1
|
Li X, Zhou Y, Chen H, Guo Z, Zhang J, Chen W. Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants. PLANT CELL REPORTS 2025; 44:38. [PMID: 39864032 DOI: 10.1007/s00299-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025]
Abstract
KEY MESSAGE The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies. In this study, we focused on the roles of SDE4310, SDE4435 and SDE4955 in citrus. We found that the expression of SDE4310, SDE4435 and SDE4955 to increase with increasing citrus immune genes CsPR1, CsPR2, CsPR5, CsNPR1, CsRBOHD, CsMAP3K and CsBIK1, suggesting that the level of citrus immunity could be judged by the expression of SDE. To further explore the relationship between these three SDEs and citrus immunity, we established a transient expression system in citrus leaves, using gold nanoparticle-polyethyleneimine (AuNPs-PEI) to deliver recombinant plasmid containing SDE4310, SDE4435 or SDE4955 respectively into citrus leaves. Results showed that SDE4310, SDE4435 and SDE4955 were successfully expressed in citrus leaves using this transient expression system, and found that SDE4310, SDE4435 and SDE4955 could promote the CLas proliferation by decreasing the immune gene expression of the citrus. Additionally, we used AuNPs-PEI to deliver siRNA4310 to citrus cells, significantly reducing the expression of SDE4310 within 3 days. Although the suppression of SDE4310 expression did not inhibit the CLas proliferation, it increased the expression level of CsPR1, CsNPR1 and CsBIK1. This is also the first time that AuNPs-PEI has been found to be able to deliver exogenous plasmids into citrus cells and express the target protein, providing a new method for future studies on citrus HLB.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Hang Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Jinlian Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Fernandes F, Talukdar I, Kowshik M. Cysteamine functionalized gold nanoparticles exhibit high efficiency delivery of genetic materials in embryonic stem cells majorly via clathrin mediated endocytosis. Int J Pharm 2024; 667:124928. [PMID: 39521158 DOI: 10.1016/j.ijpharm.2024.124928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Efficient and safe gene delivery is vital for genetic manipulation of stem cells for regenerative medicine. Gold nanoparticles have been used for various biomedical applications in the past, and are currently being researched as transfection agents. In this study, we report a simple one-pot synthesis of positively charged gold nanoparticles functionalized with cysteamine. The nanoparticles exhibit no cytotoxicity and can bind to both plasmid DNA (pDNA) as well as small interference RNA (siRNA). We observed that a five fold lower concentration of pDNA was sufficient for achieving comparable overexpression as that of a commercial transfection agent. We also observed that about 70 % transient silencing of the target gene was achieved with only 25 nM siRNA delivered by our nano-vehicle. To better understand the fate of the nanoparticle, we attempted to identify its uptake mechanism. The results indicate that while all the mechanisms contribute to the uptake, the clathrin-dependent pathway plays a major role. This is the first study on understanding the mechanism of uptake of CA-AuNPs conjugated to pDNA by embryonic stem cells. This is also the first study, where a successful transfection using gold based nanoparticles has been achieved in ESCs at a concentration as low as 0.5 µg/ml for pDNA and 25ƞM siRNA.
Collapse
Affiliation(s)
- Fiona Fernandes
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Indrani Talukdar
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| | - Meenal Kowshik
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| |
Collapse
|
3
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Gustà MF, Edel MJ, Salazar VA, Alvarez-Palomo B, Juan M, Broggini M, Damia G, Bigini P, Corbelli A, Fiordaliso F, Barbul A, Korenstein R, Bastús NG, Puntes V. Exploiting endocytosis for transfection of mRNA for cytoplasmatic delivery using cationic gold nanoparticles. Front Immunol 2023; 14:1128582. [PMID: 37228592 PMCID: PMC10205015 DOI: 10.3389/fimmu.2023.1128582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Gene therapy holds promise to cure various diseases at the fundamental level. For that, efficient carriers are needed for successful gene delivery. Synthetic 'non-viral' vectors, as cationic polymers, are quickly gaining popularity as efficient vectors for transmitting genes. However, they suffer from high toxicity associated with the permeation and poration of the cell membrane. This toxic aspect can be eliminated by nanoconjugation. Still, results suggest that optimising the oligonucleotide complexation, ultimately determined by the size and charge of the nanovector, is not the only barrier to efficient gene delivery. Methods We herein develop a comprehensive nanovector catalogue comprising different sizes of Au NPs functionalized with two different cationic molecules and further loaded with mRNA for its delivery inside the cell. Results and Discussion Tested nanovectors showed safe and sustained transfection efficiencies over 7 days, where 50 nm Au NPs displayed the highest transfection rates. Remarkably, protein expression was increased when nanovector transfection was performed combined with chloroquine. Cytotoxicity and risk assessment demonstrated that nanovectors are safe, ascribed to lesser cellular damage due to their internalization and delivery via endocytosis. Obtained results may pave the way to design advanced and efficient gene therapies for safely transferring oligonucleotides.
