108357. [PMID: 35998724 DOI: 10.1016/j.exppara.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Schistosomiasis mansoni is an infectious parasitic disease caused by worms of the genus Schistosoma, and praziquantel (PZQ) is the medication available for the treatment of schistosomiasis. However, the existence of resistant strains reinforces the need to develop new schistosomicidal drugs safely and effectively. Thus, the (±)-licarin A neolignan incorporated into poly-Ɛ-caprolactone (PCL) nanoparticles and not incorporated were evaluated for their in vivo schistosomicidal activity. The (±)-licarin A -loaded poly(ε-caprolactone) nanoparticles and the pure (±)-licarin A showed a reduction in the number of worm eggs present in spleens of mice infected with Schistosoma mansoni. In addition, the (±)-licarin A incorporated in the concentration of 20 mg/Kg and 200 mg/Kg reduced the number of worms, presenting percentages of 56.3% and 41.7%, respectively.
Collapse
Affiliation(s)
- Thais C Lima
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Lucas A de L Paula
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Wilson R Cunha
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Ana H Januário
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Patricia M Pauletti
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - USP, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Hallana Alves Mnuquian
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Moacir R Forim
- Departamento de Química Universidade Federal de São Carlos, Rod. Washington Luiz, s/n - Monjolinho, 13565-905, São Carlos, SP, Brazil
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trab. São-Carlense, 400 - Parque Arnold Schmidt, 13566-590, São Carlos, SP, Brazil
| | - Rosangela S Laurentiz
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Rua Monção, 226 - Zona Norte, Ilha Solteira, CEP 15385-000, São Paulo, Brazil
| | - Wellington N Tondato
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Rua Monção, 226 - Zona Norte, Ilha Solteira, CEP 15385-000, São Paulo, Brazil
| | - Eduardo F Molina
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alto Universitário, s/n, 29.500-000, Alegre, ES, Brazil.
| | - Márcio L A E Silva
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600, Franca, SP, Brazil.
| |
Collapse
|
6
|
Gomes DS, Negrão-Corrêa DA, Miranda GS, Rodrigues JGM, Guedes TJFL, de Lucca Junior W, Sá Filho JCFD, Nizio DADC, Blank AF, Feitosa VLC, Dolabella SS. Lippia alba and Lippia gracilis essential oils affect the viability and oviposition of Schistosoma mansoni. Acta Trop 2022; 231:106434. [PMID: 35364048 DOI: 10.1016/j.actatropica.2022.106434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
Schistosomiasis is a neglected tropical disease that affects millions of people around the world. Currently, the only drug available for the treatment of this disease is praziquantel, which has low efficacy against immature helminth stages and there are reports of drug resistance. In this study, the chemical composition and the in vitro effect of essential oils (EOs) and major compounds from Lippia gracilis and Lippia alba against schistosomula and adult Schistosoma mansoni worms were evaluated. Adult S. mansoni worms cultured for 8h in the presence of L. gracilis EO (50 and 100 µg/mL) or for 2h with its major compound, carvacrol (100 µg/mL), had a 100% reduction in viability. After interaction with L. alba EO (100µg/mL), there was a reduction of approximately 60% in the viability of adult worms after 24 hours of exposure; citral (50 and 100 µg/mL), its major compound, reduced the viability after 24 hours by more than 75%. Treatment of schistosomula with 100 µg/mL of L. gracilis or L. alba EOs for 6h led to a reduction in parasite viability of 80% and 16% respectively. Both EOs and their major compounds significantly reduced the oviposition of adult worms exposed to a non-lethal concentration (5 µg/mL). In addition, morphological changes such as the destruction of the tegument and disorganization of the reproductive system of male and female worms were visualized. Both EOs showed low cytotoxicity at a concentration of 50 µg/mL. The results encourage further investigation of these plants as a potential source of bioactive compounds against S. mansoni.
