1
|
Yu H, Liu H, Shen Y, Ao Q. Synthetic biodegradable polymer materials in the repair of tumor-associated bone defects. Front Bioeng Biotechnol 2023; 11:1096525. [PMID: 36873359 PMCID: PMC9978220 DOI: 10.3389/fbioe.2023.1096525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
The repair and reconstruction of bone defects and the inhibition of local tumor recurrence are two common problems in bone surgery. The rapid development of biomedicine, clinical medicine, and material science has promoted the research and development of synthetic degradable polymer anti-tumor bone repair materials. Compared with natural polymer materials, synthetic polymer materials have machinable mechanical properties, highly controllable degradation properties, and uniform structure, which has attracted more attention from researchers. In addition, adopting new technologies is an effective strategy for developing new bone repair materials. The application of nanotechnology, 3D printing technology, and genetic engineering technology is beneficial to modify the performance of materials. Photothermal therapy, magnetothermal therapy, and anti-tumor drug delivery may provide new directions for the research and development of anti-tumor bone repair materials. This review focuses on recent advances in synthetic biodegradable polymer bone repair materials and their antitumor properties.
Collapse
Affiliation(s)
- Honghao Yu
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Haifeng Liu
- Departments of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Shen
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial and Institute of Regulatory Science for Medical Device and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Gao X, Al-Baadani MA, Wu M, Tong N, Shen X, Ding X, Liu J. Study on the Local Anti-Osteoporosis Effect of Polaprezinc-Loaded Antioxidant Electrospun Membrane. Int J Nanomedicine 2022; 17:17-29. [PMID: 35023917 PMCID: PMC8743381 DOI: 10.2147/ijn.s341216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Compared with the healthy condition, osteoporotic bone defects are often accompanied by poor osteogenesis and excessive reactive oxygen species (ROS), which pose serious challenges to bone augmentation and repair by normal resorbable guided bone regeneration (GBR) membrane. Purpose Polaprezinc (PZ) was loaded into polycaprolactone/gelatin (PG) hybrid electrospun nanofibers to fabricate a GBR membrane with antioxidant and osteogenesis ability. Methods A series of physicochemical characterization were performed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and water contact angle measurement. In addition to membrane degradation and PZ release detection, membranes were tested for cell viability, differentiation, and protein expression in MC3T3-E1 cells by CCK8, alkaline phosphatase activity, mineralization, and Western blotting assays. The membrane osteogenic capacity in cranial bone defects was studied by micro-CT in vivo. Results PZ was successfully doped into the PCL/GEL nanofibers to form a hydrophilic GBR membrane. The cumulative release of PZ was closely related to the membrane degradation behavior. PG/0.4%PZ membranes produced the best protective effect on cell proliferation/differentiation under oxidative stress microenvironment; however, the PG/0.8%PZ membrane was cytotoxic. Western blotting demonstrated that the PZ-loaded membrane upregulated the Nrf2/HO-1/SOD1 signaling molecules in a concentration-dependent manner. In addition, micro-CT results showed an abundant formation of new bones in the PG/0.4%PZ group compared to the PG group. Conclusion PZ-loaded degradable PG membranes (especially PG/0.4%PZ) have great potential to accelerate bone regeneration in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Xue Gao
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Mohammed A Al-Baadani
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Minjie Wu
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Ningyang Tong
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
3
|
Chen W, Xie G, Lu Y, Wang J, Feng B, Wang Q, Xu K, Bao J. An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials 2021; 280:121260. [PMID: 34823885 DOI: 10.1016/j.biomaterials.2021.121260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
An increasing number of works have highlighted the importance of metal implants surface modification in enhancing bone defect healing through the synergistic osteogenesis-angiogenesis regulation. Studies have shown that pitavastatin has the effect of promoting osteogenesis and angiogenesis. However, how to prepare pitavastatin functionalized implants and how pitavastatin regulates the synergies of osteogenesis and angiogenesis around implants as well as the related mechanisms remain unclear. In the present study, multilayer films with osteogenic and angiogenic properties were constructed on pure titanium substrates via the layer-by-layer assembly of pitavastatin-loaded β-cyclodextrin grafted chitosan and gelatin. In vitro experiments demonstrated that locally applied pitavastatin could dramatically enhance osteogenic potential of mesenchymal stem cells (MSCs) and angiogenic potential of endothelial cells (ECs). Moreover, pitavastatin loaded multilayer films could regulate the paracrine signaling mediated crosstalk between MSCs and ECs, and indirectly increase the angiogenic potential of MSCs and osteogenic potential of ECs via multiple paracrine signaling. The results of subcutaneous and femur implantation confirmed that locally released pitavastatin had potentially triggered a chain of biological events: mobilizing endogenous stem cells and ECs to the implant-bone interface, in turn facilitating coupled osteogenesis and angiogenesis, and eventually enhancing peri-implant osseointegration. This study enlarges the application scope of pitavastatin and provides an optional choice for developing a multifunctional bioactive coating on the surfaces of mental implants.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China.
| | - Guoliang Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Yang Lu
- Department of Orthopedics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Baihuan Feng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Qi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| | - Kui Xu
- Institute of Biomedical Engineering, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, PR China; The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, PR China.
| | - Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, PR China
| |
Collapse
|
4
|
Zhao R, Shi L, Gu L, Qin X, Song Z, Fan X, Zhao P, Li C, Zheng H, Li Z, Wang Q. Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: In vitro bioactivity and antibacterial activity. J Appl Biomater Funct Mater 2021; 19:22808000211040910. [PMID: 34465222 DOI: 10.1177/22808000211040910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of bioactive glass scaffolds doped with SrO or ZnO (0, 5, and 10 mol%) were synthesized by the foam replica and melting method. The thermodynamic evolution, phase composition, microstructure, ion release, in vitro bioactivity, and oxygen density of the scaffolds were characterized. The proliferation of murine long bone osteocyte Y4 cells was studied by cell culture. The survival rate of the BGs evaluated the antibacterial activity and Escherichia coli strains in co-culture. The results indicated that the process window decreases with the increase of dopants. All the samples have a pore structure size of 200-400 μm. When the scaffolds were immersed in simulated body fluid for 28 days, hydroxyapatite formation was not affected, but the degradation process was retarded. The glass network packing and ionic radii variations of the substitution ions control surface degradation, glass dissolution, and ion release. MTT results revealed that 5Sr-BG had a significant effect on promoting cell proliferation and none of the BGs were cytotoxicity. Sr-BGs and Zn-BGs exhibited significantly inhibited growth against E. coli bacterial strains. Generally, these results showed the 5Sr-BG scaffold with high vitro bioactivity, cell proliferation, and antibacterial property is an important candidate material for bone tissue regeneration and repair.