Collapse
Affiliation(s)
- Muriel F. Gustà
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michael J. Edel
- Hospital Clínic de Barcelona, Servei Immunologia-IDIBAPS, Barcelona, Spain
- Unit of Anatomy and Embryology, Universitat Autònoma de Barcelona, Faculty of Medicine, Barcelona, Spain
- University of Western Australia, Faculty of Medicine, Discipline of Medical Sciences and Genetics, School of Biomedical Sciences, Perth, WA, Australia
| | - Vivian A. Salazar
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Manel Juan
- Hospital Clínic de Barcelona, Servei Immunologia-IDIBAPS, Barcelona, Spain
| | - Massimo Broggini
- IRCCS‐Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giovanna Damia
- IRCCS‐Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Paolo Bigini
- IRCCS‐Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | - Fabio Fiordaliso
- IRCCS‐Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Alexander Barbul
- Tel Aviv University, Sackler School of Medicine, Tel Aviv-Yafo, Israel
| | - Rafi Korenstein
- Tel Aviv University, Sackler School of Medicine, Tel Aviv-Yafo, Israel
| | - Neus G. Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Víctor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Zhang B, Huang S, Meng Y, Chen W. Gold nanoparticles (AuNPs) can rapidly deliver artificial microRNA (AmiRNA)-ATG6 to silence ATG6 expression in Arabidopsis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03026-5. [PMID: 37160448 DOI: 10.1007/s00299-023-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE We establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality. In plants, the generation of loss-of-function mutants is crucial for studying gene function. Artificial microRNA (AmiRNA) technology is a more targeted and effective tool for gene silencing. Gold nanoparticles (AuNPs) can bind nucleic acids and deliver them into animal cells. Here, AuNPs are used in combination with AmiRNA technology in plants. We found that AmiRNA-autophagy-related proteins (ATG6) can be delivered to cells by AuNPs to achieve the effect of ATG6 silencing. It is worth noting that on the 10th day there is still a silencing effect. Similar to the atg5 lines, silencing of ATG6 significantly reduced plant resistance to Pseudomonas syringae pv.maculicola (Psm) ES4326/AvrRpt2. Interestingly, ATG6 silencing and ATG5 mutation in NPR1-GFP (nonexpressor of pathogenesis-related genes) lines significantly reduced plant resistance to Psm ES4326/AvrRpt2, suggesting that autophagy is also involved in NPR1-regulated plant immune responses. In summary, we establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Hwang YS, So D, Lee M, Yoon J, Reipa V, Tona A, Yi F, Nelson BC, LaVan DA, Hackley VA, Daar IO, Cho TJ. Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: testing in frog embryo teratogenesis assay- Xenopus and mammalian tissue culture system. Nanotoxicology 2023; 17:94-115. [PMID: 36919473 PMCID: PMC10471858 DOI: 10.1080/17435390.2023.2187322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Daeho So
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Moonsup Lee
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jaeho Yoon
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alessandro Tona
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Feng Yi
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David A. LaVan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ira O. Daar
- National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tae Joon Cho
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
7
|
Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities. NANOMATERIALS 2022; 12:nano12091588. [PMID: 35564300 PMCID: PMC9101814 DOI: 10.3390/nano12091588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Water proton spin relaxivities, colloidal stability, and biocompatibility of nanoparticle magnetic resonance imaging (MRI) contrast agents depend on surface-coating ligands. In this study, hydrophilic and biocompatible polyethylenimines (PEIs) of different sizes (Mn = 1200 and 60,000 amu) were used as surface-coating ligands for ultrasmall holmium oxide (Ho2O3) nanoparticles. The synthesized PEI1200- and PEI60000-coated ultrasmall Ho2O3 nanoparticles, with an average particle diameter of 2.05 and 1.90 nm, respectively, demonstrated low cellular cytotoxicities, good colloidal stability, and appreciable transverse water proton spin relaxivities (r2) of 13.1 and 9.9 s−1mM−1, respectively, in a 3.0 T MR field with negligible longitudinal water proton spin relaxivities (r1) (i.e., 0.1 s−1mM−1) for both samples. Consequently, for both samples, the dose-dependent contrast changes in the longitudinal (R1) and transverse (R2) relaxation rate map images were negligible and appreciable, respectively, indicating their potential as efficient transverse T2 MRI contrast agents in vitro.
Collapse
|
8
|
Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021; 14:53. [PMID: 35056949 PMCID: PMC8781941 DOI: 10.3390/pharmaceutics14010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has emerged as a promising treatment strategy in gene therapy, especially against diseases such as cancer. Gold nanoparticles (AuNPs) are regarded as favorable gene delivery vehicles due to their low toxicity, ease of synthesis and ability to be functionalized. This study aimed to prepare functionalized AuNPs (FAuNPs) and evaluate their folate-targeted and nontargeted pCMV-Luc-DNA delivery in breast cancer cells in vitro. CS was added to induce stability and positive charges to the AuNPs (Au-CS), histidine (Au-CS-His) to enhance endosomal escape and folic acid for folate-receptor targeting (Au-CS-FA-His). The FAuNP:pDNA nanocomplexes possessed favorable sizes (<135 nm) and zeta potentials (<-20 mV), strong compaction efficiency and were capable of pDNA protection against nuclease degradation. These nanocomplexes showed minimal cytotoxicity (>73% cell viability) and enhanced transgene activity. The influence of His was notable in the HER2 overexpressing SKBR3 cells, which produced higher gene expression. Furthermore, the FA-targeted nanocomplexes enhanced receptor-mediated endocytosis, especially in MCF-7 cells, as confirmed by the receptor competition assay. While the role of His may need further optimization, the results achieved suggest that these FAuNPs may be suitable gene delivery vehicles for breast cancer therapeutics.
Collapse
Affiliation(s)
- Calrin Joseph
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Sooboo Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| |
Collapse
|
9
|
Kim HJ, Lee S, Park JM, Cho HB, Park JI, Park JS, Park KH. Development of a three-layer consecutive gene delivery system for enhanced bone regeneration. Biomaterials 2021; 277:121104. [PMID: 34478934 DOI: 10.1016/j.biomaterials.2021.121104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022]
Abstract
This study developed a three-layer consecutive gene delivery system (T-CGDS) for timely gene delivery into human mesenchymal stem cells (hMSCs). The timing of transcription factor expression is important to effectively induce bone differentiation. Therefore, a three-layered nanocomposite was fabricated using differently sized gold nanoparticles to promote bone regeneration and osteogenic differentiation. The core layer comprised 80 nm gold nanoparticles coupled with ATF4 pDNA. Following coating with heparin-conjugated Pluronic F-127 (HP-F127), 50 nm gold nanoparticles coupled with SP7 pDNA were added to fabricate a bi-layer system. After further coating with HP-F127, 20 nm gold nanoparticles combined with RUNX2 pDNA were added. Consequently, a T-CGDS measuring 350-450 nm was fabricated. Genes were released for more than 8 days, while the size of the T-CGDS decreased over time. When the T-CGDS was applied to hMSCs, the gene in the outer layer (RUNX2) was expressed first, followed by those in the middle (SP7) and core (ATF4) layers. The T-CGDS effectively induced bone differentiation and regeneration in vitro and in vivo. Timely delivery of the ATF4 gene to stem cells via the T-CGDS can greatly assist osteogenic differentiation involved in bone regeneration.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Sujin Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Jong Min Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| |
Collapse
|
10
|