Collapse
|
7
|
Barban do Patrocinio A. Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parasite blood flukes belonging to the genus Schistosoma cause schistosomiasis. Among the Schistosoma species that infect humans, three stand out: Schistosoma japonicum (S. japonicum), which occurs in Asia, mainly in China and the Philippines; Schistosoma haematobium (S. haematobium), which occurs in Africa; and Schistosoma mansoni (S. mansoni), which occurs in Africa and South America and the center of Venezuela (Brazil). Research has shown that these species comprise strains that are resistant to Praziquantel (PZQ), the only drug of choice to fight the disease. Moreover, patients can be reinfected even after being treated with PZQ , and this drug does not act against young forms of the parasite. Therefore, several research groups have focused their studies on new molecules for disease treatment and vaccine development. This chapter will focus on (i) parasite resistance to PZQ , (ii) molecules that are currently being developed and tested as possible drugs against schistosomiasis, and (iii) candidates for vaccine development with a primary focus on clinical trials.
Collapse
|
8
|
Lima TC, Magalhães LG, Paula LADL, Cunha WR, Januário AH, Pauletti PM, Bastos JK, Dos Santos FF, Forim MR, Laurentiz RS, Santos FA, Orenha RP, Parreira RLT, Fuzo CA, Molina EF, Santos MFC, Silva MLAE. Evaluation of lignan-loaded poly(ε-caprolactone) nanoparticles: synthesis, characterization, in vivo and in silico schistosomicidal activity. Nat Prod Res 2021; 36:5872-5878. [PMID: 34963393 DOI: 10.1080/14786419.2021.2021515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lignan dinitrohinokinin displays important biological activities, which led to the preparation of its poly-ε-caprolactone nanoparticles. Kinetics analysis revealed initially slow drug release followed by a prolonged, moderate release 6 h later due to DNHK diffusion through the polymeric matrix. Molecular dynamics simulations show that DNHK molecules that interact stronger with other DNHK molecules near the PCL/DNHK surface are more difficult to dissociate from the nanoparticle. The smaller diameter nanocapsules with negative surface charge conferred good colloidal stability. The formulations showed a size distribution with monodisperse systems formation. In vivo evaluation of schistosomicidal activity against Schistosoma mansoni showed that DNHK, when incorporated into nanoparticles, caused egg number reduction of 4.2% and 28.1% at 40 mg/kg and 94.2% and 84.4% at 400 mg/kg in the liver and the spleen, respectively. The PCL nanoparticles were stable in aqueous dispersion and could be optimized to be used as a promising lignan release agent.
Collapse
Affiliation(s)
- Thais C Lima
- Universidade de Franca, Franca, São Paulo, Brazil
| | | | | | | | | | | | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto - USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Moacir R Forim
- Instituto de Química de São Carlos, São Carlos, São Paulo, Brazil
| | - Rosangela S Laurentiz
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | - Fernanda A Santos
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | | | | | - Carlos A Fuzo
- School of Pharmaceutical Sciences of Ribeirão Preto - USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Mengarda AC, Silva MP, Cirino ME, Morais TR, Conserva GAA, Lago JHG, de Moraes J. Licarin A, a neolignan isolated from Nectandra oppositifolia Nees & Mart. (Lauraceae), exhibited moderate preclinical efficacy against Schistosoma mansoni infection. Phytother Res 2021; 35:5154-5162. [PMID: 34089558 DOI: 10.1002/ptr.7184] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people, particularly in poor communities. Chemotherapy for schistosomiasis relies exclusively on praziquantel (PZQ). Previous studies have shown that licarin A (LIC-A), a dihydrobenzofuran neolignan, exhibited in vitro antiparasitic activity against Schistosoma mansoni adult worms. This study aimed to investigate the potential of LIC-A, isolated as main metabolite from leaves of Nectandra oppositifolia Nees & Mart. (Lauraceae), as an antischistosomal agent orally active in schistosomiasis animal model. PZQ was used as a reference compound. As result, LIC-A showed, at a single dose of 400 mg/kg, to be able to partially cure infected mice (worm burden reductions of ~50%). Parasite eggs, that are responsible for a variety of pathologies and transmission of schistosomiasis, were also moderately inhibited by LIC-A (egg burden reductions of ~50%-60%). Furthermore, it was observed that LIC-A achieved a slight reduction of hepatomegaly and splenomegaly. Collectively, although LIC-A was partially active when administered orally, these results give support for the antiparasitic potential LIC-A as lead compound for novel antischistosomal agent.