Collapse
Affiliation(s)
- Rui Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lifen Shi
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu, China.,(CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Lin Gu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xusheng Qin
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Zaizhi Song
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Xiaoyun Fan
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ping Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changqing Li
- Silica-Based Materials Laboratory of Anhui Province, Bengbu, China
| | - Hailun Zheng
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qizhi Wang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Fenelon M, Etchebarne M, Siadous R, Grémare A, Durand M, Sentilhes L, Catros S, Gindraux F, L'Heureux N, Fricain JC. Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112032. [PMID: 33947534 DOI: 10.1016/j.msec.2021.112032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France.
| | - Marion Etchebarne
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Department of maxillofacial surgery, F-33076 Bordeaux, France
| | - Robin Siadous
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Agathe Grémare
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | - Marlène Durand
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, CIC 1401, 33000, Bordeaux, France; INSERM, CIC 1401, 33000 Bordeaux, France
| | - Loic Sentilhes
- CHU Bordeaux, Department of Obstetrics and Gynecology, F-33076, Bordeaux, France
| | - Sylvain Catros
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, F-25000 Besançon, France; Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | | | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France
| |
Collapse
|
6
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
7
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
8
|
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Behboudi
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Production of Porous Films Based on Biodegradable Polyesters by the Casting Solution Technique Using a Co-Soluble Porogen (Camphor). Polymers (Basel) 2020; 12:polym12091950. [PMID: 32872270 PMCID: PMC7565408 DOI: 10.3390/polym12091950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Porous films have been prepared from degradable polymers-poly-3-hydroxybutyrate (PHB), poly-ε-caprolactone (PCL) and a blend of these polymers (1:3)-by adding porogen (camphor) to the polymer solution at 10%, 30% or 50% of the total mass of the polymer and porogen, and leaching it out afterwards. After the rinse, camphor content in films decreased to about 0.025%. The structure, physical/mechanical and biological properties of the films were investigated as dependent on their composition and porosity, which varied depending on the amount of camphor added. The surface of PHB films was porous, the PCL films were relatively smooth, and the PHB/PCL films had an intermediate structure. The addition of camphor increased the thickness (from 35 to 45 µm, from 40 to 80 µm and from 20 to 65 µm for PHB, PCL and PHB/PCL, respectively) and porosity (from 4.2(±3.6)% to 50.0(±12.8)%, from 6.4(±5.5)% to 54.5(±6.0)% and from 4.9(±4.8)% to 51.5(±5.8)%, respectively) of the films. The introduction (and removal) of 10% camphor into the PHB and PHB/PCL films led to an approximately twofold increase in the polar component of the free surface energy (from 5.4 ± 0.38 to 11.8 ± 1.33 and from 2.7 ± 0.13 to 5.2 ± 0.09 mN/m, respectively) but in other cases, on the contrary, a decrease in this indicator was registered. The increase of camphor addition from 0% to 50% gradually impaired mechanical properties of the films: so, Young's modulus decreased from 3.6 to 1.8 GPa, from 0.30 to 0.12 GPa and from 0.50 to 0.20 GPa for PHB, PCL and PHB/PCL, respectively. At the same time, the water vapor transmission rate considerably increased from 197.37 ± 23.62 to 934.03 ± 114.34 g/m2/d for PHB films; from 1027.99 ± 154.10 to 7014.62 ± 280.81 g/m2/d for PCL films; and from 715.47 ± 50.08 to 4239.09 ± 275.54 g/m2/d for PHB/PCL films. Results of biocompatibility testing in the culture of NIH 3T3 mouse fibroblast cells showed that for the most of experimental samples cell adhesion and proliferation were comparable or superior to the corresponding parameters on the initial nonporous films. The best results were obtained for PHB films where at Day 3 of the experiment the registered cell density for experimental samples arrived at 2.66(±0.26) × 105 cells/cm2 versus 1.29(±0.33) × 105 cells/cm2 in the control. So, the proposed method can be used to construct highly porous cell scaffolds for cellular engineering.
Collapse
|
10
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
11
|
Wen G, Xu J, Wu T, Zhang S, Chai Y, Kang Q, Li G. Functionalized Polycaprolactone/Hydroxyapatite Composite Microspheres for Promoting Bone Consolidation in a Rat Distraction Osteogenesis Model. J Orthop Res 2020; 38:961-971. [PMID: 31777101 DOI: 10.1002/jor.24542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis (DO) is an ideal model to study bone regeneration. The major limitation is the relatively long period required for new bone consolidation. Here, we investigated whether the application of polycaprolactone (PCL) and hydroxyapatite (HA) composite microspheres could enhance bone formation in DO. Pure PCL microspheres and composite PCL and 10% HA microspheres were synthesized. Bone mesenchymal stem cells isolated from green fluorescent protein rats (GFP-rBMSCs) were cultured with microspheres in a rotary bioreactor system. Scanning electron microscopy was used to examine the microstructures. Osteogenic differentiation of rBMSCs was confirmed. Moreover, PCL/HA (20 mg) and PCL (20 mg) were locally administered into the distraction gap in the rat DO model toward the end of the distraction period. Imaging detection, mechanical and histological examinations were performed to assess the quality of the 4-week regenerates. Results showed that the microspheres were of uniform size and monodisperse. After incubation with rBMSCs in culture, PCL/HA microspheres showed a better ability for cell adhesion and osteogenic differentiation compared with PCL microspheres. In vivo, bone volume/total tissue volume, bone mineral density, and mechanical properties of the new callus were significantly higher in the PCL/HA group compared with the PCL group. Histological analyses confirmed improved bone formation and vascularization in PCL/HA group. We presented an effective protocol for the generation of functionalized microspheres and demonstrated implantation of PCL/HA microspheres into the distraction regenerate could significantly enhance bone consolidation. Thus, the application of PCL/HA composite microspheres may be a novel approach for promoting bone regeneration. This article is protected by copyright. All rights reserved © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:961-971, 2020.