Ozcicek I, Aysit N, Cakici C, Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112308. [PMID: 34474859 DOI: 10.1016/j.msec.2021.112308] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles are emerging as promising nanomaterials to create nanoscale therapeutic delivery systems. The aim of the study was to synthesis of highly monodisperse and stable gold nanoparticles functionalized with polyethyleneimine (PEI) and polyethylene glycol (PEG), multiparametric investigation of their neuronal toxicological effects and evaluation of the cellular/suborgan biodistribution. Gold nanoparticles (AuNP20 and AuNP50) were synthesized and their surfaces were electrostatically modified by PEI and PEG. Dorsal root ganglion (DRG) sensory neurones were isolated from BALB/c mice. Cell viability, apoptosis and ROS production were evaluated in vitro. Cellular and suborgan biodisribution of the AuNPs were investigated using inductively coupled plasma mass spectrometry (ICP-MS) technique. PEI and PEG surface coating increased both biocompatibility and biodistribution of the AuNPs. ICP-MS measurements showed the presence of gold in liver, spleen, kidney, heart, blood and brain within a 30 days period. The size and surface chemistry of the AuNPs are important parameters for potential nanoteranostic applications in the future studies.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
11
|
Yu Z, Cao W, Gao X, Aleem MT, Liu J, Luo J, Yan R, Xu L, Song X, Li X. With Chitosan and PLGA as the Delivery Vehicle, Toxoplasma gondii Oxidoreductase-Based DNA Vaccines Decrease Parasite Burdens in Mice. Front Immunol 2021; 12:726615. [PMID: 34512659 PMCID: PMC8430031 DOI: 10.3389/fimmu.2021.726615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasitic protozoan that can cause serious public health problems. However, there is no effectively preventive or therapeutic strategy available for human and animals. In the present study, we developed a DNA vaccine encoding T. gondii oxidoreductase from short-chain dehydrogenase/reductase family (TgSDRO-pVAX1) and then entrapped in chitosan and poly lactic-co-glycolic acid (PLGA) to improve the efficacy. When encapsulated in chitosan (TgSDRO-pVAX1/CS nanospheres) and PLGA (TgSDRO-pVAX1/PLGA nanospheres), adequate plasmids were loaded and released stably. Before animal immunizations, the DNA vaccine was transfected into HEK 293-T cells and examined by western blotting and laser confocal microscopy. Th1/Th2 cellular and humoral immunity was induced in immunized mice, accompanied by modulated secretion of antibodies and cytokines, promoted the maturation and MHC expression of dendritic cells, and enhanced the percentages of CD4+ and CD8+ T lymphocytes. Immunization with TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres conferred significant immunity with lower parasite burden in the mice model of acute toxoplasmosis. Furthermore, our results also lent credit to the idea that TgSDRO-pVAX1/CS and TgSDRO-pVAX1/PLGA nanospheres are substitutes for each other. In general, the current study proposed that TgSDRO-pVAX1 with chitosan or PLGA as the delivery vehicle is a promising vaccine candidate against acute toxoplasmosis.
Collapse
Affiliation(s)
- Zhengqing Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuchen Gao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Prasad SR, Kumar TSS, Jayakrishnan A. Nanocarrier-based drug delivery systems for bone cancer therapy: a review. Biomed Mater 2021; 16. [PMID: 33853043 DOI: 10.1088/1748-605x/abf7d5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Bone cancer is a malignant tumor that originates in the bone and destroys the healthy bone tissues. Of the various types of bone tumors, osteosarcoma is the most commonly diagnosed primary bone malignancy. The standard treatment for primary malignant bone tumors comprises surgery, chemotherapy and radiotherapy. Owing to the lack of proven treatments, different forms of alternative therapeutic approaches have been examined in recent decades. Among the new therapeutic methodologies, nanotechnology-based anticancer therapy has paved the way for new targeted strategies for bone cancer treatment and bone regeneration. They include approaches such as the co-delivery of multiple drug cargoes, the enhancement of their biodistribution and transport properties, normalizing accumulation and the optimization of drug release profiles to overcome shortcomings of the existing therapy. This review examines the standard treatments for osteosarcoma, their lacunae, and the evolving therapeutic strategies based on nanocarrier-mediated combinational drug delivery systems, and future perspectives for osteosarcoma therapy.
Collapse
Affiliation(s)
- S Ram Prasad
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 Kerala, India
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 Tamil Nadu, India
| | - A Jayakrishnan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 Kerala, India
| |
Collapse
|
13
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Cho TJ, Gorham JM, Pettibone JM, Liu J, Tan J, Hackley VA. Parallel Multiparameter Study of PEI-Functionalized Gold Nanoparticle Synthesis for Biomedical Applications: Part 2. Elucidating the Role of Surface Chemistry and Polymer Structure in Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14058-14069. [PMID: 33170723 DOI: 10.1021/acs.langmuir.0c02630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elucidating the polyethyleneimine (PEI) chemistry to predictively and reproducibly synthesize gold nanoparticle (AuNP)-PEI conjugates with desired properties has been elusive despite evaluation in numerous studies and reported enhanced properties. The lack of reproducible methods to control the core size and stability has led to contradictory results for performance and safety; thus, advancement of the conjugate platform for commercial use has likely been hindered. Recently, we reported a robust, reproducible method for synthesizing PEI-functionalized AuNPs (Au-PEIs), providing an opportunity to investigate structure-function relationships and to further investigate synthesis parameters affecting performance, where only materials stable in biological media are candidates for use. The properties of Au-PEIs prepared by the optimized reduction of HAuCl4 using four different structural variants of PEI changed significantly with the PEI molar mass and backbone form (branched or linear). In the present study using our previously reported synthesis procedure, comprehensive analysis of properties such as size distribution, surface plasmon resonance (SPR), morphological state, surface functionality, and the shelf life has been systematically evaluated to elucidate the role of surface chemistry and reactive groups involved in conjugation, as a function of conjugate size and morphology. Being important for commercial adoption, the chemistry was related to the observed colloidal stability of the product in relevant media, including exposure to physiological variables such as salt, pH, proteins, and thermal changes. Overall, this work advances progress toward smart design of engineered nanoscale drug delivery systems and devices by providing unreported details of contributions affecting formation, stability, and fate.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jingyu Liu
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jiaojie Tan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
15
|
Panday R, Abdalla AME, Miao Y, Li X, Neupane M, Ouyang C, Yang G. Polyethylenimine-coated gold-magnetic nanoparticles for ADAM10 siRNA delivery in prostate cancer cells. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520960507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For an effective medical application of therapeutic siRNA, a safe and an efficient delivery system are required. Herein, magnetic nanoparticles (MNPs) have been successfully used as siRNA delivery vehicles. Firstly, MNPs were coated with gold (Au) nanoparticles and then capped with PEI. To improve the biocompatibility of nanoparticles, hyaluronic acid (HA) was coated onto the surface of PEI-Au/Fe nanoparticles. The prepared HA-PEI-Au/Fe3O4 nanoparticles were characterized and found to be uniform and well segregated in TEM analysis. FTIR analysis confirmed that HA was successfully conjugated to PEI. The polymer content in these nanoparticles was relatively higher than PEG coated nanoparticles. Cell viability assay demonstrated that the nanoparticles were relatively biocompatible in nature. ADAM10 siRNA was loaded into the HA-PEI-Au/Fe3O4 nanoparticles and cytotoxicity to prostate cancer (PC3) cells was analyzed. The results indicate that ADAM10 siRNA loaded HA-PEI-Au/Fe3O4 suppress the PC3 cells growth in vitro. Clearly, it could be confirmed that HA-PEI coated Au/Fe3O4 nanoparticles with higher biocompatibility appear to be suitable for intracellular siRNA delivery.