Collapse
Affiliation(s)
- Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Geanne A A Conserva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| |
Collapse
|
10
|
Antiparasitic effects of ethanolic extracts of Piper arboreum and Jatropha gossypiifolia leaves on cercariae and adult worms of Schistosoma mansoni. Parasitology 2020; 147:1689-1699. [DOI: 10.1017/s003118202000181x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractNew treatment strategies for schistosomiasis should be evaluated, since resistant strains to the only available drug, Praziquantel, have already been described. Thus, we demonstrated antiparasitic effects of ethanolic extracts of Jatropha gossypiifolia and Piper arboreum on cercariae and adult worms of Schistosoma mansoni. The bioassays were performed at 0–10 000 μg mL−1 concentration for 0–72 h. Adult worms were stained with carmine to assess external and internal damage. The chemical screening was performed using high-performance liquid chromatography. P. arboreum displayed the best cercaricidal effect, with a 100% reduction in viability in just 60 min. The extract of J. gossypiifolia was more effective against adult worms, with 100% viability reduction of male and female worms after 12 and 24 h, respectively. P. arboreum and J. gossypiifolia were equally effective in inhibiting the oviposition of S. mansoni (93% reduction) and causing damage to internal and external structures in adult worms. Flavonoids were identified in both the extracts and phenolic compounds and amides only in P. arboreum. Thus, for the first time, it was proven that ethanolic extracts of P. arboreum and J. gossypiifolia leaves are biologically active against cercariae and adult worms of S. mansoni in vitro.
Collapse
|
11
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
12
|
In vitro activity of usnic acid potassium salt against different developmental stages of Schistosoma mansoni: An ultrastructural study. Acta Trop 2020; 201:105159. [PMID: 31491401 DOI: 10.1016/j.actatropica.2019.105159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
Currently, the control of schistosomiasis is based on a single drug, praziquantel, which is effective against all species of Schistosoma but only in the adult stage, presenting a schistosomicidal deficit at the other developmental stages of the parasites. Recently our research group has demonstrated that the potassium salt of usnic acid (PS-UA) presented schistosomicidal property against couples of adult worms of S. mansoni. Thus, the present study seeks to report for the first time the in vitro activity of PS-UA against different developmental stages of S. mansoni (schistosomules and young worms). As schistosomicide parameters, we evaluated motility, mortality, cell viability of the worms and tegument changes by scanning electron microscopy (SEM). After 3 h exposure, PS-UA was lethal to schistosomules at concentrations of 100 and 50 μM, whereas for concentrations 25 and 12.5 μM, 38 and 18% of mortality and 62 and 24% changes in motility, respectively, were reached. Yet for schistosomules, concentration of 25 μM caused 90 and 100% of death after 6 and 12 h, respectively. In the concentration of 12.5 μM at intervals of 12 and 24 h mortality was 68 and 100%, respectively. For young worms, after 3 h of exposure at concentrations of 200 and 100 μM caused 57 and 27% mortality, respectively. After 12 and 24 h, these concentrations caused mortality of 90 and 100% and 47 and 60% respectively. After 24 h, concentrations of 50 and 25 μM caused 80 and 30% change in motility, respectively. However, at the 12.5 μM concentration no change was observed. In addition, PS-UA reduced the cellular viability of young worms by 50.98% and 85.87% at concentrations of 100 and 200 μM, respectively. In both stages of worms and at different exposure intervals, PS-UA caused alterations such as: dorsoventral contraction, peeling, swelling, blisters, erosion, exposure of subtegumental tissue and disintegration of tegument. According to the results, changes in motility and mortality caused by PS-UA against schistosomules and young worms were concentration and time-dependents, also PS-UA even at low concentration, was able to cause profound ultrastructural changes in the integument of the worms. PS-UA is a promising candidate as prophylactic agent in the control of schistosomiasis mansoni.