Collapse
Affiliation(s)
- Gen Wen
- The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Tianyi Wu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| |
Collapse
|
12
|
Zhang M, Matinlinna JP, Tsoi JK, Liu W, Cui X, Lu WW, Pan H. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview. J Orthop Translat 2020; 22:26-33. [PMID: 32440496 PMCID: PMC7231954 DOI: 10.1016/j.jot.2019.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of long-bone segmental defects (LBSDs) has been one of the biggest challenges in orthopaedics. Biomaterials for the reconstruction are required to be strong, osteoinductive, osteoconductive, and allowing for fast angiogenesis, without causing any immune rejection or disease transmission. There are four main types of biomaterials including autograft, allograft, artificial material, and tissue-engineered bone. Remarkable progress has been made in LBSD reconstruction biomaterials in the last ten years. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our aim is to summarize recent developments in the divided four biomaterials utilized in the LBSD reconstruction to provide the clinicians with new information and comprehension from the biomaterial point of view.
Collapse
Key Words
- ADSC, allogenic adipose-derived stem cells
- ALLO, partially demineralized allogeneic bone block
- ALP, alkaline phosphatase
- ASC, adipose-derived stem cell
- Allograft
- Artificial material
- Autograft
- BMP-2 & 4, bone morphogenetic protein-2 & 4
- BMSC, bone marrow–derived mesenchymal stem cell
- BV, baculovirus
- Biomaterial
- CS, chitosan
- DBM, decalcified bone matrix
- FGF-2, Fibroblast Growth Factor-2
- HDB, heterogeneous deproteinized bone
- LBSD, long-bone segmental defect
- Long-bone segmental defect reconstruction
- M-CSF, macrophage colony-stimulating factor
- MIC, fresh marrow-impregnated ceramic block
- MSC, autologous mesenchymal stem cells
- PCL, polycaprolactone
- PDGF, Platelet-Derived Growth Factor
- PDLLA, poly(DL-lactide)
- PET/CT, positron emission- and computed tomography
- PLA, poly(lactic acid)
- PPF, propylene fumarate
- SF, silk fibroin
- TCP, tricalcium phosphate
- TEB, combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma
- TGF-β, Transforming Growth Factor-β
- Tissue engineering
- VEGF, Vascular Endothelial Growth Factor
- bFGF, basic Fibroblast Growth Factor
- htMSCs, human tubal mesenchymal stem cells
- nHA, nano-hydroxyapatite
- poly, (L-lactide-co-D,L-lactide)
- rADSC, rabbit adipose-derived mesenchymal stem cell
- rVEGF-A, recombinant vascular endothelial growth factor-A
- rhBMP-2, recombinant human bone morphogenetic protein-2
- rhBMP-7, recombinant human bone morphogenetic protein 7
- sRANKL, soluble RANKL
- β-TCP, β-tricalcium phosphate
Collapse
Affiliation(s)
- Meng Zhang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Jukka P. Matinlinna
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - James K.H. Tsoi
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Wenlong Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xu Cui
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - William W. Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| |
Collapse
|
13
|
Xu X, Song J. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds. BIOMATERIALS TRANSLATIONAL 2020; 1:33-45. [PMID: 35837653 PMCID: PMC9255814 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 04/21/2023]
Abstract
Recent developments in synthetic bone grafting materials and adjuvant therapeutic agents have opened the door to the regenerative reconstruction of critical-size long bone segmental defects resulting from trauma, osteoporotic fractures or tumour resections. Polymeric scaffolds with controlled macroporosities, degradability, useful surgical handling characteristics, and the ability to deliver biotherapeutics to promote new bone ingrowth have been developed for this challenging orthopaedic application. This review highlights major classes of degradable synthetic polymers and their biomineral composites, including conventional and amphiphilic polyesters, polyanhydrides, polycarbonates, and polyethylene glycol-based hydrogels, that have been explored for the regenerative reconstruction of critical-size long bone segmental defects over the past two decades. The pros and cons of these synthetic scaffold materials are presented in the context of enabling or impeding the functional (mechanical and radiographic) repair of a long bone segmental defect, with the long bone regeneration outcomes compared with healthy long bone controls or results achieved with current grafting standards.
Collapse
|
14
|
Zhang B, Skelly JD, Maalouf JR, Ayers DC, Song J. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Sci Transl Med 2019; 11:11/502/eaau7411. [DOI: 10.1126/scitranslmed.aau7411] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Graft-guided regenerative repair of critical long bone defects achieving facile surgical delivery, stable graft fixation, and timely restoration of biomechanical integrity without excessive biotherapeutics remains challenging. Here, we engineered hydration-induced swelling/stiffening and thermal-responsive shape-memory properties into scalable, three-dimensional–printed amphiphilic degradable polymer-osteoconductive mineral composites as macroporous, non–load-bearing, resorbable synthetic grafts. The distinct physical properties of the grafts enabled straightforward surgical insertion into critical-size rat femoral segmental defects. Grafts rapidly recovered their precompressed shape, stiffening and swelling upon warm saline rinse to result in 100% stable graft fixation. The osteoconductive macroporous grafts guided bone formation throughout the defect as early as 4 weeks after implantation; new bone remodeling correlated with rates of scaffold composition-dependent degradation. A single dose of 400-ng recombinant human bone morphogenetic protein-2/7 heterodimer delivered via the graft accelerated bone regeneration bridging throughout the entire defect by 4 weeks after delivery. Full restoration of torsional integrity and complete scaffold resorption were achieved by 12 to 16 weeks after surgery. This biomaterial platform enables personalized bone regeneration with improved surgical handling, in vivo efficacy and safety.
