1
|
Khongwichit S, Swangphon P, Nualla-ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations. ACS APPLIED BIO MATERIALS 2025; 8:457-474. [PMID: 39762152 PMCID: PMC11752521 DOI: 10.1021/acsabm.4c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/21/2025]
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Piyawut Swangphon
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Aekkaraj Nualla-ong
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center
for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maliwan Amatatongchai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Peter A. Lieberzeit
- Department
of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna 1090, Austria
| | - Suticha Chunta
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Gebril HM, Aryasomayajula A, de Lima MRN, Uhrich KE, Moghe PV. Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer's pathology. Transl Neurodegener 2024; 13:2. [PMID: 38173014 PMCID: PMC10765804 DOI: 10.1186/s40035-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aβ) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aβ (fAβ) burden, microglial modulation, and neuroprotection. METHODS We designed a nanotechnology approach to regulate the SR-mediated intracellular fAβ trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aβ fibrilization, fAβ-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS AM-NPs interrupted Aβ fibrilization, attenuated fAβ microglial internalization via targeting the fAβ-specific SRs, arrested the fAβ-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAβ. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAβ. CONCLUSIONS The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aβ aggregation and arrest the fAβ-mediated pathological progression in microglia and neurons.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
| | - Aravind Aryasomayajula
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | | | - Kathryn E Uhrich
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, CA, 92507, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, Pang ZP, Baum J, Uhrich KE, Moghe PV. CD36-Binding Amphiphilic Nanoparticles for Attenuation of Alpha Synuclein-Induced Microglial Activation. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100120. [PMID: 36051821 PMCID: PMC9426437 DOI: 10.1002/anbr.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1β, and upregulating the expression of the anti-inflammatory genes TGF-β and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.
Collapse
Affiliation(s)
- Nanxia Zhao
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| | - Shuang Song
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Vladyslav Kholodovych
- Office of Advanced Research Computing, 96 Frelinghuysen Road, Rutgers University, NJ, 08854 USA
| | - Hannah R. Calvelli
- Department of Molecular Biology & Biochemistry, 604 Allison Rd, Rutgers University, NJ, 08854 USA
| | - Cody L. Hoop
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 604 Allison Rd, Rutgers University, NJ, 08854 USA
- Child Health Institute of New Jersey, 89 French St, New Brunswick, NJ, 08901 USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Kathryn E. Uhrich
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| |
Collapse
|
4
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
5
|
Cheng M, Liu Q, Liu W, Yuan F, Feng J, Jin Y, Tu L. Engineering micelles for the treatment and diagnosis of atherosclerosis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Zang X, Cheng M, Zhang X, Chen X. Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis. J Mater Chem B 2021; 9:3284-3294. [PMID: 33881414 DOI: 10.1039/d0tb02956d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is one of the leading causes of vascular diseases, with high morbidity and mortality worldwide. Macrophages play a critical role in the development and local inflammatory responses of atherosclerosis, contributing to plaque rupture and thrombosis. Considering their central roles, macrophages have gained considerable attention as a therapeutic target to attenuate atherosclerotic progression and stabilize existing plaques. Nanoparticle-based delivery systems further provide possibilities to selectively and effectively deliver therapeutic agents into intraplaque macrophages. Although challenges are numerous and clinical application is still distant, the design and development of macrophage-targeting nanoparticles will generate new knowledge and experiences to improve therapeutic outcomes and minimize toxicity. Hence, the review aims to discuss various strategies for macrophage modulation and the development and evaluation of macrophage targeting nanomedicines for anti-atherosclerosis.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, P. R. China.
| | | | | | | |
Collapse
|
7
|
Di L, Maiseyeu A. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential. Drug Deliv 2021; 28:408-421. [PMID: 33594923 PMCID: PMC7894439 DOI: 10.1080/10717544.2021.1886199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery and uptake of LDL particles by target cells are more complex. The most well-known mode of LDL-based delivery is via the interaction between apolipoprotein B (Apo-B) - the main protein of LDL - and the low-density lipoprotein receptor (LDLR). LDLR is expressed in the liver, adipocytes, and macrophages, and thus selectively delivers LDL carriers to these cells and tissues. Moreover, the elevated expression of LDLR in tumor cells indicates a role for LDL in the targeted delivery of chemotherapy drugs. In addition, chronic inflammation associated with hypercholesterolemia (i.e., high levels of endogenous LDL) can be abated by LDL carriers, which outcompete the deleterious oxidized LDL for uptake by macrophages. In this case, synthetic LDL nanocarriers act as 'eat-me' signals and exploit mechanisms of native LDL uptake for targeted drug delivery and imaging. Lastly, recent studies have shown that the delivery of LDL-based nanocarriers to macrophages via fluid-phase pinocytosis is a promising tool for atherosclerosis imaging. Hence, the present review summarizes the use of natural and synthetic LDL-based carriers for drug delivery and imaging and discusses various mechanisms of targeting.