Collapse
|
13
|
de Almeida Júnior ASA, de Oliveira JF, da Silva AL, da Rocha RET, Junior NCP, Gouveia ALA, da Silva RMF, de Azevedo Albuquerque MCP, Brayner FA, Alves LC, do Carmo Alves de Lima M. In vitro activity, ultrastructural studies and in silico pharmacokinetic properties of indol-3-yl-thiosemicarbazones derivatives and analogues against juvenile and adult worms of S. mansoni. Eur J Pharm Sci 2019; 138:104985. [PMID: 31283945 DOI: 10.1016/j.ejps.2019.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
The present work aimed to carry out in vitro biological assays of indol-3-yl derivatives thiosemicarbazones (2a-e) and 4-thiazolidinones (3a-d) against juvenile and adult worms of S. mansoni, as well as the in silico determination of pharmacokinetic parameters for the prediction of the oral bioavailability of these derivatives. All compounds were initially screened at a concentration of 200 μM against S. mansoni adult worms and the results evidenced the good activity of compounds 2b, 2d and 3b, which caused 100% mortality after 24, 48 and 72 h, respectively. Subsequent studies with these same compounds revealed that compound 2b was able to reduce the viability of the parasites by 85% and 83% at concentrations of 200 and 100 μM, respectively. In relation to the juvenile worms, all compounds (2b, 2d and 3b) were able to cause mortality, but compound 2b demonstrated better activity causing 100% mortality in 48 h. Additionally, it was possible to observe reduction in the viability of juvenile worms of 85%, 81% and 64% at concentrations of 200, 100 and 50 μM, respectively. Several ultrastructural damages were observed when adult and juvenile S. mansoni worms were exposed to compound 2b (200 μM) that was characterized by extensive destruction by the integument, which may justify the mortality rate of cultured parasites. In the DNA interaction assay, fragmentation of the genetic material of adult worms when treated with compound 2b (200 μM) was evidenced, indicating the apoptosis process as mechanism of parasite death. Regarding pharmacokinetic properties, all derivatives are according to the required parameters, predicting good oral bioavailability for the studied compounds. The results presented in this study reveal the good activity of compound 2b in both adult and juvenile worms of S. mansoni, pointing this compound as promising in the development of further studies on schistosomicidal activity.
Collapse
Affiliation(s)
- Antônio Sérgio Alves de Almeida Júnior
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, 50670-901 Recife, PE, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | | - Anekécia Lauro da Silva
- Universidade Federal do Vale do São Francisco (UNIVASF), Departamento de Medicina, 48607-190 Paulo Afonso, BA, Brazil
| | | | | | | | | | | | - Fábio André Brayner
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Luiz Carlos Alves
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | |
Collapse
|
14
|
Caffrey CR, El‐Sakkary N, Mäder P, Krieg R, Becker K, Schlitzer M, Drewry DH, Vennerstrom JL, Grevelding CG. Drug Discovery and Development for Schistosomiasis. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527808656.ch8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Abou El Dahab MM, Shahat SM, Mahmoud SSM, Mahana NA. In vitro effect of curcumin on Schistosoma species viability, tegument ultrastructure and egg hatchability. Exp Parasitol 2019; 199:1-8. [PMID: 30790572 DOI: 10.1016/j.exppara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/01/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. The development of resistance to praziquantel (PZQ) has justified the search for new alternative chemotherapies with new formulations, more effective, and without adverse effects. Curcumin (CUR), the major phenolic compound present in rhizome of turmeric (Curcuma longa L.), has been traditionally used against various diseases including parasitic infections. Here, the antischistosomal activity of CUR (50-500 μM), evaluated in parallel against S. mansoni and S. haematobium adult worms, appeared significant (P < 0.05 to < 0.0001) in a time- and dose-dependent manner. Two h incubation with CUR (500 μM) caused 100% irreversible killing of both schistosomal species. CUR (250 μM) caused the death of S. haematobium and S. mansoni worms after 2 h and 4 h, respectively. As CUR concentration decreases (50 μM), all coupled adult worms were separated into individual male and female but the worms remained viable up to 4 h. Scanning and transmission electron microscopy revealed that S. haematobium are more sensitive than S. mansoni to CUR schistosomicidal effects. In support, CUR was found to affect the antigenicity of surface membrane molecules of S. haematobium, but not S. mansoni. Of importance, CUR significantly (P < 0.05 to < 0.0001) affected S. mansoni eggs hatchability and viability, a ground for its use in chemotherapy of schistosomiasis mansoni and japonicum because of its increased bioavailability in the gastrointestinal tract. The data together emphasize that CUR is a promising potential schistosomicidal drug.