Collapse
Affiliation(s)
- Raju Panday
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Biology Unit, National Forensic Science Laboratory, Kathmandu, Nepal
| | - Ahmed ME Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Manisha Neupane
- Department of Biotechnology, National Institute of Science and Technology, Kathmandu, Nepal
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Ultrastructural Features of Gold Nanoparticles Interaction with HepG2 and HEK293 Cells in Monolayer and Spheroids. NANOMATERIALS 2020; 10:nano10102040. [PMID: 33081137 PMCID: PMC7650816 DOI: 10.3390/nano10102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Use of multicellular spheroids in studies of nanoparticles (NPs) has increased in the last decade, however details of NPs interaction with spheroids are poorly known. We synthesized AuNPs (12.0 ± 0.1 nm in diameter, transmission electron microscopy (TEM data) and covered them with bovine serum albumin (BSA) and polyethyleneimine (PEI). Values of hydrodynamic diameter were 17.4 ± 0.4; 35.9 ± 0.5 and ±125.9 ± 2.8 nm for AuNPs, AuBSA-NPs and AuPEI-NPs, and Z-potential (net charge) values were −33.6 ± 2.0; −35.7 ± 1.8 and 39.9 ± 1.3 mV, respectively. Spheroids of human hepatocarcinoma (HepG2) and human embryo kidney (HEK293) cells (Corning ® spheroid microplates CLS4515-5EA), and monolayers of these cell lines were incubated with all NPs for 15 min–4 h, and fixed in 4% paraformaldehyde solution. Samples were examined using transmission and scanning electron microscopy. HepG2 and HEK2893 spheroids showed tissue-specific features and contacted with culture medium by basal plasma membrane of the cells. HepG2 cells both in monolayer and spheroids did not uptake of the AuNPs, while AuBSA-NPs and AuPEI-NPs readily penetrated these cells. All studied NPs penetrated HEK293 cells in both monolayer and spheroids. Thus, two different cell cultures maintained a type of the interaction with NPs in monolayer and spheroid forms, which not depended on NPs Z-potential and size.
Collapse
|
17
|
Coria‐Oriundo LL, Ceretti H, Roupioz Y, Battaglini F. Redox Polyelectrolyte Modified Gold Nanoparticles Enhance the Detection of Adenosine in an Electrochemical Split‐Aptamer Assay. ChemistrySelect 2020. [DOI: 10.1002/slct.202002488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lucy L. Coria‐Oriundo
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Facultad de Ciencias Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima 25, Perú
| | - Helena Ceretti
- Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150 B1613GSX, Los Polvorines, Prov. de Buenos Aires Argentina
| | - Yoann Roupioz
- Univ. Grenoble Alpes CNRS CEA SyMMES 38000 Grenoble France
| | - Fernando Battaglini
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
18
|
Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. NANOMATERIALS 2020; 10:nano10061183. [PMID: 32560474 PMCID: PMC7353451 DOI: 10.3390/nano10061183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70–80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.
Collapse
|
19
|
Lei WX, An ZS, Zhang BH, Wu Q, Gong WJ, Li JM, Chen WL. Construction of gold-siRNA NPR1 nanoparticles for effective and quick silencing of NPR1 in Arabidopsis thaliana. RSC Adv 2020; 10:19300-19308. [PMID: 35515443 PMCID: PMC9054099 DOI: 10.1039/d0ra02156c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, gold nanoparticles (AuNPs) have been widely used as gene silencing agents and therapeutics for treatment of cancers due to their high transfection efficiency and lack of cytotoxicity, but their roles in gene silencing in plants have not yet been reported. Here, we report synthesis of AuNPs-branched polyethylenimine and its integration with the small interfering RNAs (siRNA) of NPR1 to form a AuNPs-siRNANPR1 compound. Our results showed that AuNPs-siRNANPR1 was capable of infiltrating into Arabidopsis cells. AuNPs-siRNANPR1 silenced 80% of the NPR1 gene in Arabidopsis. Bacteriostatic and ion leakage experiments suggest that the NPR1 gene in Arabidopsis leaves was silenced by AuNPs-siRNANPR1. In Columbia-0 plants, compared with the control group treated with buffer solution, the AuNPs-siRNANPR1 treatment significantly increased the number of colonies and cell death, and the leaves turned yellow, similar to the phenotype of the npr1 leaves. These results indicated this AuNPs-siRNANPR1 silencing the NPR1 gene method is simple, effective and quick (3 days), and a powerful tool to study gene functions in plants. Gold nanoparticles (AuNPs) have been widely used as gene silencing agents and therapeutics for treatment due to their high transfection efficiency and lack of cytotoxicity, but their roles in gene silencing in plants have not yet been reported.![]()
Collapse
Affiliation(s)
- Wen-Xue Lei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Zi-Shuai An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Bai-Hong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Qian Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Wen-Jun Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Jin-Ming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Wen-Li Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| |
Collapse
|
20
|
Akturk O. Colloidal stability and biological activity evaluation of microbial exopolysaccharide levan-capped gold nanoparticles. Colloids Surf B Biointerfaces 2020; 192:111061. [PMID: 32361377 DOI: 10.1016/j.colsurfb.2020.111061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
The main objectives of this study were to explore the suitability of the exopolysaccharide levan, biosynthesized by Bacillus subtilis, to aid in the formation of gold nanoparticles (AuNPs) and to investigate the colloidal stability and in vitro biological activity of this biopolymer-AuNPs complex. AuNPs (mainly spherical, 8-10 nm-sized, and monodispersed) were successfully synthesized in levan concentrations up to 0.5% w/v (L-AuNP0.5) while exposed to ultraviolet C (UVC) irradiation. The increase of levan quantity decreased the size of AuNPs according to Transmission Electron Microscopy (TEM) images and enhanced the colloidal stability significantly. The presence of L-AuNP0.5 at the highest treatment dose (1000 μg/mL) exhibited substantial cytotoxicity towards L-929 mouse fibroblasts for all incubation periods. Dose-dependent toxicity was observed for the first day while, after this threshold value, medium (100 μg/mL) and the lowest (10 μg/mL) treatment doses were non-cytotoxic during 7 days of incubation, implying dose and time-independent cell viabilities (> 95%) compared to the negative control (complete cell culture medium). There occurred a special surface interaction with cells and L-AuNP0.5, especially when the cells were subjected to deliberate starvation periods to increase L-AuNP0.5 internalization via passive and active endocytosis. Scanning Electron Microscopy (SEM) images showed high accumulation of L-AuNP0.5 around or inside the cell membrane after 7 days. Overall, this attribute (high uptake of L-AuNP0.5) could make them promising candidates for prospective cancer therapeutics or drug delivery systems by enabling the cell internalization of anticancer drugs.