Collapse
Affiliation(s)
- Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| |
Collapse
|
8
|
Nanotherapeutics Containing Lithocholic Acid-Based Amphiphilic Scorpion-Like Macromolecules Reduce In Vitro Inflammation in Macrophages: Implications for Atherosclerosis. NANOMATERIALS 2018; 8:nano8020084. [PMID: 29393918 PMCID: PMC5853716 DOI: 10.3390/nano8020084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Previously-designed amphiphilic scorpion-like macromolecule (AScM) nanoparticles (NPs) showed elevated potency to counteract oxidized low-density lipoprotein (oxLDL) uptake in atherosclerotic macrophages, but failed to ameliorate oxLDL-induced inflammation. We designed a new class of composite AScMs incorporating lithocholic acid (LCA), a natural agonist for the TGR5 receptor that is known to counteract atherosclerotic inflammation, with two complementary goals: to simultaneously decrease lipid uptake and inhibit pro-inflammatory cytokine secretion by macrophages. LCA was conjugated to AScMs for favorable interaction with TGR5 and was also hydrophobically modified to enable encapsulation in the core of AScM-based NPs. Conjugates were formulated into negatively charged NPs with different core/shell combinations, inspired by the negative charge on oxLDL to enable competitive interaction with scavenger receptors (SRs). NPs with LCA-containing shells exhibited reduced sizes, and all NPs lowered oxLDL uptake to <30% of untreated, human derived macrophages in vitro, while slightly downregulating SR expression. Pro-inflammatory cytokine expression, including IL-1β, IL-8, and IL-10, is known to be modulated by TGR5, and was dependent on NP composition, with LCA-modified cores downregulating inflammation. Our studies indicate that LCA-conjugated AScM NPs offer a unique approach to minimize atherogenesis and counteract inflammation.
Collapse
|
9
|
Chmielowski RA, Abdelhamid DS, Faig JJ, Petersen LK, Gardner CR, Uhrich KE, Joseph LB, Moghe PV. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater 2017; 57:85-94. [PMID: 28522412 PMCID: PMC5546209 DOI: 10.1016/j.actbio.2017.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. STATEMENT OF SIGNIFICANCE Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while limiting localized concentrations of pro-oxidants. In this study, we illustrate the potential of degradable ferulic acid-based polymer nanoparticles to control macrophage foam cell formation by significantly reducing oxLDL uptake through downregulation of scavenger receptors, CD-36, MSR-1, and LOX-1. Another critical finding is the ability of the degradable ferulate-based polymer nanoparticles to lower macrophage reactive oxygen species (ROS) levels, a precursor to apoptosis and plaque escalation. The degradable ferulic acid-based polymer nanoparticles hold significant promise as a means to alter the treatment and progression of atherosclerosis.
Collapse
Affiliation(s)
- Rebecca A Chmielowski
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA
| | - Dalia S Abdelhamid
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA.
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA; Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA.