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/isolation & purification
- Antigens, Surface/immunology
- Antigens, Surface/isolation & purification
- Cricetinae
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Intestine, Small/parasitology
- Liver/parasitology
- Male
- Mesocricetus
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Ovum/drug effects
- Ovum/physiology
- Schistosoma haematobium/drug effects
- Schistosoma haematobium/immunology
- Schistosoma haematobium/physiology
- Schistosoma haematobium/ultrastructure
- Schistosoma mansoni/drug effects
- Schistosoma mansoni/immunology
- Schistosoma mansoni/physiology
- Schistosoma mansoni/ultrastructure
- Schistosomicides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Marwa M Abou El Dahab
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt; Zoology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sondos M Shahat
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
16
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Parreira RLT, Costa ES, Heleno VCG, Magalhães LG, Souza JM, Pauletti PM, Cunha WR, Januário AH, Símaro GV, Bastos JK, Laurentiz RS, Kar T, Caramori GF, Kawano DF, Andrade E Silva ML. Evaluation of Lignans from Piper cubeba against Schistosoma mansoni Adult Worms: A Combined Experimental and Theoretical Study. Chem Biodivers 2018; 16:e1800305. [PMID: 30335227 DOI: 10.1002/cbdv.201800305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
Six dibenzylbutyrolactonic lignans ((-)-hinokinin (1), (-)-cubebin (2), (-)-yatein (3), (-)-5-methoxyyatein (4), dihydrocubebin (5) and dihydroclusin (6)) were isolated from Piper cubeba seed extract and evaluated against Schistosoma mansoni. All lignans, except 5, were able to separate the adult worm pairs and reduce the egg numbers during 24 h of incubation. Lignans 1, 3 and 4 (containing a lactone ring) were the most efficient concerning antiparasitary activity. Comparing structures 3 and 4, the presence of the methoxy group at position 5 appears to be important for this activity. Considering 1 and 3, it is possible to see that the substitution pattern change (methylenedioxy or methoxy groups) in positions 3' and 4' alter the biological response, with 1 being the second most active compound. Computational calculations suggest that the activity of compound 4 can be correlated with the largest lipophilicity value.
Collapse
Affiliation(s)
- Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Eveline S Costa
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Vladimir C G Heleno
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Lizandra G Magalhães
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Julia M Souza
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Patrícia M Pauletti
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Wilson R Cunha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Ana H Januário
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Guilherme V Símaro
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Rosangela S Laurentiz
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista Júlio de Mesquita Filho, Avenida Brasil 56, 15385-000 Ilha Solteira, São Paulo, Brazil
| | - Tapas Kar
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900, CP 476 Florianópolis, Santa Catarina, Brazil
| | - Daniel Fábio Kawano
- Universidade de Campinas, Faculdade de Ciências Farmacêuticas, Rua Cândido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
| | - Márcio L Andrade E Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, São Paulo, Brazil
| |
Collapse
|
18
|
Epiisopilosine alkaloid has activity against Schistosoma mansoni in mice without acute toxicity. PLoS One 2018; 13:e0196667. [PMID: 29750792 PMCID: PMC5947907 DOI: 10.1371/journal.pone.0196667] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 μg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.
