1
|
Predoi D, Iconaru SL, Ciobanu SC, Rokosz K, Ţălu Ş, Predoi SA, Raaen S, Motelica-Heino M. Exploring the fabrication, properties, and morphology of fluorine substituted hydroxyapatite coatings. CERAMICS INTERNATIONAL 2025; 51:1929-1948. [DOI: 10.1016/j.ceramint.2024.11.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
2
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
3
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
4
|
Zhang F, Hu N, Li J, Pu M, Li X, Li Y, Liao D. The correlation of urinary strontium with the risk of chronic kidney disease among the general United States population. Front Public Health 2023; 11:1251232. [PMID: 37780453 PMCID: PMC10534960 DOI: 10.3389/fpubh.2023.1251232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Background This study sought to illustrate whether urinary strontium levels were related to developing chronic kidney disease (CKD) in the United States population. Methods A total of 5,005 subjects were identified from the National Health and Nutrition Examination Survey 2011-2016. Survey-weighted logistic regression analysis, multivariate linear regression analysis, restricted cubic spline (RCS) plots curve and stratified analyses were undertaken to explicate the correlation between urinary strontium and CKD. Results With the increase of urinary strontium, the incidence rate of CKD and urinary albumin to creatinine ratio (UACR) levels gradually decreased, and estimated glomerular filtration rate (eGFR) levels gradually increased. After controlling all confounders, only urinary strontium in the fourth quartile was correlated to a lower CKD prevalence (OR: 0.59; 95% CI, 0.44-0.79) compared to the lowest quartile. Multivariate linear regression analysis showed that urinary strontium was positively correlated with eGFR but negatively with UACR. RCS curve suggested a nonlinear relationship between urinary strontium and CKD (P for non-linearity <0.001). Stratified analyses indicated no significant difference in the correlation between urinary strontium and CKD among different subgroups. Conclusion Urinary strontium was strongly correlated with a low risk of CKD, and this association was non-linear among the US population.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Na Hu
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jiayue Li
- Chengdu Medical College, Chengdu, China
| | - Ming Pu
- Chengdu Medical College, Chengdu, China
| | - Xinchun Li
- North Sichuan Medical College, Nanchong, China
| | - Yuanmei Li
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Namdar A, Salahinejad E. Advances in ion-doping of Ca-Mg silicate bioceramics for bone tissue engineering. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Zhao R, Shi L, Gu L, Qin X, Song Z, Fan X, Zhao P, Li C, Zheng H, Li Z, Wang Q. Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: In vitro bioactivity and antibacterial activity. J Appl Biomater Funct Mater 2021; 19:22808000211040910. [PMID: 34465222 DOI: 10.1177/22808000211040910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of bioactive glass scaffolds doped with SrO or ZnO (0, 5, and 10 mol%) were synthesized by the foam replica and melting method. The thermodynamic evolution, phase composition, microstructure, ion release, in vitro bioactivity, and oxygen density of the scaffolds were characterized. The proliferation of murine long bone osteocyte Y4 cells was studied by cell culture. The survival rate of the BGs evaluated the antibacterial activity and Escherichia coli strains in co-culture. The results indicated that the process window decreases with the increase of dopants. All the samples have a pore structure size of 200-400 μm. When the scaffolds were immersed in simulated body fluid for 28 days, hydroxyapatite formation was not affected, but the degradation process was retarded. The glass network packing and ionic radii variations of the substitution ions control surface degradation, glass dissolution, and ion release. MTT results revealed that 5Sr-BG had a significant effect on promoting cell proliferation and none of the BGs were cytotoxicity. Sr-BGs and Zn-BGs exhibited significantly inhibited growth against E. coli bacterial strains. Generally, these results showed the 5Sr-BG scaffold with high vitro bioactivity, cell proliferation, and antibacterial property is an important candidate material for bone tissue regeneration and repair.