| |
Collapse
|
10
|
Bennett NK, Chmielowski R, Abdelhamid DS, Faig JJ, Francis N, Baum J, Pang ZP, Uhrich KE, Moghe PV. Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity. Biomaterials 2016; 111:179-189. [PMID: 27736702 DOI: 10.1016/j.biomaterials.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers. Next, we designed a nanotechnology approach to regulate SR-mediated intracellular ASYN trafficking within microglia. We synthesized mucic acid-derivatized sugar-based amphiphilic molecules (AM) with optimal stereochemistry, rigidity, and charge for enhanced dual binding affinity to SRs and fabricated serum-stable nanoparticles via flash nanoprecipitation comprising hydrophobe cores and amphiphile shells. Treatment of microglia with AM nanoparticles decreased monomeric ASYN internalization and intracellular ASYN oligomer formation. We then engineered composite deactivating NPs with dual character, namely shell-based SR-binding amphiphiles, and core-based antioxidant poly (ferrulic acid), to investigate concerted inhibition of oxidative activation. In ASYN-challenged microglia treated with NPs, we observed decreased ASYN-mediated acute microglial activation and diminished microglial neurotoxicity caused by exposure to aggregated ASYN. When the composite NPs were administered in vivo within the substantia nigra of fibrillar ASYN-challenged wild type mice, there was marked attenuation of activated microglia. Overall, SR-targeting AM nanotechnology represents a novel paradigm in alleviating microglial activation in the context of synucleinopathies like PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA
| | - Rebecca Chmielowski
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA
| | - Dalia S Abdelhamid
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Jonathan J Faig
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola Francis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA; Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA; Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Zhang Y, Li Q, Welsh WJ, Moghe PV, Uhrich KE. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity. Biomaterials 2016; 84:230-240. [PMID: 26828687 DOI: 10.1016/j.biomaterials.2015.12.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/06/2015] [Accepted: 12/25/2015] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Qi Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick 08901, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Chan JW, Lewis DR, Petersen LK, Moghe PV, Uhrich KE. Amphiphilic macromolecule nanoassemblies suppress smooth muscle cell proliferation and platelet adhesion. Biomaterials 2016; 84:219-229. [PMID: 26828686 DOI: 10.1016/j.biomaterials.2015.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
While the development of second- and third-generation drug-eluting stents (DES) have significantly improved patient outcomes by reducing smooth muscle cell (SMC) proliferation, DES have also been associated with an increased risk of late-stent thrombosis due to delayed re-endothelialization and hypersensitivity reactions from the drug-polymer coating. Furthermore, DES anti-proliferative agents do not counteract the upstream oxidative stress that triggers the SMC proliferation cascade. In this study, we investigate biocompatible amphiphilic macromolecules (AMs) that address high oxidative lipoprotein microenvironments by competitively binding oxidized lipid receptors and suppressing SMC proliferation with minimal cytotoxicity. To determine the influence of nanoscale assembly on proliferation, micelles and nanoparticles were fabricated from AM unimers containing a phosphonate or carboxylate end-group, a sugar-based hydrophobic domain, and a hydrophilic poly(ethylene glycol) domain. The results indicate that when SMCs are exposed to high levels of oxidized lipid stimuli, nanotherapeutics inhibit lipid uptake, downregulate scavenger receptor expression, and attenuate scavenger receptor gene transcription in SMCs, and thus significantly suppress proliferation. Although both functional end-groups were similarly efficacious, nanoparticles suppressed oxidized lipid uptake and scavenger receptor expression more effectively compared to micelles, indicating the relative importance of formulation characteristics (e.g., higher localized AM concentrations and nanotherapeutic stability) in scavenger receptor binding as compared to AM end-group functionality. Furthermore, AM coatings significantly prevented platelet adhesion to metal, demonstrating its potential as an anti-platelet therapy to treat thrombosis. Thus, AM micelles and NPs can effectively repress early stage SMC proliferation and thrombosis through non-cytotoxic mechanisms, highlighting the promise of nanomedicine for next-generation cardiovascular therapeutics.
Collapse
Affiliation(s)
- Jennifer W Chan
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA.