Collapse
|
15
|
Dynamic in vitro models for tumor tissue engineering. Cancer Lett 2019; 449:178-185. [PMID: 30763717 DOI: 10.1016/j.canlet.2019.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
Abstract
Cancer research uses in vitro studies for controllable analysis of tumor behavior and preclinical testing of therapeutics. Shortcomings of basic cell culture systems in recreating in vivo interactions have driven the development of more efficient and biomimetic in vitro environments for cancer research. Assimilation of certain developments in tissue engineering will accelerate and improve the design of these environments. With the continual improvement of the tumor engineering field, the next step is towards macroscopic systems such as scaffold-supported, flow-perfused macroscale tumor bioreactors. Surface modifications of synthetic scaffolds allow for targeted cell adhesion and improved ECM development. Flow perfusion has emerged as means to expose cancerous tissues to critical biomechanical forces for tumor progression while simultaneously improving nutrient and waste transport. Macroscale perfusable systems allow for non-destructive real-time monitoring using biosensors capable of improving understanding of in vitro tumor development at reduced cost and waste. The combination of macroscale perfusable systems, surface-modified synthetic scaffolds, and non-destructive real-time monitoring will provide advanced platforms for in vitro modeling of tumor development, with broad applications in basic tumor research and preclinical drug development.
Collapse
|
16
|
Abstract
Many research methods exist to elucidate the role of BMP-2 during bone regeneration. This chapter briefly reviews important animal models used in these studies and provides details on the rat femur defect model. This animal model is frequently utilized to measure the efficacy of osteogenic factors like BMP-2. Detailed information about delivery methods, dose range, and dose duration used in BMP-2-related studies are provided.
Collapse
|
17
|
Ma J, Lin L, Zuo Y, Zou Q, Ren X, Li J, Li Y. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Adv 2019; 9:5338-5346. [PMID: 35515952 PMCID: PMC9060692 DOI: 10.1039/c8ra06652c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Effects of PVAc and HA on the surface structure of PCL and the in vivo bone repair activity of scaffolds.
Collapse
Affiliation(s)
- Jingqi Ma
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Lili Lin
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xin Ren
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
18
|
Chen J, Yu M, Guo B, Ma PX, Yin Z. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci 2017; 514:517-527. [PMID: 29289734 DOI: 10.1016/j.jcis.2017.12.062] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Conducting polymers and biodegradable polylactide (PLA) scaffolds are both promising biomaterials applied in bone tissue engineering. It is necessary to develop a composite scaffold combining their properties of osteogenic differentiation promotion and three-dimension matrix. To conquer the problem of poor processability of conductive polymers, we use a novel in-situ polymerization/thermal induced phase separation (TIPS) method to fabricate conductive nanofibrous PLA scaffolds with well-distributed polyaniline (PANI) nano-structures. The simple preparation technique provides the possibility to scale-up production of these conductive nanofibrous composite scaffolds. The scaffold structure and content of in-situ formed polyaniline nanoparticles was thoroughly characterized with 1H NMR, FT-IR, XPS, TGA, SEM and UV-vis, and the conductivity/electrochemical properties of the composite scaffolds were controlled with varied feed ratios of aniline to PLA. Meanwhile, the good cytocompatibility of these composite scaffolds was evaluated by culturing bone marrow derived mesenchymal stem cells (BMSCs) on them. The effect of conductive nanofibrous scaffolds on osteogenic differentiation was studied with expression levels of alkaline phosphatase (Alp), osteocalcin (Ocn) and runt-related transcription factor 2 (Runx2) during the culture of BMSCs for three weeks. The calcium mineralization of BMSCs is determined by alizarin red staining. These results indicated that a moderate content of PANI in the conductive nanofibrous scaffolds significantly promoted osteogenic differentiation of BMSCs for engineering bone tissues.
Collapse
Affiliation(s)
- Jing Chen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Yu
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
19
|
Kubasiewicz-Ross P, Hadzik J, Seeliger J, Kozak K, Jurczyszyn K, Gerber H, Dominiak M, Kunert-Keil C. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat 2017; 213:83-90. [DOI: 10.1016/j.aanat.2017.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
20
|
Patel R, Patel M, Kwak J, Iyer AK, Karpoormath R, Desai S, Rarh V. Polymeric microspheres: a delivery system for osteogenic differentiation. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rajkumar Patel
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Madhumita Patel
- Department of Chemistry and Nano Science; Ewha Womans University; Seodaemun-gu Seoul 120-750 South Korea
| | - Jeonghun Kwak
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health, Sciences; Wayne State University; 259 Mack Ave Detroit MI 48201 USA
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences; University of Kwa Zulu Natal; Durban 4000 Africa
| | - Shrojal Desai
- Global Infusion Systems R&D at Hospira; Chicago, IL USA
| | - Vimal Rarh
- Department of Chemistry, S.G.T.B. Khalsa College; University of Delhi; Delhi 110007 India
| |
Collapse
|
21
|
Chen R, Cai X, Ma K, Zhou Y, Wang Y, Jiang T. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins. Biofabrication 2017; 9:025028. [DOI: 10.1088/1758-5090/aa70c3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
In vivo tissue engineered bone versus autologous bone: stability and structure. Int J Oral Maxillofac Surg 2017; 46:385-393. [DOI: 10.1016/j.ijom.2016.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/26/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
|
23
|
Trachtenberg JE, Santoro M, Williams C, Piard CM, Smith BT, Placone JK, Menegaz BA, Molina ER, Lamhamedi-Cherradi SE, Ludwig JA, Sikavitsas VI, Fisher JP, Mikos AG. Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion. ACS Biomater Sci Eng 2017; 4:347-356. [DOI: 10.1021/acsbiomaterials.6b00641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordan E. Trachtenberg
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Marco Santoro
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Cortes Williams
- Stephenson
School of Biomedical Engineering, University of Oklahoma, 202 West Boyd Street, Norman, Oklahoma 73019, United States
| | - Charlotte M. Piard
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Brandon T. Smith
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Jesse K. Placone
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive #0412, La Jolla, California 92093, United States
| | - Brian A. Menegaz
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Eric R. Molina
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Salah-Eddine Lamhamedi-Cherradi
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Joseph A. Ludwig
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Vassilios I. Sikavitsas
- Stephenson
School of Biomedical Engineering, University of Oklahoma, 202 West Boyd Street, Norman, Oklahoma 73019, United States
| | - John P. Fisher
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonios G. Mikos
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Bagherifard S. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1241-1252. [PMID: 27987680 DOI: 10.1016/j.msec.2016.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 02/03/2023]
Abstract
In addition to excellent biocompatibility and mechanical performance, the new generation of bone and craniofacial implants are expected to proactively contribute to the regeneration process and dynamically interact with the host tissue. To this end, integration and sustained delivery of therapeutic agents has become a rapidly expanding area. The incorporated active molecules can offer supplementary features including promoting oteoconduction and angiogenesis, impeding bacterial infection and modulating host body reaction. Major limitations of the current practices consist of low drug stability overtime, poor control of release profile and kinetics as well as complexity of finding clinically appropriate drug dosage. In consideration of the multifaceted cascade of bone regeneration process, this research is moving towards dual/multiple drug delivery, where precise control on simultaneous or sequential delivery, considering the possible synergetic interaction of the incorporated bioactive factors is of utmost importance. Herein, recent advancements in fabrication of synthetic load bearing implants equipped with various drug delivery systems are reviewed. Smart drug delivery solutions, newly developed to provide higher tempo-spatial control on the delivery of the pharmaceutical agents for targeted and stimuli responsive delivery are highlighted. The future trend of implants with bone drug delivery mechanisms and the most common challenges hindering commercialization and the bench to bedside progress of the developed technologies are covered.