Collapse
Affiliation(s)
- Rui Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lifen Shi
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu, China.,(CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Lin Gu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xusheng Qin
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Zaizhi Song
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Xiaoyun Fan
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ping Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changqing Li
- Silica-Based Materials Laboratory of Anhui Province, Bengbu, China
| | - Hailun Zheng
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qizhi Wang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Feng KC, Wu YJ, Wang CY, Tu CS, Lin YL, Chen CS, Lai PL, Huang YT, Chen PY. Enhanced mechanical and biological performances of CaO-MgO-SiO 2 glass-ceramics via the modulation of glass and ceramic phases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112060. [PMID: 33947554 DOI: 10.1016/j.msec.2021.112060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/26/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022]
Abstract
This work reports a new CaO-MgO-SiO2 (CMS) bioactive glass-ceramic, using ZrO2 as a nucleus to modulate the ratios of glass and ceramic phases as a function of sintering temperature. Mg-rich bioactive CMS glass-ceramics exhibit advantages regarding mechanical strength (flexural strength ~190 MPa and compressive strength ~555 MPa), in-vitro and in-vivo biocompatibilities, and bone ingrowth. The high mechanical strengths could be attributed to the CaMgSi2O6 glass-ceramic and lower porosity. X-ray absorption spectra indicate an increased SiO covalent bond via the development of CaMgSi2O6 glass-ceramics. From the in-vitro cytotoxicity and BMSC differentiation assays, the CMS samples sintered above 800 °C exhibited better cell attachment and differentiation, possibly due to structural stability, appropriate pore, and ion release to boost osteogenesis. Compared to hydroxyapatite (HA) ceramics, the CMS glass-ceramics display higher mechanical strengths, biocompatibility, and osteoconductivity. An in-vivo experiment demonstrated a fine bone-ingrowth profile around the CMS implant. This study may further the application of CMS glass-ceramics in bone implants.
Collapse
Affiliation(s)
- Kuei-Chih Feng
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Yu-Jie Wu
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chi-Yun Wang
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Chi-Shun Tu
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Ling Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Sao Chen
- Department of Mechanical Engineering, Hwa Hsia University of Technology, New Taipei City 23567, Taiwan
| | - Po-Liang Lai
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Yu-Tzu Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Pin-Yi Chen
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
8
|
Jinga SI, Anghel AM, Brincoveanu SF, Bucur RM, Florea AD, Saftau BI, Stroe SC, Zamfirescu AI, Busuioc C. Ce/Sm/Sr-Incorporating Ceramic Scaffolds Obtained via Sol-Gel Route. MATERIALS 2021; 14:ma14061532. [PMID: 33800992 PMCID: PMC8003880 DOI: 10.3390/ma14061532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Three different inorganic scaffolds were obtained starting from the oxide system SiO2‒P2O5‒CaO‒MgO, to which Ce4+/Sm3+/Sr2+ cations were added in order to propose novel materials with potential application in the field of hard tissue engineering. Knowing the beneficial effects of each element, improved features in terms of mechanical properties, antibacterial activity and cellular response are expected. The compositions were processed in the form of scaffolds by a common sol-gel method, followed by a thermal treatment at 1000 and 1200 °C. The obtained samples were characterized from thermal, compositional, morphological and mechanical point of view. It was shown that each supplementary component triggers the modification of the crystalline phase composition, as well as microstructural details. Moreover, the shrinkage behavior is well correlated with the attained compression strength values. Sm was proven to be the best choice, since in addition to a superior mechanical resistance, a clear beneficial influence on the viability of 3T3 fibroblast cell line was observed.