Collapse
|
19
|
Mariz Gomes da Silva LM, de Oliveira JF, Silva WL, da Silva AL, de Almeida Junior ASA, Barbosa dos Santos VH, Alves LC, Brayner dos Santos FA, Costa VMA, Aires ADL, de Lima MDCA, Albuquerque MCPDA. New 1,3-benzodioxole derivatives: Synthesis, evaluation of in vitro schistosomicidal activity and ultrastructural analysis. Chem Biol Interact 2018; 283:20-29. [DOI: 10.1016/j.cbi.2018.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/24/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
|
20
|
Abstract
Praziquantel has remained the drug of choice for schistosomiasis chemotherapy for almost 40 years. The pressing need to develop a new antischistosomal drug may necessitate exploring and filtering chemotherapeutic history to search for the most promising ones. In this context, this review attempts to summarize all progress made in schistosomiasis chemotherapy from the early 20th century (mid-1910s) to 2016. We gathered almost 100 compounds providing information on therapeutic action, specifically covering at least first in vivo studies in animal model and in vitro. Pharmacokinetic and toxicity profiles of antischistosomal agents were also described. Preclinical studies indicate a handful of promising future candidates.
Collapse
|
21
|
Lima TC, Lucarini R, Luz PP, de Faria EH, Marçal L, Magalhães LG, Badoco FR, Esperandim VR, Molina EF, Laurentz RS, Lima RG, Cunha WR, Bastos JK, Silva MLA. In vitro schistosomicidal activity of the lignan (-)-6,6'-dinitrohinokinin (DNHK) loaded into poly(lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. PHARMACEUTICAL BIOLOGY 2017; 55:2270-2276. [PMID: 29172838 PMCID: PMC6130564 DOI: 10.1080/13880209.2017.1405996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/02/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT (-)-6,6'-Dinitrohinokinin (DNHK) display remarkable antiparasitic activity and was, therefore, incorporated into a nanoparticle formulation. OBJECTIVE Incorporation of DNHK in poly lactic-co-glycolic acid (PLGA) nanoparticles aiming to improve its biological activities. MATERIALS AND METHODS Synthesis, characterization and incorporation of DNHK into glycolic acid (PLGA) nanoparticles by nanoprecipitation method. The nanoparticles were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, field emission electron microscopic scanning mansoni (FESEM), and dynamic light scattering (DLS). For the in vitro test with Schistosoma mansoni, the DNHK-loaded PLGA was diluted into the medium, and added at concentrations 10-200 µM to the culture medium containing one adult worm pair. The parasites were kept for 120 h and monitored every 24 h to evaluate their general condition, including: pairing, alterations in motor activity and mortality. RESULTS The loaded PLGA nanoparticles gave an encapsulation efficiency of 42.2% and showed spherical characteristics in monodisperse polymeric matrix. The adult worm pairs were separated after 120 h of incubation for concentrations higher than 50 µM of DNHK-loaded PLGA. The groups incubated with 150 and 200 µM of DNHK-loaded PLGA for 24 and 120 h killed 100% of adult worms, afforded LC50 values of 137.0 ± 2.12 µM and 79.01 ± 1.90 µM, respectively, which was similar to the effect displayed by 10 µM of praziquantel. DISCUSSION AND CONCLUSIONS The incorporation of DNHK-loaded showed schistosomicidal activity and allowed its sustained release. The loaded PLGA system can be administered intravenously, as well as it may be internalized by endocytosis by the target organisms.
Collapse
Affiliation(s)
- Thaís C. Lima
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Rodrigo Lucarini
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Priscilla P. Luz
- Departamento de Química–CCE, Universidade Federal do Espírito Santo (UFES), Vitoria, Brazil
| | - Emerson H. de Faria
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Liziane Marçal
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Lizandra G. Magalhães
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Fernanda R. Badoco
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Viviane R. Esperandim
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Eduardo F. Molina
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Rosangela S. Laurentz
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, Brazil
| | - Regiane G. Lima
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, Brazil
| | - Wilson R. Cunha
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Jairo K. Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcio L. Andrade Silva
- Laboratório de Pesquisa em Microbiologia Aplicada, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| |
Collapse
|
22
|
Dias MM, Zuza O, Riani LR, de Faria Pinto P, Pinto PLS, Silva MP, de Moraes J, Ataíde ACZ, de Oliveira Silva F, Cecílio AB, Da Silva Filho AA. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother 2017; 94:489-498. [PMID: 28780467 DOI: 10.1016/j.biopha.2017.07.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H2O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400μg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125μg/mL), which showed similar antiviral effect to acyclovir (50μg/mL) when tested at 400μg/mL. Also, AL (400, 200, and 100μg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans.