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Lewis DR, Petersen LK, York AW, Ahuja S, Chae H, Joseph LB, Rahimi S, Uhrich KE, Haser PB, Moghe PV. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovasc Res 2015; 109:283-93. [PMID: 26472131 DOI: 10.1093/cvr/cvv237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS Atherosclerotic development is exacerbated by two coupled pathophysiological phenomena in plaque-resident cells: modified lipid trafficking and inflammation. To address this therapeutic challenge, we designed and investigated the efficacy in vitro and ex vivo of a novel 'composite' nanotherapeutic formulation with dual activity, wherein the nanoparticle core comprises the antioxidant α-tocopherol and the shell is based on sugar-derived amphiphilic polymers that exhibit scavenger receptor binding and counteract atherogenesis. METHODS AND RESULTS Amphiphilic macromolecules were kinetically fabricated into serum-stable nanoparticles (NPs) using a core/shell configuration. The core of the NPs comprised either of a hydrophobe derived from mucic acid, M12, or the antioxidant α-tocopherol (α-T), while an amphiphile based on PEG-terminated M12 served as the shell. These composite NPs were then tested and validated for inhibition of oxidized lipid accumulation and inflammatory signalling in cultures of primary human macrophages, smooth muscle cells, and endothelial cells. Next, the NPs were evaluated for their athero-inflammatory effects in a novel ex vivo carotid plaque model and showed similar effects within human tissue. Incorporation of α-T into the hydrophobic core of the NPs caused a pronounced reduction in the inflammatory response, while maintaining high levels of anti-atherogenic efficacy. CONCLUSIONS Sugar-based amphiphilic macromolecules can be complexed with α-T to establish new anti-athero-inflammatory nanotherapeutics. These dual efficacy NPs effectively inhibited key features of atherosclerosis (modified lipid uptake and the formation of foam cells) while demonstrating reduction in inflammatory markers based on a disease-mimetic model of human atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Adam W York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Sonali Ahuja
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hoonbyung Chae
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Laurie B Joseph
- Department of Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Saum Rahimi
- Division of Vascular Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Paul B Haser
- Division of Vascular Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Chan JW, Zhang Y, Uhrich KE. Amphiphilic Macromolecule Self-Assembled Monolayers Suppress Smooth Muscle Cell Proliferation. Bioconjug Chem 2015; 26:1359-69. [PMID: 26042535 DOI: 10.1021/acs.bioconjchem.5b00208] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant limitation of cardiovascular stents is restenosis, where excessive smooth muscle cell (SMC) proliferation following stent implantation causes blood vessel reocclusion. While drug-eluting stents minimize SMC proliferation through releasing cytotoxic or immunosuppressive drugs from polymer carriers, significant issues remain with delayed healing, inflammation, and hypersensitivity reactions associated with drug and polymer coatings. Amphiphilic macromolecules (AMs) comprising a sugar-based hydrophobic domain and a hydrophilic poly(ethylene glycol) tail are noncytotoxic and recently demonstrated a concentration-dependent ability to suppress SMC proliferation. In this study, we designed a series of AMs and studied their coating properties (chemical composition, thickness, grafting density, and coating uniformity) to determine the effect of headgroup chemistry on bioactive AM grafting and release properties from stainless steel substrates. One carboxyl-terminated AM (1cM) and two phosphonate- (Me-1pM and Pr-1pM) terminated AMs, with varying linker lengths preceding the hydrophobic domain, were grafted to stainless steel substrates using the tethering by aggregation and growth (T-BAG) approach. The AMs formed headgroup-dependent, yet uniform, biocompatible adlayers. Pr-1pM and 1cM demonstrated higher grafting density and an extended release from the substrate over 21 days compared to Me-1pM, which exhibited lower grafting density and complete release within 7 days. Coinciding with their release profiles, Me-1pM and 1cM coatings initially suppressed SMC proliferation in vitro, but their efficacy decreased within 7 and 14 days, respectively, while Pr-1pM coatings suppressed SMC proliferation over 21 days. Thus, AMs with phosphonate headgroups and propyl linkers are capable of sustained release from the substrate and have the ability to suppress SMC proliferation during the restenosis that occurs in the 3-4 weeks after stent implantation, demonstrating the potential for AM coatings to provide sustained delivery via desorption from coated coronary stents and other metal-based implants.
Collapse
Affiliation(s)
- Jennifer W Chan
- †Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yingyue Zhang
- ‡Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E Uhrich
- †Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States.,‡Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Abdelhamid DS, Zhang Y, Lewis DR, Moghe PV, Welsh WJ, Uhrich KE. Tartaric acid-based amphiphilic macromolecules with ether linkages exhibit enhanced repression of oxidized low density lipoprotein uptake. Biomaterials 2015; 53:32-9. [PMID: 25890704 DOI: 10.1016/j.biomaterials.2015.02.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease initiates with the atherogenic cascade of scavenger receptor- (SR-) mediated oxidized low-density lipoprotein (oxLDL) uptake. Resulting foam cell formation leads to lipid-rich lesions within arteries. We designed amphiphilic macromolecules (AMs) to inhibit these processes by competitively blocking oxLDL uptake via SRs, potentially arresting atherosclerotic development. In this study, we investigated the impact of replacing ester linkages with ether linkages in the AM hydrophobic domain. We hypothesized that ether linkages would impart flexibility for orientation to improve binding to SR binding pockets, enhancing anti-atherogenic activity. A series of tartaric acid-based AMs with varying hydrophobic chain lengths and conjugation chemistries were synthesized, characterized, and evaluated for bioactivity. 3-D conformations of AMs in aqueous conditions may have significant effects on anti-atherogenic potency and were simulated by molecular modeling. Notably, ether-linked AMs exhibited significantly higher levels of inhibition of oxLDL uptake than their corresponding ester analogues, indicating a dominant effect of linkage flexibility on pharmacological activity. The degradation stability was also enhanced for ether-linked AMs. These studies further suggested that alkyl chain length (i.e., relative hydrophobicity), conformation (i.e., orientation), and chemical stability play a critical role in modulating oxLDL uptake, and guide the design of innovative cardiovascular therapies.