Collapse
Affiliation(s)
- Sorin-Ion Jinga
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Ana-Maria Anghel
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Silvia-Florena Brincoveanu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Raluca-Maria Bucur
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andrei-Dan Florea
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Bianca-Irina Saftau
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Stefania-Cristina Stroe
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andreea-Ioana Zamfirescu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Cristina Busuioc
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
9
|
Golafshan N, Alehosseini M, Ahmadi T, Talebi A, Fathi M, Kharaziha M, Orive G, Castilho M, Dolatshahi-Pirouz A. Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111611. [PMID: 33545811 DOI: 10.1016/j.msec.2020.111611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
In bone tissue engineering, ionic doping using bone-related minerals such as magnesium (Mg) or strontium (Sr) is a promising strategy to make up for the inherent disadvantages (low solubility) of various apatite-based materials (such as fluorapatite (FAp) and hydroxyapatite (HA)). Therefore, some studies in recent years have tried to address the lack-of-methodology to improve the properties of bioceramics in the field. Even though the outcome of the studies has shown some promises, the influence of doped elements on the structures and properties of in-vitro and in-vivo mineralized FAp has not been investigated in detail so far. Thus, it is still an open question mark in the field. In this work, strontium modified fluorapatite (Sr-FAp), magnesium and silicon modified fluorapatite (Mg-SiFAp) bioceramics were synthesized using a mechanical alloying methodology. Results showed that the doped elements could decrease the crystallinity of FAp (56%) to less than 45% and 39% for Sr-FAp and Mg-SiFAp, respectively. Moreover, in-vitro studies revealed that Sr-FAp significantly enhanced osteogenic differentiation of hMSCs, after 21 days of culture, compared to Mg-SiFAp at both osteogenic and normal media. Then, in vivo bone formation in a defect of rat femur filled with a Sr-FAp and Mg-SiFAp compared to empty defect was investigated. Histological analysis revealed an increase in bone formation three weeks after implanting Sr-FAp compared to Mg-SiFAp and the empty defect. These results suggest that compared to magnesium and silicon, strontium ion significantly promotes bone formation in fluorapatite, making it appropriate for filling bone defects.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Orthopaedics, University Medical Center Utrecht, GA Utrecht, the Netherlands
| | - Morteza Alehosseini
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Technical University of Denmark, DTU Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Tahmineh Ahmadi
- Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| | - Ardeshir Talebi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadhossein Fathi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, GA Utrecht, the Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| |
Collapse
|
10
|
Influence of ZrO 2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. MATERIALS 2020; 13:ma13184058. [PMID: 32932693 PMCID: PMC7560252 DOI: 10.3390/ma13184058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022]
Abstract
Zirconium doped calcium phosphate-based bioglasses are the most prominent bioactive materials for bone and dental repair and regeneration implants. In the present study, a 8ZnO–22Na2O–(24 − x)CaO–46P2O5–xZrO2 (0.1 ≤ x ≤ 0.7, all are in mol%) bioglass system was synthesized by the conventional melt-quenching process at 1100 °C. The glass-forming ability and thermal stability of the glasses were determined by measuring the glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm), using differential thermal analysis (DTA). The biological activity of the prepared samples was identified by analyzing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive spectra (SEM-EDS), before and after immersion in simulated body fluid (SBF) for various intervals of 0, 1 and 5 days, along with the magnitude of pH and the degradation of glasses also evaluated. The obtained results revealed that the glass-forming ability and thermal stability of glasses increased with the increase in zirconia mol%. The XRD, FTIR, and SEM-EDS data confirmed a thin hydroxyapatite (HAp) layer over the sample surface after incubation in SBF for 1 and 5 days. Furthermore, the development of layer found to be increased with the increase of incubation time. The degradation of the glasses in SBF increased with incubation time and decreased gradually with the increase content of ZrO2 mol% in the host glass matrix. A sudden rise in initial pH values of residual SBF for 1 day owing to ion leaching and increase of Ca2+ and PO43− ions and then decreased. These findings confirmed the suitability of choosing material for bone-related applications.
Collapse
|
11
|
Karakuzu-Ikizler B, Terzioğlu P, Basaran-Elalmis Y, Tekerek BS, Yücel S. Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica. Bioact Mater 2020; 5:66-73. [PMID: 31989060 PMCID: PMC6965208 DOI: 10.1016/j.bioactmat.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to investigate the effect of magnesium (1 wt%) and aluminum (1 wt%) incorporation on the in vitro bioactivity and biodegradation behavior of 45S5 bioactive glasses synthesized from rice husk biogenic silica. The performance of biogenic silica-based samples was compared well with commercial silica-based counterparts. The in vitro biodegradation behavior of bioactive glasses was evaluated by the weight loss of samples and pH variation in the Tris buffer solution. Based on composition, bioglasses possessed different properties before and after simulated body fluid (SBF) immersion. The incorporation of magnesium (Mg) and aluminum (Al) enhanced the Vickers hardness of bioglasses. All the bioglasses showed the hydroxyapatite layer formation after SBF treatment as confirmed by the dissolution, FTIR, SEM and XRD analysis, however it was more prominent in the rice husk silica-based 45S5 bioglass. The biogenic silica seems to be a promising starting material for bioglass systems to be used in bone tissue engineering applications.