Collapse
Affiliation(s)
- Omer Akturk
- Department of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale, Turkey.
| |
Collapse
|
21
|
Mao W, Kim SR, Yoo HS. Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation. RSC Adv 2020; 10:37040-37049. [PMID: 35521231 PMCID: PMC9057053 DOI: 10.1039/d0ra06622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022] Open
Abstract
Gold nanoparticles (AuNPs) are the predominant and representative metal nano-carriers used for the tumor-targeted delivery of therapeutics because they possess advantages such as biocompatibility, high drug loading efficiency, and enhanced accumulation at tumor sites via the size-dependent enhanced permeability and retention (EPR) effect. In this study, we designed an AuNP functionalized with block polymers comprising polyethylenimine and azide group-functionalized poly(ethyl glycol) for the electrostatic incorporation of cytosine–guanine oligonucleotide (CpG ODN) on the surface. The ODN-incorporated AuNPs were cross-linked to gold nanoparticle clusters (AuNCs) via click chemistry using a matrix metalloproteinase (MMP)-2 cleavable peptide linker modified with alkyne groups at both ends. In the presence of Cu(i), azide groups and alkyne groups spontaneously cyclize to form a triazole ring with high fidelity and efficiency, and therefore allow single AuNPs to stack to larger AuNCs for increased EPR effect-mediated tumor targeting. 1H-NMR and Fourier transform infrared spectroscopy revealed the successful synthesis of an azide–PEG-grafted branched polyethylenimine, and the size and morphology of AuNPs fabricated by the synthesized polymer were confirmed to be 4.02 ± 0.45 nm by field emission-transmission electron microscopy. Raman spectroscopy characterization demonstrated the introduction of azide groups on the surface of the synthesized AuNPs. Zeta-potential and gel-retardation analysis of CpG-loaded AuNPs indicated complete CpG sequestration by AuNPs when the CpG : AuNP weight ratio was higher than 1 : 2.5. The clustering process of the CpG-loaded AuNPs was monitored and was demonstrated to be dependent on the alkyne linker-to-AuNP ratio. Thus, the clicked AuNC can be tailored as a gene carrier where a high accumulation of therapeutics is required. AuNPs with bPEI and azide modification are loaded with CpG and self-assembled to AuNCs by click chemistry using an alkyne-terminated MMP-2 cleavable peptide as a linker. The clusters are dissembled by MMP-2 to release CpG in a stimuli-responsive manner.![]()
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Song Rae Kim
- Chuncheon Center
- Korea Basic Science Institute
- Chuncheon
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
22
|
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer 2020; 11:69-82. [PMID: 31892974 PMCID: PMC6930408 DOI: 10.7150/jca.36588] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor mainly occurred in children and adolescence, and chemotherapy is limited for the side effects and development of drug resistance. Advances in nanotechnology and knowledge of cancer biology have led to significant improvements in developing tumor-targeted drug delivery nanocarriers, and some have even entered clinically application. Delivery of chemotherapeutic agents by functionalized smart nanocarriers could protect the drugs from rapid clearance, prolong the circulating time, and increase the drug concentration at tumor sites, thus enhancing the therapeutic efficacy and reducing side effects. Various drug delivery nanocarriers have been designed and tested for osteosarcoma treatment, but most of them are still at experimental stage, and more further studies are needed before clinical application. In this present review, we briefly describe the types of commonly used nanocarriers in osteosarcoma treatment, and discuss the strategies for osteosarcoma-targeted delivery and controlled release of drugs. The application of nanoparticles in the management of metastatic osteosarcoma is also briefly discussed. The purpose of this article is to present an overview of recent progress of nanoscale drug delivery platforms in osteosarcoma, and inspire new ideas to develop more effective therapeutic options.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Zhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Cheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Cai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng-Wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Andreani T, Fangueiro JF, Severino P, Souza ALRD, Martins-Gomes C, Fernandes PMV, Calpena AC, Gremião MP, Souto EB, Silva AM. The Influence of Polysaccharide Coating on the Physicochemical Parameters and Cytotoxicity of Silica Nanoparticles for Hydrophilic Biomolecules Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1081. [PMID: 31357658 PMCID: PMC6723031 DOI: 10.3390/nano9081081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023]
Abstract
The present work reports the effect of polysaccharides (chitosan and sodium alginate) on silica nanoparticles (SiNP) for hydrophilic molecules delivery taking insulin as model drug. The influence of tetraethyl orthosilicate (TEOS) and homogenization speed on SiNP properties was assessed by a 22 factorial design achieving as optimal parameters: 0.43 mol/L of TEOS and homogenization speed of 5000 rpm. SiNP mean particle size (Z-Ave) was of 256.6 nm and polydispersity index (PI) of 0.218. SiNP coated with chitosan (SiNP-CH) or sodium alginate (SiNP-SA) increased insulin association efficacy; reaching 84.6% (SiNP-SA) and 90.8% (SiNP-CH). However, coated SiNP released 50%-60% of the peptide during the first 45 min at acidic environment, while uncoated SiNP only released 30%. Similar results were obtained at pH 6.8. The low Akaike's (AIC) values indicated that drug release followed Peppas model for SiNP-SA and second order for uncoated SiNP and SiNP-CH (pH 2.0). At pH 6.8, the best fitting was Boltzmann for Ins-SiNP. However, SiNP-CH and SiNP-SA showed a first-order behavior. Cytotoxicity of nanoparticles, assessed in Caco-2 and HepG2 cells, showed that 100 to 500 µg/mL SiNP-CH and SiNP-SA slightly decreased cell viability, comparing with SiNP. In conclusion, coating SiNP with selected polysaccharides influenced the nanoparticles physicochemical properties, the insulin release, and the effect of these nanoparticles on cell viability.