Collapse
Affiliation(s)
- Sara Bagherifard
- Politecnico di Milano, Department of Mechanical Engineering, Milan, Italy.
| |
Collapse
|
25
|
Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:856-869. [PMID: 27770964 DOI: 10.1016/j.msec.2016.09.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery.
Collapse
Affiliation(s)
- Howa Begam
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery, Radiology West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India.
| | - Abhijit Chanda
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
26
|
Kheirallah M, Almeshaly H. Simvastatin, dosage and delivery system for supporting bone regeneration, an update review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2016. [DOI: 10.1016/j.ajoms.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Trachtenberg JE, Placone JK, Smith BT, Piard CM, Santoro M, Scott DW, Fisher JP, Mikos AG. Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design. ACS Biomater Sci Eng 2016; 2:1771-1780. [PMID: 33440475 DOI: 10.1021/acsbiomaterials.6b00026] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3D printing has emerged as an important technique for fabricating tissue engineered scaffolds. However, systematic evaluations of biomaterials for 3D printing have not been widely investigated. We evaluated poly(propylene fumarate) (PPF) as a model material for extrusion-based printing applications. A full-factorial design evaluating the effects of four factors (PPF concentration, printing pressure, printing speed, and programmed fiber spacing) on viscosity, fiber diameter, and pore size was performed layer-by-layer on 3D scaffolds. We developed a linear model of printing solution viscosity, where concentration of PPF had the greatest effect on viscosity, and the polymer exhibited shear thinning behavior. Additionally, linear models of pore size and fiber diameter revealed that fiber spacing and pressure had the greatest effect on pore size and fiber diameter, respectively, but interplay among the factors also influenced scaffold architecture. This study serves as a platform to determine if novel biomaterials are suitable for extrusion-based 3D printing applications.
Collapse
Affiliation(s)
- Jordan E Trachtenberg
- Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Jesse K Placone
- Fischell Department of Bioengineering, University of Maryland, Jeong Kim Engineering Building, College Park, Maryland 20740, United States
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Charlotte M Piard
- Fischell Department of Bioengineering, University of Maryland, Jeong Kim Engineering Building, College Park, Maryland 20740, United States
| | - Marco Santoro
- Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - David W Scott
- Department of Statistics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, Jeong Kim Engineering Building, College Park, Maryland 20740, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
28
|
Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016; 3:56-71. [PMID: 27239485 PMCID: PMC4880030 DOI: 10.1016/j.gendis.2015.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials.
Collapse
Affiliation(s)
- Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| | - Zach J. Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 2016; 105:904-925. [PMID: 26728994 DOI: 10.1002/jbm.b.33599] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) has unique bone regeneration property. The powerful osteoinductive nature makes it considered as second line of therapy in nonunion bone defect. A large number of carriers and delivery systems made up of different materials have been investigated for controlled and sustained release of BMP-2. The delivery systems are in the form of hydrogel, microsphere, nanoparticles, and fibers. The carriers used for the delivery are made up of metals, ceramics, polymers, and composites. Implantation of these protein-loaded carrier leads to cell adhesion, degradation which eventually releases the drug/protein at site specific. But, problems like ectopic growth, lesser protein delivery, inactivation of the protein are reported in the available carrier systems. Therefore, it is need of an hour to modify the available carrier systems as well as explore other biomaterials with desired properties. In this review, all the reported carrier systems made of metals, ceramics, polymers, composites are evaluated in terms of their processing conditions, loading capacity and release pattern of BMP-2. Along with these biomaterials, the attempts of protein modification by adding some functional group to BMP-2 or extracting functional peptides from the protein to achieve the desired effect, is also evaluated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 904-925, 2017.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| |
Collapse
|
30
|
Abstract
Large bone defects caused by fracture, non-union and bone tumor excision has been a major clinical problem. Autogenous bone grafting and Ilizarov method are commonly performed to treat them. However, bone grafting has limitation in volume of available bone, and Ilizarov method requires long periods of time to treat. Accordingly, there is need for stem cell therapy for bone repair and/or regeneration. Mesenchymal stem cells (MSCs) hold the ability to differentiate into osteoblasts and are available from a wide variety of sources. The route of "intramembranous ossification (direct bone formation)" by transplantation of undifferentiated MSCs has been tested but it did not demonstrate the success initially envisaged. Recently another approach has been examined being the transplantation of "MSCs pre-differentiated in vitro into cartilage-forming chondrocytes" into bone defect, in brief, representing the route of "endochondral ossification (indirect bone formation)". It's a paradigm shift of Stem Cell Therapy for bone regeneration. We have already reported on the healing of large femur defects in rats by transplantation of "MSCs pre-differentiated in vitro into cartilage-forming chondrocytes". We named the cells as Mesenchymal Stem Cell-Derived Chondrocytes (MSC-DCs). The success of reconstruction of a massive 15-mm femur defect (approximately 50% of the rat femur shaft length) provides a sound foundation for potential clinical application of this technique. We believe our results may offer a new avenue of reconstruction of large bone defect, especially in view of the their high reproducibility and the excellent biomechanical strength of repaired femora.