Collapse
Affiliation(s)
- Burcu Karakuzu-Ikizler
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, Istanbul, Turkey
| | - Pınar Terzioğlu
- Department of Fiber and Polymer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Yeliz Basaran-Elalmis
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, Istanbul, Turkey
| | - Bilge Sema Tekerek
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Nişantaşı University, Istanbul, Turkey
| | - Sevil Yücel
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Shahrouzifar M, Salahinejad E, Sharifi E. Co-incorporation of strontium and fluorine into diopside scaffolds: Bioactivity, biodegradation and cytocompatibility evaluations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109752. [DOI: 10.1016/j.msec.2019.109752] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
|
13
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
14
|
Barrioni BR, Norris E, Li S, Naruphontjirakul P, Jones JR, Pereira MDM. Osteogenic potential of sol-gel bioactive glasses containing manganese. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:86. [PMID: 31302783 DOI: 10.1007/s10856-019-6288-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BGs) are widely used for bone regeneration, and allow the incorporation of different ions with therapeutic properties into the glass network. Amongst the different ions with therapeutic benefits, manganese (Mn) has been shown to influence bone metabolism and activate human osteoblasts integrins, improving cell adhesion, proliferation and spreading. Mn has also been incorporated into bioceramics as a therapeutic ion for improved osteogenesis. Here, up to 4.4 mol% MnO was substituted for CaO in the 58S composition (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) and its effects on the glass properties and capability to influence the osteogenic differentiation were evaluated. Mn-containing BGs with amorphous structure, high specific surface area and nanoporosity were obtained. The presence of Mn2+ species was confirmed by X-ray photoelectron spectroscopy (XPS). Mn-containing BGs presented no cytotoxic effect on human mesenchymal stem cells (hMSCs) and enabled sustained ion release in culture medium. hMSCs osteogenic differentiation stimulation and influence on the mineralisation process was also confirmed through the alkaline phosphatase (ALP) activity, and expression of osteogenic differentiation markers, such as collagen type I, osteopontin and osteocalcin, which presented higher expression in the presence of Mn-containing samples compared to control. Results show that the release of manganese ions from bioactive glass provoked human mesenchymal stem cell (hMSC) differentiation down a bone pathway, whereas hMSCs exposed to the Mn-free glass did not differentiate. Mn incorporation offers great promise for obtaining glasses with superior properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Breno Rocha Barrioni
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil.
| | - Elizabeth Norris
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Parichart Naruphontjirakul
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Thon Buri, Thailand
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
16
|
Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. J Colloid Interface Sci 2019; 547:382-392. [DOI: 10.1016/j.jcis.2019.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023]
|
17
|
Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2530. [PMID: 30545136 PMCID: PMC6316906 DOI: 10.3390/ma11122530] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.
Collapse
Affiliation(s)
- Hugo R Fernandes
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Anuraag Gaddam
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Avito Rebelo
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Brazete
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:341-355. [DOI: 10.1016/j.msec.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/04/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
|
19
|
Moghanian A, Firoozi S, Tahriri M, Sedghi A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:349-360. [PMID: 30033264 DOI: 10.1016/j.msec.2018.05.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Lithium and strontium up to 10 mol% have been substituted for calcium in 58S bioactive glasses in order to enhance specific biological properties such as proliferation, alkaline phosphatase (ALP) activity of cells as well as antibacterial activity. In-vitro formation of hydroxyapatite was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). Substitution of either Li or Sr for Ca in the composition had a retarding effect on the bioactivity while Li decreased and Sr increased the rate of ion release in the simulated body fluid solution. The dissolution rate showed to be inversely proportional to oxygen density of the bioactive glasses. The proposed mechanisms for the lowered bioactivity are a lower supersaturation degree for nucleation of apatite in Li substituted bioactive glasses and blocking of the active growth sites of calcium phosphate by Sr2+ in Sr substituted bioactive glasses. The proliferation rate and alkaline phosphate activity of osteoblast cell line MC3T3-E1 treated with Li and Sr bioactive glasses were studied. 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphate assay showed that all synthesized bioactive glasses with exception of 58S with 10 mol% SrO, exhibited statistically significant increase in both cell proliferation and alkaline phosphatase activity. Finally, 58S bioactive glass with 5 mol% Li2O substitution for CaO was considered as a potential biomaterial in bone repair/regeneration therapies with enhanced biocompatibility, and alkaline phosphate activity, with a negligible loss in the bioactivity compared to the 58S bioglass. At the same time this composition had the highest antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria among all synthesized Li and Sr substituted bioactive glasses.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran; Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran.