Collapse
Affiliation(s)
- Dalia S Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA
| | - Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA
| | - Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ, USA
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ, USA; Department of Biomedical Engineering, Rutgers University, NJ, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA.
| |
Collapse
|
16
|
Abstract
Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes.
Collapse
|
17
|
Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Acc Chem Res 2014; 47:2867-77. [PMID: 25141069 DOI: 10.1021/ar4003009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular disease. The atherosclerotic cascade is usually triggered by the unregulated uptake of oxidized low-density lipoprotein, a cholesterol carrier, in macrophages of the blood vessel wall; SBAPs can significantly inhibit oxidized low-density lipoprotein uptake in macrophages and abrogate the atherosclerotic cascade. By modification of various functionalities (e.g., branching, stereochemistry, hydrophobicity, and charge) in the SBAP chemical structure, SBAP bioactivity was optimized, and influential structural components were identified. Despite the potential of SBAPs as atherosclerotic therapies, blood stability of the SBAP micelles was not ideal for in vivo applications, and means to stabilize them were pursued. Using kinetic entrapment via flash nanoprecipitation, SBAPs were formulated into nanoparticles with a hydrophobic solute core and SBAP shell. SBAP nanoparticles exhibited excellent physiological stability and enhanced bioactivity compared with SBAP micelles. Further, this method enables encapsulation of additional hydrophobic drugs (e.g., vitamin E) to yield a stable formulation that releases two bioactives. Both as nanoscale carriers and as polymer therapeutics, SBAPs are promising biomaterials for medical applications.
Collapse
Affiliation(s)
- Li Gu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Allison Faig
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Dalia Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
18
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1056] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
19
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
20
|
Faig A, Petersen L, Moghe PV, Uhrich KE. Impact of hydrophobic chain composition on amphiphilic macromolecule antiatherogenic bioactivity. Biomacromolecules 2014; 15:3328-37. [PMID: 25070717 PMCID: PMC4157764 DOI: 10.1021/bm500809f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/24/2014] [Indexed: 01/08/2023]
Abstract
Amphiphilic macromolecules (AMs) composed of sugar backbones modified with branched aliphatic chains and a poly(ethylene glycol) (PEG) tail can inhibit macrophage uptake of oxidized low-density lipoproteins (oxLDL), a major event underlying atherosclerosis development. Previous studies indicate that AM hydrophobic domains influence this bioactivity through interacting with macrophage scavenger receptors, which can contain basic and/or hydrophobic residues within their binding pockets. In this study, we compare two classes of AMs to investigate their ability to promote athero-protective potency via hydrogen-bonding or hydrophobic interactions with scavenger receptors. A series of ether-AMs, containing methoxy-terminated aliphatic arms capable of hydrogen-bonding, was synthesized. Compared to analogous AMs containing no ether moieties (alkyl-AMs), ether-AMs showed improved cytotoxicity profiles. Increasing AM hydrophobicity via incorporation of longer and/or alkyl-terminated hydrophobic chains yielded macromolecules with enhanced oxLDL uptake inhibition. These findings indicate that hydrophobic interactions and the length of AM aliphatic arms more significantly influence AM bioactivity than hydrogen-bonding.
Collapse
Affiliation(s)
- Allison Faig
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Latrisha
K. Petersen
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Prabhas V. Moghe
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
21
|
Petersen L, York AW, Lewis DR, Ahuja S, Uhrich KE, Prud’homme RK, Moghe PV. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11:2815-24. [PMID: 24972372 PMCID: PMC4144725 DOI: 10.1021/mp500188g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics.