Collapse
|
31
|
Vo TN, Shah SR, Lu S, Tatara AM, Lee EJ, Roh TT, Tabata Y, Mikos AG. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2015; 83:1-11. [PMID: 26773659 DOI: 10.1016/j.biomaterials.2015.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023]
Abstract
The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.
Collapse
Affiliation(s)
- T N Vo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - S R Shah
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - S Lu
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - A M Tatara
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - E J Lee
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - T T Roh
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA
| | - Y Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - A G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX, 77251-1892, USA; Department of Chemical and Biomolecular Engineering, Rice University, P.O. Box 1892, MS 362, Houston, TX, 77251-1892, USA.
| |
Collapse
|
32
|
Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219:129-140. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.
Collapse
Affiliation(s)
- E A Bayer
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - R Gottardi
- The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Orthopedic Surgery, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA; RiMED Foundation, Palermo, Italy
| | - M V Fedorchak
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Ophthalmology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - S R Little
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Immunology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA.
| |
Collapse
|
33
|
In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Release 2014; 205:25-34. [PMID: 25483428 DOI: 10.1016/j.jconrel.2014.11.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the mineralization capacity and biocompatibility of injectable, dual-gelling hydrogels in a rat cranial defect as a function of hydrogel hydrophobicity from either the copolymerization of a hydrolyzable lactone ring or the hydrogel polymer content. The hydrogel system comprised a poly(N-isopropylacrylamide)-based thermogelling macromer (TGM) and a polyamidoamine crosslinker. The thermogelling macromer was copolymerized with (TGM/DBA) or without (TGM) a dimethyl-γ-butyrolactone acrylate (DBA)-containing lactone ring that modulated the lower critical solution temperature and thus, the hydrogel hydrophobicity, over time. Three hydrogel groups were examined: (1) 15wt.% TGM, (2) 15wt.% TGM/DBA, and (3) 20wt.% TGM/DBA. The hydrogels were implanted within an 8mm critical size rat cranial defect for 4 and 12weeks. Implants were harvested at each timepoint and analyzed for bone formation, hydrogel mineralization and tissue response using microcomputed tomography (microCT). Histology and fibrous capsule scoring showed a light inflammatory response at 4weeks that was mitigated by 12weeks for all groups. MicroCT scoring and bone volume quantification demonstrated a similar bone formation at 4weeks that was significantly increased for the more hydrophobic hydrogel formulations - 15wt.% TGM and 20wt.% TGM/DBA - from 4weeks to 12weeks. A complementary in vitro acellular mineralization study revealed that the hydrogels exhibited calcium binding properties in the presence of serum-containing media, which was modulated by the hydrogel hydrophobicity. The tailored mineralization capacity of these injectable, dual-gelling hydrogels with hydrolysis-dependent hydrophobicity presents an exciting property for their use in bone tissue engineering applications.
Collapse
|
34
|
Jia HB, Ma JX, Ma XL, Yu JT, Feng R, Xu LY, Wang J, Xing D, Zhu SW, Wang Y. Estrogen alone or in combination with parathyroid hormone can decrease vertebral MEF2 and sclerostin expression and increase vertebral bone mass in ovariectomized rats. Osteoporos Int 2014; 25:2743-54. [PMID: 25074352 DOI: 10.1007/s00198-014-2818-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
UNLABELLED The study is about the regulatory effects of estrogen and parathyroid hormone (PTH) on sclerostin, a protein that inhibits the Wnt/β-catenin pathway. The results indicate that estrogen may down-regulate sclerostin expression and that estrogen displays synergistic action with PTH. These results provide a new perspective on the relationship between estrogen and bone. PURPOSE To investigate whether estrogen can down-regulate SOST and MEF2 (myocyte enhancer factor 2) expression and whether co-treatment with estrogen and PTH has a stronger effect on suppressing SOST than PTH applied alone in ovariectomized rats. METHODS Forty-three-month-old virgin female Sprague-Dawley (SD) rats were ovariectomized and divided into four groups (n = 10). Another ten age-matched rats received sham operations as controls. After allowing 8 weeks for the development of vertebral osteopenia, the rats were administered the drug intervention. For this intervention, the estrogen group was subcutaneously injected with 17β-estradiol at 25 μg/kg body weight, the PTH group was injected with 80 μg/kg synthetic human PTH (1-34), and the co-treatment group was concurrently treated with PTH and estrogen at the above dosage. The OVX group and sham group were treated with vehicle. The drug treatment was conducted for 12 weeks. After the lumbar spine bone mineral density (BMD) was measured, the rats were sacrificed, and the lumbar spine and blood were collected for qPCR, Western blot, immunohistochemistry and other tests. RESULTS Estrogen can down-regulate MEF2 and sclerostin expression, and co-treatment with estrogen and PTH has a stronger effect on suppressing MEF2 and SOST mRNA than PTH alone. The co-treatment group displayed slightly higher bone mass and biomechanical properties than the PTH group, but the differences were not significant. CONCLUSIONS Estrogen appears to be a regulator of sclerostin, and the effect may involve suppressing MEF2s. Combined treatment with PTH and estrogen is not more beneficial for vertebral bone mass and strength than treatment with PTH alone in ovariectomized rats.