Collapse
Affiliation(s)
- Mirna Meana Dias
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ohana Zuza
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Lorena R Riani
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Ana Caroline Z Ataíde
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Fernanda de Oliveira Silva
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Alzira Batista Cecílio
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ademar A Da Silva Filho
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
23
|
Hassan EA, Abdel-Rahman MA, Ibrahim MM, Soliman MFM. In vitro antischistosomal activity of venom from the Egyptian snake Cerastes cerastes. Rev Soc Bras Med Trop 2017; 49:752-757. [PMID: 28001223 DOI: 10.1590/0037-8682-0241-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION: We studied the potential in vitro antischistosomal activity of Cerastes cerastes venom on adult Schistosoma mansoni worms. METHODS: Live specimens of the horned viper snake, C. cerastes were collected from the Aswan Governorate (Egypt). Venom was collected from snakes by manual milking. Worms of S. mansoni were obtained from infected hamsters by perfusion and isolated from blood using phosphate buffer. Mortality rates of worms were monitored after 3 days of exposure to snake venom at LC50 and various sublethal concentrations (10, 5, 2.5µg/ml). Scanning electron microscopy was used to investigate tegumental changes in treated worms after exposure to LC50 doses of venom. RESULTS: The LC50 of C. cerastes venom was 21.5µg/ml. The effect of C. cerastes venom on Schistosoma worms varied according to their sex. The mortality rate of male and female worms after 48-h exposure was 83.3% and 50%, respectively. LC50 of C. cerastes venom induced mild to severe tegumental damage in Schistosoma worms in the form of destruction of the oral sucker, shrinkage and erosion of the tegument, and loss of some tubercle spines. CONCLUSIONS: The present study demonstrated that C. cerastes venom exerts potential in vitro antischistosomal activity in a time and dose-dependent manner. These results may warrant further investigations to develop novel schistosomicidal agents from C. cerastes snake venom.
Collapse
Affiliation(s)
- Ehssan Ahmed Hassan
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed Moussa Ibrahim
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.,Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | | |
Collapse
|
24
|
Kamel ROA, Bayaumy FEZA. Ultrastructural alterations in Schistosoma mansoni juvenile and adult male worms after in vitro incubation with primaquine. Mem Inst Oswaldo Cruz 2017; 112:247-254. [PMID: 28327785 PMCID: PMC5354608 DOI: 10.1590/0074-02760160324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Praziquantel has been cited as the only drug for treating schistosomiasis.
However, concerns over drug resistance have encouraged the search for novel drug
leads. The antimalarial drug primaquine possesses interesting anti-schistosmal
properties. OBJECTIVES This study is the first to document the potential role of primaquine as a
schistosomicide and the ultrastructural changes induced by primaquine on juvenile
or adult male worms of Schistosoma mansoni. METHODS Ultrastructural alterations in the tegumental surface of 21-day-old juvenile and
adult male worms of S. mansoni were demonstrated following
primaquine treatment at different concentrations (2, 5, 10, 15, and 20 µg/mL) and
incubation periods (1, 3, 6, 24, and 48 h) in vitro, using both scanning and
transmission electron microscopy. FINDINGS At low concentrations (2, 5, and 10 µg/mL) both juvenile and adult male worms
were alive after 24 h of incubation, whereas contraction, paralysis, and death of
all worms were observed after 24 h of drug exposure at 20 µg/mL. The tegument of
juvenile and adult male worms treated with primaquine exhibited erosion, peeling,
and sloughing. Furthermore, extensive damage of both tegumental and subtegumental
layers included embedded spines, and shrinkage of muscles with vacuoles. The in
vitro results confirmed that primaquine has dose-dependent effects with 20 µg/mL
as the most effective concentration in a short incubation period. MAIN CONCLUSIONS The schistosomicidal activity of primaquine indicates that this drug possesses
moderate in vitro activity against juvenile and adult male worms, since it caused
high mortality and tegumental alterations. This study confirmed that the
antimalarial drug primaquine possesses anti-schistosomal activity. Further
investigation is needed to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Reem Osama A Kamel
- Ain Shams University, Women College for Arts, Science and Education, Department of Zoology, Asmaa Fahmey St., Cairo, Egypt
| | - Fatma El-Zahraa Anwar Bayaumy
- Ain Shams University, Women College for Arts, Science and Education, Department of Zoology, Asmaa Fahmey St., Cairo, Egypt
| |
Collapse
|
25
|
Kapadia GJ, Soares IAO, Rao GS, Badoco FR, Furtado RA, Correa MB, Tavares DC, Cunha WR, Magalhães LG. Antiparasitic activity of menadione (vitamin K 3) against Schistosoma mansoni in BABL/c mice. Acta Trop 2017; 167:163-173. [PMID: 28017859 DOI: 10.1016/j.actatropica.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K3) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans.