Collapse
Affiliation(s)
- Tatiana Andreani
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- CIQUP - Research Center in Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto University, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Joana F Fangueiro
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Avenida Murilo Dantas, Farolândia, Aracaju, Brazil
| | - Ana Luiza R de Souza
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Carlos Martins-Gomes
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Paula M V Fernandes
- CIQUP - Research Center in Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto University, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana C Calpena
- Biopharmacy and Pharmacokinetic Unit, Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Av. Joan XXIII, s/n, 8028 Barcelona, Spain
| | - Maria P Gremião
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.
| | - Amélia M Silva
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
24
|
Li Z, Liu Y, Huang X, Hu C, Wang H, Yuan L, Brash JL, Chen H. One-step preparation of gold nanovectors using folate modified polyethylenimine and their use in target-specific gene transfection. Colloids Surf B Biointerfaces 2019; 177:306-312. [DOI: 10.1016/j.colsurfb.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
25
|
Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A, Inkielewicz-Stepniak I. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:22. [PMID: 30747353 PMCID: PMC6373298 DOI: 10.1007/s10856-019-6221-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/10/2019] [Indexed: 05/21/2023]
Abstract
Due to development of nanotechnology and gold nanoparticles (AuNPs) increasing use in different areas of medicine, especially in oncology, better understanding of their potential cytotoxicity is necessary to protect patients safety. Shape and size of AuNPs is an important modulator of their cytotoxicity. Therefore, we investigated the cytotoxicity of AuNPs rods (≈39 nm length, 18 nm width), AuNPs stars (≈ 215 nm) and AuNPs spheres (≈ 6.3 nm) against human fetal osteoblast (hFOB 1.19), osteosarcoma (143B, MG63) and pancreatic duct cell (hTERT-HPNE) lines by MTT and neutral-red uptake assay. Moreover, influence of AuNPs on level of proapoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) was measured by western blot. Cellular uptake of nanoparticles and ultrastructure changes were examined by transmission electron microscopy (TEM). In the present study we have proven that AuNPs stars are the most cytotoxic against human cells. We observed that cancer cells are more susceptible to AuNPs cytotoxic effect. Furthermore, AuNPs rods and AuNPs stars caused increased expression of Bax and decreased expression of Bcl-2 protein in osteosarcoma cells. We found that AuNPs penetrated through the cell membrane and caused ultrastructural changes. Our results clearly demonstrated that the cytotoxicity of AuNPs was shape-dependent. AuNPs stars with the highest anti-cancer potential were also the most cytotoxic type of tested NPs, whereas AuNPs spheres which appears to be the safest one had small anti-cancer potential.
Collapse
Affiliation(s)
- Karol P Steckiewicz
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Ewelina Barcinska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna Malankowska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | | | - Grzegorz Nowaczyk
- NanoBioMedical Center, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | | |
Collapse
|
26
|
Cho TJ, Gorham JM, Pettibone JM, Liu J, Tan J, Hackley VA. Parallel multi-parameter study of PEI-functionalized gold nanoparticle synthesis for bio-medical applications: part 1-a critical assessment of methodology, properties, and stability. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2019; 21:10.1007/s11051-019-4621-3. [PMID: 32116469 PMCID: PMC7047743 DOI: 10.1007/s11051-019-4621-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Cationic polyethyleneimine (PEI)-conjugated gold nanoparticles (AuNPs) that are chemically and physically stable under physiological conditions are an ideal candidate for certain bio-medical applications, in particular DNA transfection. However, the issue remains in reproducibly generating uniform stable species, which can cause the inadequate characterization of the resulting product under relevant conditions and timepoints. The principal objective of the present study was to develop an optimized and reproducible synthetic route for preparing stable PEI-conjugated AuNPs (Au-PEIs). To achieve this objective, a parallel multi-parametric approach involving a total of 96 reaction studies evaluated the importance of 6 key factors: PEI molar mass, PEI structure, molar ratio of PEI/Au, concentration of reaction mixtures, reaction temperature, and reaction time. Application of optimized conditions exhibited narrow size distributions with characteristic surface plasmon resonance absorption and positive surface charge. The optimized Au-PEI product generated by this study exhibits exceptional stability under a physiological isotonic medium (phosphate-buffered saline) over 48 h and shelf-life in ambient condition without any significant change or sedimentation for at least 6 months. Furthermore, the optimized Au-PEI product was highly reproducible. Contributions from individual factors were elucidated using a broad and orthogonal characterization suite examining size and size distribution, optical absorbance, morphological transformation (agglomeration/aggregation), surface functionalities, and stability. Overall, this comprehensive multi-parametric investigation, supported by thorough characterization and rigorous testing, provides a robust foundation for the nanomedicine research community to better synthesize nanomaterials for biomedical use.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jingyu Liu
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jiaojie Tan
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
27
|
Huang H, du Toit H, Panariello L, Mazzei L, Gavriilidis A. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles.
Graphical Abstract:
Collapse
Affiliation(s)
- He Huang
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Hendrik du Toit
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Panariello
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Mazzei
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| |
Collapse
|
28
|
Bouché M, Fournel S, Kichler A, Selvam T, Gallani J, Bellemin‐Laponnaz S. Straightforward Synthesis of L‐PEI‐Coated Gold Nanoparticles and Their Biological Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mathilde Bouché
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Sylvie Fournel
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Antoine Kichler
- Faculté de Pharmacie Université de Strasbourg‐CNRS UMR 7199 74 Route du Rhin, BP 60024 67401 Illkirch Cedex France
| | - Tamilselvi Selvam
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Jean‐Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS ‐ Université de Strasbourg 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
29
|
Ma W, Xie Q, Zhang B, Chen H, Tang J, Lei Z, Wu M, Zhang D, Hu J. Neural Induction Potential and MRI of ADSCs Labeled Cationic Superparamagnetic Iron Oxide Nanoparticle In Vitro. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6268437. [PMID: 29666564 PMCID: PMC5832102 DOI: 10.1155/2018/6268437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 01/28/2023]
Abstract
Magnetic resonance imaging (MRI) combined with contrast agents is believed to be useful for stem cell tracking in vivo, and the aim of this research was to investigate the biosafety and neural induction of SD rat-originated adipose derived stem cells (ADSCs) using cationic superparamagnetic iron oxide (SPIO) nanoparticle which was synthesized by the improved polyol method, in order to allow visualization using in vitro MRI. The scan protocols were performed with T2-mapping sequence; meanwhile, the ultrastructure of labeled cells was observed by transmission electron microscopy (TEM) while the iron content was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). After neural induction, nestin and NSE (neural markers) were obviously expressed. In vitro MRI showed that the cationic PEG/PEI-modified SPIO nanoparticles could achieve great relaxation performance and favourable longevity. And the ICP-AES quantified the lowest iron content that could be detected by MRI as 1.56~1.8 pg/cell. This study showed that the cationic SPIO could be directly used to label ADSCs, which could then inductively differentiate into nerve and be imaged by in vitro MRI, which would exhibit important guiding significance for the further in vivo MRI towards animal models with neurodegenerative disorders.