Collapse
Affiliation(s)
- H B Jia
- Tianjin Medical University General Hospital, 154, Anshan Street, Heping District, Tianjin, 300052, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev 2014; 2:85-99. [PMID: 26543666 DOI: 10.1093/nsr/nwu028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of statins for bone regeneration is a promising and growing area of research. Statins, originally developed to treat high cholesterol, are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl, the rate-limiting enzyme of the mevalonate pathway. Because the mevalonate pathway is responsible for the synthesis of a wide variety of important biochemical molecules, including cholesterol and other isoprenoids, the effects of statins are pleiotropic. In particular, statins can greatly affect the process of bone turnover and regeneration via effects on important cell types, including mesenchymal stem cells, osteoblasts, endothelial cells, and osteoclasts. Statins have also been shown to have anti-inflammatory and antimicrobial properties that may be useful since infection can derail normal bone healing. This review will explore the pleiotropic effects of statins, discuss the current use of statins for bone regeneration, particularly with regard to biomaterials-based controlled delivery, and offer perspectives on the challenges and future directions of this emerging area of bone tissue engineering.
Collapse
Affiliation(s)
- Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Caroline A Werlang
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA ; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251-1892, USA
| |
Collapse
|
36
|
Henslee AM, Shah SR, Wong ME, Mikos AG, Kasper FK. Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. J Biomed Mater Res A 2014; 103:1485-97. [DOI: 10.1002/jbm.a.35288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/15/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Sarita R. Shah
- Department of Bioengineering; Rice University; Houston Texas
| | - Mark E. Wong
- Department of Oral and Maxillofacial Surgery; The University of Texas Dental Branch; Houston Texas
| | | | | |
Collapse
|
37
|
Henslee AM, Yoon DM, Lu BY, Yu J, Arango AA, Marruffo LP, Seng L, Anver TD, Ather H, Nair MB, Piper SO, Demian N, Wong MEK, Kasper FK, Mikos AG. Characterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures. J Biomed Mater Res B Appl Biomater 2014; 103:529-38. [DOI: 10.1002/jbm.b.33216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/24/2014] [Accepted: 05/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Diana M. Yoon
- Department of BioengineeringRice UniversityHouston Texas
| | - Benjamin Y. Lu
- Department of BioengineeringRice UniversityHouston Texas
| | - Joseph Yu
- Department of BioengineeringRice UniversityHouston Texas
| | - Andrew A. Arango
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | - Liann P. Marruffo
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | - Luke Seng
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | - Tamir D. Anver
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | - Hunaiza Ather
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | | | - Sean O. Piper
- Department of BioengineeringRice UniversityHouston Texas
| | - Nagi Demian
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | - Mark E. K. Wong
- Department of Oral and Maxillofacial SurgeryThe University of Texas Dental BranchHouston Texas
| | | | | |
Collapse
|
38
|
Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Colloids Surf B Biointerfaces 2014; 116:72-80. [DOI: 10.1016/j.colsurfb.2013.12.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/22/2022]
|
39
|
Kim TH, Yun YP, Park YE, Lee SH, Yong W, Kundu J, Jung JW, Shim JH, Cho DW, Kim SE, Song HR. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds. Biomed Mater 2014; 9:025008. [PMID: 24518200 DOI: 10.1088/1748-6041/9/2/025008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop novel polycaprolactone/poly(lactic-co-glycolic acid) (PCL/PLGA) scaffolds with a heparin-dopamine (Hep-DOPA) conjugate for controlled release of bone morphogenic protein-2 (BMP-2) to enhance osteoblast activity in vitro and also bone formation in vivo. PCL/PLGA scaffolds were prepared by a solid freeform fabrication method. The PCL/PLGA scaffolds were functionalized with Hep-DOPA and then BMP-2 was sequentially coated onto the Hep-DOPA/PCL/PLGA scaffolds. The characterization and surface elemental composition of all scaffolds were evaluated by scanning electron microscope and x-ray photoelectron spectroscopy. The osteoblast activities on all scaffolds were assessed by cell proliferation, alkaline phosphatase (ALP) activity and calcium deposition in vitro. To demonstrate bone formation in vivo, plain radiograph, micro-computed tomography (micro-CT) evaluation and histological studies were performed after the implantation of all scaffolds on a rat femur defect. Hep-DOPA/PCL/PLGA had more controlled release of BMP-2, which was quantified by enzyme-linked immunosorbent assay, compared with Hep/PCL/PLGA. The in vitro results showed that osteoblast-like cells (MG-63 cells) grown on BMP-2/Hep-DOPA/PCL/PLGA had significantly enhanced ALP activity and calcium deposition compared with those on BMP-2/Hep/PCL/PLGA and PCL/PLGA. In addition, the plain radiograph, micro-CT evaluation and histological studies demonstrated that the implanted BMP-2/Hep-DOPA/PCL/PLGA on rat femur had more bone formation than BMP-2/Hep/PCL/PLGA and PCL/PLGA in vivo.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Orthopedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 143-729, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2013; 102:2884-900. [DOI: 10.1002/jbm.a.34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Janin Reifenrath
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Nina Angrisani
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Mareike Lalk
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Silke Besdo
- Institute of Continuum Mechanics; Leibniz Universität Hannover; Appelstr. 11 30167 Hannover Germany
| |
Collapse
|
41
|
Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, Fan JJ, Chen L, Dong X, Liu XN, Pei GX, Ding JD. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013; 8:1855-65. [PMID: 23690683 PMCID: PMC3656818 DOI: 10.2147/ijn.s43706] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Poly(lactic-co-glycolic acid) (PLGA) is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA) was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds. METHODS PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed. RESULTS In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations. CONCLUSION nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds.
Collapse
Affiliation(s)
- De-Xin Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang F, Wang J, Hou J, Guo H, Liu C. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials 2013. [DOI: 10.1016/j.biomaterials.2012.10.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Lalk M, Reifenrath J, Angrisani N, Bondarenko A, Seitz JM, Mueller PP, Meyer-Lindenberg A. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:417-436. [PMID: 23160911 DOI: 10.1007/s10856-012-4812-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.