Collapse
Affiliation(s)
- Latrisha
K. Petersen
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Adam W. York
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Daniel R. Lewis
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Sonali Ahuja
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers
University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prabhas V. Moghe
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
22
|
Gu L, Nusblat LM, Tishbi N, Noble SC, Pinson CM, Mintzer E, Roth CM, Uhrich KE. Cationic amphiphilic macromolecule (CAM)-lipid complexes for efficient siRNA gene silencing. J Control Release 2014; 184:28-35. [PMID: 24727076 DOI: 10.1016/j.jconrel.2014.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
The accumulated evidence has shown that lipids and polymers each have distinct advantages as carriers for siRNA delivery. Composite materials comprising both lipids and polymers may present improved properties that combine the advantage of each. Cationic amphiphilic macromolecules (CAMs) containing a hydrophobic alkylated mucic acid segment and a hydrophilic poly(ethylene glycol) (PEG) tail were non-covalently complexed with two lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), to serve as a siRNA delivery vehicle. By varying the weight ratio of CAM to lipid, cationic complexes with varying compositions were obtained in aqueous media and their properties evaluated. CAM-lipid complex sizes were relatively independent of composition, ranging from 100 to 200nm, and zeta potentials varied from 10 to 30mV. Transmission electron microscopy confirmed the spherical morphology of the complexes. The optimal N/P ratio was 50 as determined by electrophoretic mobility shift assay. The ability to achieve gene silencing was evaluated by anti-luciferase siRNA delivery to a U87-luciferase cell line. Several weight ratios of CAM-lipid complexes were found to have similar delivery efficiency compared to the gold standard, Lipofectamine. Isothermal titration calorimetry revealed that siRNA binds more tightly at pH=7.4 than pH=5 to CAM-lipid (1:10 w/w). Further intracellular trafficking studies monitored the siRNA escape from the endosomes at 24h following transfection of cells. The findings in the paper indicate that CAM-lipid complexes can serve as a novel and efficient siRNA delivery vehicle.
Collapse
Affiliation(s)
- Li Gu
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, United States
| | - Leora M Nusblat
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Nasim Tishbi
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Sarah C Noble
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Chaya M Pinson
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Evan Mintzer
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Charles M Roth
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Kathryn E Uhrich
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, United States; Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
23
|
Westein E, Flierl U, Hagemeyer CE, Peter K. Destination Known: Targeted Drug Delivery in Atherosclerosis and Thrombosis. Drug Dev Res 2013. [DOI: 10.1002/ddr.21103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Erik Westein
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Ulrike Flierl
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Christoph E. Hagemeyer
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Karlheinz Peter
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| |
Collapse
|
24
|
Poree DE, Zablocki K, Faig A, Moghe PV, Uhrich KE. Nanoscale amphiphilic macromolecules with variable lipophilicity and stereochemistry modulate inhibition of oxidized low-density lipoprotein uptake. Biomacromolecules 2013; 14:2463-9. [PMID: 23795777 PMCID: PMC3773991 DOI: 10.1021/bm400537w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.
Collapse
Affiliation(s)
- Dawanne E Poree
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
25
|
Lewis DR, Kholodovych V, Tomasini MD, Abdelhamid D, Petersen LK, Welsh WJ, Uhrich KE, Moghe PV. In silico design of anti-atherogenic biomaterials. Biomaterials 2013; 34:7950-9. [PMID: 23891521 DOI: 10.1016/j.biomaterials.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
Abstract
Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tomasini MD, Zablocki K, Petersen LK, Moghe PV, Tomassone MS. Coarse Grained Molecular Dynamics of Engineered Macromolecules for the Inhibition of Oxidized Low-Density Lipoprotein Uptake by Macrophage Scavenger Receptors. Biomacromolecules 2013; 14:2499-509. [DOI: 10.1021/bm301764x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael D. Tomasini
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United
States
| | - Kyle Zablocki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United
States
| | - Latrisha K. Petersen
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United
States
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United
States
- Department of Chemical
and Biochemical
Engineering, Rutgers University, Piscataway,
New Jersey 08854, United States
| | - M. Silvina Tomassone
- Department of Chemical
and Biochemical
Engineering, Rutgers University, Piscataway,
New Jersey 08854, United States
| |
Collapse
|
27
|
Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M. A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid-poly(ethylene glycol) and macrophage uptake. Acta Biomater 2013; 9:4744-53. [PMID: 22995407 DOI: 10.1016/j.actbio.2012.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/26/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022]
Abstract
Amphiphilic lipid-poly(ethylene glycol) (LPEG) is widely used for the noncovalent functionalization of graphene nanomaterials (GNMs) to improve their dispersion in aqueous solutions for biomedical applications. However, not much is known about the detachment of LPEGs from GNMs and macrophage uptake of dispersed GNMs in relation to the alkyl chain coverage, the PEG coverage, and the linker group in LPEGs. In this study we examined these relationships using single walled carbon nanohorns (SWCNHs). The high coverage of PEG rather than that of alkyl chains was dominant in suppressing the detachment of LPEGs from SWCNHs in protein-containing physiological solution. Correspondingly, the quantity of LPEG-covered SWCNHs (LPEG-SWCNHs) taken up by macrophages decreased at a high PEG coverage. Our study also demonstrated an effect of the ionic group in LPEG on SWCNH uptake into macrophages. A phosphate anionic group in the LPEG induced lower alkyl chain coverage and easy detachment of the LPEG, however, the negative surface charge of LPEG-SWCNHs reduced the uptake of SWCNHs by macrophages.