Collapse
Affiliation(s)
- Weiqiong Ma
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
- Department of Radiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516001, China
| | - Qi Xie
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Baolin Zhang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Huixian Chen
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Jianyi Tang
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Zhengxian Lei
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Minyi Wu
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Dingxuan Zhang
- Medical Imaging Department, Nan Sha Center Hospital, Guangzhou Municipal First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 511457, China
| | - Jiani Hu
- Karmanos Cancer Institute, Wayne State University, 3990 John R. Street, Detroit, MI 48201, USA
| |
Collapse
|
30
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
31
|
Zhang L, Zhou Q, Song W, Wu K, Zhang Y, Zhao Y. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34722-34735. [PMID: 28925678 DOI: 10.1021/acsami.7b12079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Li Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Qing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University , Xi'an 710032, China
| | - Wen Song
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Kaimin Wu
- Department of Stomatology, 401 Military Hospital , Qingdao 266071, China
| | - Yumei Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Yimin Zhao
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| |
Collapse
|
32
|
Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles. Bioorg Med Chem Lett 2017; 27:4288-4293. [PMID: 28838699 DOI: 10.1016/j.bmcl.2017.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy.
Collapse
|
33
|
Li J, Zou S, Gao J, Liang J, Zhou H, Liang L, Wu W. Block copolymer conjugated Au-coated Fe 3O 4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J Nanobiotechnology 2017; 15:56. [PMID: 28743275 PMCID: PMC5526242 DOI: 10.1186/s12951-017-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.
Collapse
Affiliation(s)
- Junbo Li
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Sheng Zou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Jiayu Gao
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Ju Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Huiyun Zhou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Lijuan Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luo Yang, 471023 China
| |
Collapse
|
34
|
Strojan K, Lojk J, Bregar VB, Veranič P, Pavlin M. Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells. Toxicol In Vitro 2017; 41:12-20. [DOI: 10.1016/j.tiv.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/27/2023]
|
35
|
Liao WH, Hsiao MY, Lo CW, Yang HS, Sun MK, Lin FH, Chang Y, Chen WS. Intracellular triggered release of DNA-quaternary ammonium polyplex by ultrasound. ULTRASONICS SONOCHEMISTRY 2017; 36:70-77. [PMID: 28069241 DOI: 10.1016/j.ultsonch.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
2-Methacryloyloxy ethyl trimethyl ammonium chloride (TMA) is a potent polymeric plasma DNA (pDNA) carrier. The present study shows that TMA/pDNA polyplexes could be internalized into cells efficiently, but could not mediate gene transfection on its own. The transfection process of TMA/pDNA polyplexes is turned on only when ultrasound (US) was applied 4-8h after incubating TMA/pDNA polyplexes with target cells (with a gene expression 1000 times that of the immediate US group). US is a widely used physical method for gene delivery; its transfection efficiency can be significantly enhanced when combined with cationic polymer vectors. Traditionally, US is given simultaneously with genetic materials, carriers and microbubbles to exert maximal efficacy. The unique on-off phenomenon of TMA/pDNA polyplexes, controlled by US exposure, was found to relate to the endosomal escape effect of US since the polyplexes colocalized well with the lysosome marker if no US was given or was given at inappropriate times. The proposed delivery system using US and TMA carriers has potential in many pharmaceutical applications requiring precise temporal and spatial release control.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yen Hsiao
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Shan Yang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chong-Li, Taiwan
| | - Ming-Kuan Sun
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chong-Li, Taiwan.
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.
| |
Collapse
|
36
|
Ortega-Muñoz M, Giron-Gonzalez MD, Salto-Gonzalez R, Jodar-Reyes AB, De Jesus SE, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F. Polyethyleneimine-Coated Gold Nanoparticles: Straightforward Preparation of Efficient DNA Delivery Nanocarriers. Chem Asian J 2016; 11:3365-3375. [PMID: 27685032 DOI: 10.1002/asia.201600951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/09/2016] [Indexed: 11/10/2022]
Abstract
A novel one-pot method for the synthesis of polyethyleneimine (PEI)-coated gold nanoparticles (AuPEI-NPs) that combines the reductant-stabilizer properties of PEI with microwave irradiation starting from hydrogen tetrachloroaurate acid (HAuCl4 ) and branched PEI 25 kDa (b25kPEI) was explored. The method was straightforward, green, and low costing, for which the Au/PEI ratio (1:1 to 1:128 w/w) was a key parameter to modulate their capabilities as DNA delivery nanocarriers. Transfection assays in CHO-k1 cells demonstrated that AuPEI-NPs with 1:16 and 1:32 w/w ratios behaved as effective DNA gene vectors with improved transfection efficiencies (twofold) and significantly lower toxicity than unmodified b25kPEI and Lipofectamine 2000. The transfection mediated by these AuPEI-NP-DNA polyplexes preferentially used the caveolae-mediated route for intracellular internalization, as shown by studies performed by using specific internalization inhibitors as well as colocalization with markers of clathrin- and caveolae-dependent pathways. The AuPEI-NP polyplexes preferentially used the more efficient caveolae internalization pathway to promote transfection, a fact that supports their higher transfection efficiency relative to that of Lipofectamine 2000. In addition, intracellular trafficking of the AuPEI-NPs was studied by transmission electron microscopy.
Collapse
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - M Dolores Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Ana Belen Jodar-Reyes
- Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Samantha E De Jesus
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - F Javier Lopez-Jaramillo
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| |
Collapse
|
37
|
Das J, Choi YJ, Yasuda H, Han JW, Park C, Song H, Bae H, Kim JH. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 2016; 6:33784. [PMID: 27677463 PMCID: PMC5039411 DOI: 10.1038/srep33784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023] Open
Abstract
The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications.
Collapse
Affiliation(s)
- Joydeep Das
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hideyo Yasuda
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hojae Bae
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
38
|
Balderas Altamirano MA, Camacho R, Pérez E, Goicochea AG. Adsorption of polyelectrolytes on silica and gold surfaces. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1194496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - R. Camacho
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - E. Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
- Doctorado Institucional en Ingeniería y Ciencia de Materiales (DICIM-UASLP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - A. Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Estado de México, Mexico
| |
Collapse
|
39
|
Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1782-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Abstract
The delivery of genetic materials into cells to elicit cellular response has been extensively studied by biomaterials scientists globally.
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - Tung-Chun Lee
- UCL Institute for Materials Discovery and Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Qingqing Dou
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - G. Roshan Deen
- Soft Materials Laboratory
- Natural Sciences and Science Education
- National Institute of Education
- Nanyang Technological University
- 637616 Singapore
| |
Collapse
|
41
|
Zhou B, Shen M, Bányai I, Shi X. Structural characterization of PEGylated polyethylenimine-entrapped gold nanoparticles: an NMR study. Analyst 2016; 141:5390-7. [DOI: 10.1039/c6an00841k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The internal spatial structures of PEGylated polyethylenimine-entrapped gold nanoparticles can be effectively analyzed via advanced NMR techniques.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - István Bányai
- Department of Colloid and Environmental Chemistry
- University of Debrecen
- Debrecen
- Hungary
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
42
|
Silva TR, Vieira IC. A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 2016; 141:216-24. [DOI: 10.1039/c5an01784j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new biosensor for dopamine determination based on laccase immobilized in gold nanoparticles is reported.