Collapse
Affiliation(s)
- Mareike Lalk
- Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Feng YF, Wang L, Li X, Ma ZS, Zhang Y, Zhang ZY, Lei W. Influence of architecture of β-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects. PLoS One 2012. [PMID: 23185494 PMCID: PMC3503864 DOI: 10.1371/journal.pone.0049955] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Although three-dimensional (3D) β-tricalcium phosphate (β-TCP) scaffolds serve as promising bone graft substitutes for the segmental bone defect treatment, no consensus has been achieved regarding their optimal 3D architecture. METHODS In this study, we has systematically compared four types of β-TCP bone graft substitutes with different 3D architectures, including two types of porous scaffolds, one type of tubular scaffolds and one type of solid scaffolds, for their efficacy in treating segmental bone defect in a rabbit model. RESULTS Our study has demonstrated that when compared to the traditional porous and solid scaffolds, tubular scaffolds promoted significantly higher amount of new bone formation in the defect regions as shown by X-ray, micro CT examinations and histological analysis, restored much greater mechanical properties of the damaged bone evidenced by the biomechanical testing, and eventually achieved the complete union of segmental defect. Moreover, the implantation of tubular scaffolds enhanced the neo-vascularization at the defect region with higher bone metabolic activities than others, as indicated by the bone scintigraphy assay. CONCLUSIONS This study has further the current knowledge regarding the profound influence of overall 3D architecture of β-TCP scaffolds on their in vivo defect healing performance and illuminated the promising potential use of tubular scaffolds as effective bone graft substitute in treating large segmental bone defects.
Collapse
Affiliation(s)
- Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lin Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, China
| | - Zhen-Sheng Ma
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yang Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhi-Yong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Tissue Engineering Center of China, Shanghai, China
- * E-mail: (WL); (ZYZ)
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (WL); (ZYZ)
| |
Collapse
|
45
|
Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc 2012; 7:1918-29. [PMID: 23018195 DOI: 10.1038/nprot.2012.113] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Animal models that are reliably reproducible, appropriate analogs to the clinical condition they are used to investigate, and that offer minimal morbidity and periprocedural mortality to the subject, are the keystone to the preclinical development of translational technologies. For bone tissue engineering, a number of small animal models exist. Here we describe the protocol for one such model, the rat calvarial defect. This versatile model allows for evaluation of biomaterials and bone tissue engineering approaches within a reproducible, non-load-bearing orthotopic site. Crucial steps for ensuring appropriate experimental control and troubleshooting tips learned through extensive experience with this model are provided. The surgical procedure itself takes ∼30 min to complete, with ∼2 h of perioperative care, and tissue collection is generally performed 4-12 weeks postoperatively. Several analytical techniques are presented, which evaluate the cellular and extracellular matrix components, functionality and mineralization, including histological, mechanical and radiographic methods.
Collapse
Affiliation(s)
- Patrick P Spicer
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4995-5013. [PMID: 22821772 PMCID: PMC3706713 DOI: 10.1002/adma.201201762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
47
|
Trajkovski B, Petersen A, Strube P, Mehta M, Duda GN. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv Drug Deliv Rev 2012; 64:1142-51. [PMID: 22664228 DOI: 10.1016/j.addr.2012.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/26/2012] [Accepted: 05/29/2012] [Indexed: 11/30/2022]
Abstract
Bone is one of the few tissues in the human body with high endogenous healing capacity. However, failure of the healing process presents a significant clinical challenge; it is a tremendous burden for the individual and has related health and economic consequences. To overcome such healing deficits, various concepts for a local drug delivery to bone have been developed during the last decades. However, in many cases these concepts do not meet the specific requirements of either surgeons who must use these strategies or individual patients who might benefit from them. We describe currently available methods for local drug delivery and their limitations in therapy. Various solutions for drug delivery to bone focusing on clinical applications and intra-operative constraints are discussed and drug delivery by implant coating is highlighted. Finally, a new set of design and performance requirements for intra-operatively customized implant coatings for controlled drug delivery is proposed. In the future, these requirements may improve approaches for local and intra-operative treatment of patients.
Collapse
Affiliation(s)
- Branko Trajkovski
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
Henslee AM, Gwak DH, Mikos AG, Kasper FK. Development of a biodegradable bone cement for craniofacial applications. J Biomed Mater Res A 2012; 100:2252-9. [PMID: 22499285 DOI: 10.1002/jbm.a.34157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 11/12/2022]
Abstract
This study investigated the formulation of a two-component biodegradable bone cement comprising the unsaturated linear polyester macromer poly(propylene fumarate) (PPF) and crosslinked PPF microparticles for use in craniofacial bone repair applications. A full factorial design was employed to evaluate the effects of formulation parameters such as particle weight percentage, particle size, and accelerator concentration on the setting and mechanical properties of crosslinked composites. It was found that the addition of crosslinked microparticles to PPF macromer significantly reduced the temperature rise upon crosslinking from 100.3°C ± 21.6°C to 102.7°C ± 49.3°C for formulations without microparticles to 28.0°C ± 2.0°C to 65.3°C ± 17.5°C for formulations with microparticles. The main effects of increasing the particle weight percentage from 25 to 50% were to significantly increase the compressive modulus by 37.7 ± 16.3 MPa, increase the compressive strength by 2.2 ± 0.5 MPa, decrease the maximum temperature by 9.5°C ± 3.7°C, and increase the setting time by 0.7 ± 0.3 min. Additionally, the main effects of increasing the particle size range from 0-150 μm to 150-300 μm were to significantly increase the compressive modulus by 31.2 ± 16.3 MPa and the compressive strength by 1.3 ± 0.5 MPa. However, the particle size range did not have a significant effect on the maximum temperature and setting time. Overall, the composites tested in this study were found to have properties suitable for further consideration in craniofacial bone repair applications.
Collapse
Affiliation(s)
- Allan M Henslee
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
49
|
Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M. Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. INT J POLYM SCI 2012; 2012:1-25. [DOI: 10.1155/2012/174942] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Collapse
Affiliation(s)
- Keith A. Blackwood
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Nathalie Bock
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Tim R. Dargaville
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Maria Ann Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|