Collapse
Affiliation(s)
- Mei Yang
- Department of Material Science and Engineering, Meijo University, Tenpaku, Nagoya 468-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hehir S, Plourde NM, Gu L, Poree DE, Welsh WJ, Moghe PV, Uhrich KE. Carbohydrate composition of amphiphilic macromolecules influences physicochemical properties and binding to atherogenic scavenger receptor A. Acta Biomater 2012; 8:3956-62. [PMID: 22835678 DOI: 10.1016/j.actbio.2012.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/09/2023]
Abstract
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) mediated by scavenger receptor A (SR-A) and counteract foam cell formation, the characteristic "atherosclerotic" phenotype. A series of AMs was prepared by altering the carbohydrate chemistry to evaluate the influence of backbone architecture on the physicochemical and biological properties. Upon evaluating the degree of polymer-based inhibition of oxLDL uptake in human embryonic kidney cells expressing SR-A, two AMs (2a and 2c) were found to have the most efficacy. Molecular modeling and docking studies show that these same AMs have the most favorable binding energies and most close interactions with the molecular model of the SR-A collagen-like domain. Thus, minor changes in the AMs' architecture can significantly affect the physicochemical properties and inhibition of oxLDL uptake. These insights can be critical for designing optimal AM-based therapeutics for the management of cardiovascular disease.
Collapse
Affiliation(s)
- Sarah Hehir
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gu L, Zablocki K, Lavelle L, Bodnar S, Halperin F, Harper I, Moghe PV, Uhrich KE. Impact of ionizing radiation on physicochemical and biological properties of an amphiphilic macromolecule. Polym Degrad Stab 2012; 97:1686-1689. [PMID: 23162175 DOI: 10.1016/j.polymdegradstab.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An amphiphilic macromolecule (AM) was exposed to ionizing radiation (both electron beam and gamma) at doses of 25 kGy and 50 kGy to study the impact of these sterilization methods on the physicochemical properties and bioactivity of the AM. Proton nuclear magnetic resonance and gel permeation chromatography were used to determine the chemical structure and molecular weight, respectively. Size and zeta potential of the micelles formed from AMs in aqueous media were evaluated by dynamic light scattering. Bioactivity of irradiated AMs was evaluated by measuring inhibition of oxidized low-density lipoprotein uptake in macrophages. From these studies, no significant changes in the physicochemical properties or bioactivity were observed after the irradiation, demonstrating that the AMs can withstand typical radiation doses used to sterilize materials.
Collapse
Affiliation(s)
- Li Gu
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’homme RK, Moghe PV. Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:733-9. [PMID: 22223224 PMCID: PMC3495129 DOI: 10.1002/adma.201103348] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/10/2011] [Indexed: 05/30/2023]
Abstract
Kinetically assembled nanoparticles are fabricated from an advanced class of bioactive macromolecules that have potential utility in counteracting atherosclerotic plaque development via receptor-level blockage of inflammatory cells. In contrast to micellar analogs that exhibit poor potency and structural integrity under physiologic conditions, these kinetic nanoparticle assemblies maintain structural stability and demonstrate superior bioactivity in mediating oxidized low-density lipoprotein (oxLDL) uptake in inflammatory cells.