Collapse
Affiliation(s)
- Tânia Regina Silva
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
43
|
Shi W, Liu X, Wei C, Xu ZJ, Sim SSW, Liu L, Xu C. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles. NANOSCALE 2015; 7:17249-17253. [PMID: 26425826 DOI: 10.1039/c5nr05459a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.
Collapse
Affiliation(s)
- Wei Shi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | | | | | |
Collapse
|
44
|
Cho TJ, Pettibone JM, Gorham JM, Nguyen TM, MacCuspie RI, Gigault J, Hackley VA. Unexpected Changes in Functionality and Surface Coverage for Au Nanoparticle PEI Conjugates: Implications for Stability and Efficacy in Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7673-7683. [PMID: 26114747 DOI: 10.1021/acs.langmuir.5b01634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic polyethylenimine conjugated gold nanoparticles (AuNP-PEI) are a widely studied vector for drug delivery and an effective probe for interrogating NP-cell interactions. However, an inconsistent body of literature currently exists regarding the reproducibility of physicochemical properties, colloidal stability, and efficacy for these species. To address this gap, we systematically examined the preparation, stability, and formation mechanism of PEI conjugates produced from citrate-capped AuNPs. We considered the dependence on relative molar mass, Mr, backbone conformation, and material source. The conjugation mechanism of Au-PEI was probed using attenuated total reflectance FTIR and X-ray photoelectron spectroscopy, revealing distinct fates for citrate when interacting with different PEI species. The differences in residual citrate, PEI properties, and sample preparation resulted in distinct products with differentiated stability. Overall, branched PEI (25 kDa) conjugates exhibited the greatest colloidal stability in all media tested. By contrast, linear PEI (25 kDa) induced agglomeration. Colloidal stability of the products was also observed to correlate with displaced citrate, which supports a glaring knowledge gap that has emerged regarding the role of this commonly used carboxylate species as a "place holder" for conjugation with ligands of broad functionalities. We observed an unexpected and previously unreported conversion of amine functional groups to quaternary ammonium species for 10 kDa branched conjugates. Results suggest that the AuNP surface catalyzes this conversion. The product is known to manifest distinct processes and uptake in biological systems compared to amines and may lead to unintentional toxicological consequences or decreased efficacy as delivery vectors. Overall, comprehensive physicochemical characterization (tandem spectroscopy methods combined with physical measurements) of the conjugation process provides a methodology for elucidating the contributing factors of colloidal stability and chemical functionality that likely influence the previously reported variations in conjugate properties and biological response models.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thao M Nguyen
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Robert I MacCuspie
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Julien Gigault
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
45
|
Kozytskiy AV, Raevskaya AE, Stroyuk OL, Kotenko IE, Skorik NA, Kuchmiy SY. Morphology, optical and catalytic properties of polyethyleneimine-stabilized Au nanoparticles. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
He XC, Lin M, Li F, Sha BY, Xu F, Qu ZG, Wang L. Advances in studies of nanoparticle–biomembrane interactions. Nanomedicine (Lond) 2015; 10:121-41. [DOI: 10.2217/nnm.14.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) are widely applied in nanomedicine and diagnostics based on the interactions between NPs and the basic barrier (biomembrane). Understanding the underlying mechanism of these interactions is important for enhancing their beneficial effects and avoiding potential nanotoxicity. Experimental, mathematical and numerical modeling techniques are involved in this field. This article reviews the state-of-the-art techniques in studies of NP–biomembrane interactions with a focus on each technology's advantages and disadvantages. The aim is to better understand the mechanism of NP–biomembrane interactions and provide significant guidance for various fields, such as nanomedicine and diagnosis.
Collapse
Affiliation(s)
- Xiao Cong He
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Fei Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Department of Chemistry, School of Sciences, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Bao Yong Sha
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- Institute of Basic Medical Science, Xi’an Medical University, Xi’an 710021, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Zhi Guo Qu
- Key Laboratory of Thermo-Fluid Science & Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, PR China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
47
|
Dong H, Parekh HS, Xu ZP. Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. J Colloid Interface Sci 2015; 437:10-16. [DOI: 10.1016/j.jcis.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
|
48
|
Tay CY, Menon N, Leong DT, Tan LP. Molecular Architecture Governs Cytotoxicity and Gene Transfection Efficacy of Polyethylenimine Based Nanoplexes in Mammalian Cell Lines. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0135-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Salaam AD, Hwang PTJ, Poonawalla A, Green HN, Jun HW, Dean D. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. NANOTECHNOLOGY 2014; 25:425103. [PMID: 25277401 DOI: 10.1088/0957-4484/25/42/425103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enhancing therapeutic efficacy is essential for successful treatment of chemoresistant cancers such as metastatic hormone-refractory prostate cancer (HRPC). To improve the efficacy of doxorubicin (DOX) for treating chemoresistant disease, the feasibility of using nanodiamond (ND) particles was investigated. Utilizing the pH responsive properties of ND, a novel protocol for complexing NDs and DOX was developed using a pH 8.5 coupling buffer. The DOX loading efficiency, loading on the NDs, and pH responsive release characteristics were determined utilizing UV-Visible spectroscopy. The effects of the ND-DOX on HRPC cell line PC3 were evaluated with MTS and live/dead cell viability assays. ND-DOX displayed exceptional loading efficiency (95.7%) and drug loading on NDs (23.9 wt%) with optimal release at pH 4 (80%). In comparison to treatment with DOX alone, cell death significantly increased when cells were treated with ND-DOX complexes demonstrating a 50% improvement in DOX efficacy. Of the tested treatments, ND-DOX with 2.4 μg mL(-1) DOX exhibited superior efficacy (60% cell death). ND-DOX with 1.2 μg mL(-1) DOX achieved 42% cell death, which was comparable to cell death in response to 2.4 μg mL(-1) of free DOX, suggesting that NDs aid in decreasing the DOX dose necessary to achieve a chemotherapeutic efficacy. Due to its enhanced efficacy, ND-DOX can be used to successfully treat HRPC and potentially decrease the clinical side effects of DOX.
Collapse
Affiliation(s)
- Amanee D Salaam
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
50
|
Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:31-7. [DOI: 10.1016/j.msec.2014.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/30/2014] [Accepted: 05/06/2014] [Indexed: 11/15/2022]
|