Collapse
Affiliation(s)
- Govind J Kapadia
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Ingrid A O Soares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - G Subba Rao
- Global Biotechnology Resource Center, 145 Rosewood Drive, Streamwood, IL 60107, USA
| | - Fernanda R Badoco
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Ricardo A Furtado
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Mariana B Correa
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Denise C Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Wilson R Cunha
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil.
| |
Collapse
|
26
|
Alvarenga TA, de Oliveira PF, de Souza JM, Tavares DC, Andrade E Silva ML, Cunha WR, Groppo M, Januário AH, Magalhães LG, Pauletti PM. Schistosomicidal Activity of Alkyl-phenols from the Cashew Anacardium occidentale against Schistosoma mansoni Adult Worms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8821-8827. [PMID: 27934289 DOI: 10.1021/acs.jafc.6b04200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioassay-guided study of the ethanol extract from the cashew Anacardium occidentale furnished cardol triene (1), cardol diene (2), anacardic acid triene (3), cardol monoene (4), anacardic acid diene (5), 2-methylcardol triene (6), and 2-methylcardol diene (7). 1D- and 2D-NMR experiments and HRMS analysis confirmed the structures of compounds 1-7. Compounds 2 and 7 were active against Schistosoma mansoni adult worms in vitro, with LC50 values of 32.2 and 14.5 μM and selectivity indices of 6.1 and 21.2, respectively. Scanning electron microscopy of the tegument of male worms in the presence of compound 7 at 25 μM after 24 h of incubation showed severe damage as well as peeling and reduction in the number of spine tubercles. Transmission electron microscopy analyses revealed swollen mitochondrial membrane, vacuoles, and altered tegument in worms incubated with compound 2 (25 μM after 24 h). Worms incubated with compound 7 (25 μM after 24 h) had lysed interstitial tissue, degenerated mitochondria, and drastically altered tegument. Together, the results indicated that compound 7 presents promising in vitro schistosomicidal activity.
Collapse
Affiliation(s)
- Tavane A Alvarenga
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Pollyanna F de Oliveira
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Julia M de Souza
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Denise C Tavares
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Márcio L Andrade E Silva
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Wilson R Cunha
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Milton Groppo
- Department of Biology, Faculdade de Filosofia, Ciências e Letras, Ribeirão Preto, University of São Paulo , Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Ana H Januário
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Lizandra G Magalhães
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| | - Patrícia M Pauletti
- Center for Research in Exact and Technological Sciences, University of Franca , Avenida Doutor Armando Salles Oliveira 201, Franca, São Paulo 14404-600, Brazil
| |
Collapse
|
27
|
Magalhães LG, Lima TC, de Paula RG, Morais ER, Aguiar DP, Gardinassi LG, Garcia GR, Laurentiz RS, Rodrigues V, Bastos JK, Filho AA, Yatsuda AP, Cunha WR, Silva ML. Effects of (−)-6,6′-dinitrohinokinin on adult worms of Schistosoma mansoni: a proteomic analyses. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|