Collapse
Affiliation(s)
- Adam W. York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Kyle R. Zablocki
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R. Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Li Gu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA. Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
31
|
Sparks SM, Waite CL, Harmon AM, Nusblat LM, Roth CM, Uhrich KE. Efficient intracellular siRNA delivery by ethyleneimine-modified amphiphilic macromolecules. Macromol Biosci 2011; 11:1192-200. [PMID: 21793212 PMCID: PMC3549469 DOI: 10.1002/mabi.201100064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Indexed: 01/09/2023]
Abstract
New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule. This alkylated mucic acid is then mono-functionalized with poly(ethylene glycol) (PEG) as a hydrophilic component. The resulting AM contains a free carboxylic acid within the hydrophobic domain. In this work, linear ethyleneimines were conjugated to the free carboxylic acid to produce an AM with one primary amine (1N) or one primary amine and four secondary amines (5N). Further, an AM with amine substitution both to the free carboxylic acid in the hydrophobic domain and also to the adjacent PEG was synthesized to produce a polymer with one primary amine and eight secondary amines (9N), four located on each side of the AM hydrophobic domain. All amine-functionalized AMs formed nanoscale micelles but only the 5N and 9N AMs had cationic zeta potentials, which increased with increasing number of amines. All AMs exhibited less inherent cytotoxicity than linear polyethyleneimine (L-PEI) at concentrations of 10 µM and above. By increasing the length of the cationic ethyleneimine chain and the total number of amines, successful siRNA complexation and cellular siRNA delivery was achieved in a malignant glioma cell line. In addition, siRNA-induced silencing of firefly luciferase was observed using complexes of siRNA with the 9N AM and comparable to L-PEI, yet showed better cell viability at higher concentrations (above 10 µM). This work highlights the promise of cationic AMs as safe and efficient synthetic vectors for siRNA delivery. Specifically, a novel polymer (9N) was identified for efficient siRNA delivery to cancer cells and will be further evaluated.
Collapse
Affiliation(s)
- Sarah M. Sparks
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Carolyn L. Waite
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexander M. Harmon
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Leora M. Nusblat
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials 2011; 32:8319-27. [PMID: 21816466 DOI: 10.1016/j.biomaterials.2011.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 11/23/2022]
Abstract
Activated vascular wall macrophages can rapidly internalize modified lipoproteins and escalate the growth of atherosclerotic plaques. This article proposes a biomaterials-based therapeutic intervention for depletion of non-regulated cholesterol accumulation and inhibition of inflammation of macrophages. Macromolecules with high scavenger receptor (SR)-binding activity were investigated for SR-mediated delivery of agonists to cholesterol-trafficking nuclear liver-X receptors. From a diverse feature space of a family of amphiphilic macromolecules of linear and aromatic mucic acid backbones modified with varied aliphatic chains and conjugated with differentially branched poly(ethylene glycol), a key molecule (carboxyl-terminated, C12-derivatized, linear mucic acid backbone) was selected for its ability to preferentially bind scavenger receptor A (SR-A) as the key target. At a basal level, this macromolecule suppressed the pro-inflammatory signaling of activated THP-1 macrophages while competitively lowering oxLDL uptake in vitro through scavenger receptor SRA-1 targeting. To further deplete intracellular cholesterol, the core macromolecule structure was exploited to solubilize a hydrophobic small molecule agonist for nuclear Liver-X Receptors, which regulate the efflux of intracellular cholesterol. The macromolecule-encapsulated agonist system was found to reduce oxLDL accumulation by 88% in vitro in comparison to controls. in vivo studies were designed to release the macromolecules (with or without encapsulated agonist) to injured carotid arteries within Sprague Dawley rats fed a high fat diet, conditions that yield enhanced cholesterol accumulation and macrophage recruitment. The macromolecules lowered intimal levels of accumulated cholesterol (50% for macromolecule alone; 70% for macromolecule-encapsulated agonist) and inhibited macrophage retention (92% for macromolecule; 96% for macromolecule-encapsulated agonist; 4 days) relative to non-treated controls. Thus, this study highlights the promise of designing bioactive macromolecule therapeutics based on scavenger receptor targeting, for potential management of vascular arterial disease.
Collapse
|
33
|
Lewis DR, Kamisoglu K, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:400-20. [PMID: 21523920 DOI: 10.1002/wnan.145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the atheroinflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to atheroinflammatory lesions and atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|