| | - Sadegh Firoozi
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran
| | | | - Arman Sedghi
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
20
|
Denry I, Goudouri OM, Harless JD, Hubbard EM, Holloway JA. Strontium-releasing fluorapatite glass-ceramics: Crystallization behavior, microstructure, and solubility. J Biomed Mater Res B Appl Biomater 2018; 106:1421-1430. [PMID: 28636267 PMCID: PMC5740016 DOI: 10.1002/jbm.b.33945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/24/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
The purpose of this work was to investigate the effect of strontium partial replacement for calcium on the crystallization behavior, microstructure and solubility of fluorapatite glass-ceramics. Four glass compositions were prepared with increasing amounts of strontium partially replacing calcium. The crystallization behavior was analyzed by differential scanning calorimetry and X-ray diffraction (XRD). The microstructure was investigated by scanning electron microscopy. The chemical solubility was quantified according to ISO standard 10993-14. The amount of strontium released in solution after incubation in TRIS-HCl or citric acid buffer was measured by atomic absorption spectroscopy. XRD analyses revealed that partially substituted strontium-fluorapatite and strontium-åkermanite crystallized after strontium additions. The lattice cell volume of both phases increased linearly with the amount of strontium in the composition. Strontium additions led to a reduction in crystal size and an increase in crystal number density. The chemical solubility and amount of strontium released in solution increased linearly with the amount of strontium present in the composition in both TRIS-HCl and citric acid buffers. Total amounts of strontium released reached a maximum of 547 ± 80 ppm in TRIS-HCl and 1252 ± 290 ppm in citric acid buffer for the glass composition with the highest amount of strontium. For all strontium-containing compositions, the amount released in TRIS-HCl continued to increase between 70 and 120 h, indicating sustained release rather than burst release. © 2017 Wiley Periodicals, Inc. J Biomater Res Part B: 106B: 1421-1430, 2018.
Collapse
Affiliation(s)
- Isabelle Denry
- Iowa Institute for Oral Health Research, University of Iowa College
of Dentistry, Iowa City, Iowa
- Department of Prosthodontics, University of Iowa College of
Dentistry, Iowa City, Iowa
| | - Ourania-Menti Goudouri
- Iowa Institute for Oral Health Research, University of Iowa College
of Dentistry, Iowa City, Iowa
| | - Jeffrey D. Harless
- Iowa Institute for Oral Health Research, University of Iowa College
of Dentistry, Iowa City, Iowa
| | - E. M. Hubbard
- Iowa Institute for Oral Health Research, University of Iowa College
of Dentistry, Iowa City, Iowa
| | - Julie A. Holloway
- Department of Prosthodontics, University of Iowa College of
Dentistry, Iowa City, Iowa
| |
Collapse
|
21
|
Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:772-779. [DOI: 10.1016/j.msec.2017.03.245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/26/2017] [Accepted: 03/25/2017] [Indexed: 01/06/2023]
|
22
|
Kargozar S, Lotfibakhshaiesh N, Ai J, Mozafari M, Brouki Milan P, Hamzehlou S, Barati M, Baino F, Hill RG, Joghataei MT. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomater 2017; 58:502-514. [PMID: 28624656 DOI: 10.1016/j.actbio.2017.06.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022]
Abstract
UNLABELLED Designing and developing new biomaterials to accelerate bone healing are currently under progress. In this study, we attempted to promote osteogenesis using strontium- and cobalt-substituted bioactive glasses (BGs) seeded with human umbilical cord perivascular cells (HUCPVCs) in a critical size defect in the distal femur of rabbit animal model. The BG particles were successfully synthesized in the form of granules using the melt-derived route. After being isolated, HUCPVCs were expanded and then characterized to use during in vitro and in vivo procedures. The in vitro effects of the synthesized glasses on the isolated HUCPVCs as well as on cell lines SaOS-2 (selected for screening the osteogenetic potential) and HUVEC (selected for screening the angiogenic potential) were assessed by analyzing cytotoxicity, cell attachment, bone-like nodule formation, and real time PCR. The results of in vitro tests indicated cytocompatibility of the synthesized BG particles. For in vivo study, the HUCPVCs-seeded BGs were implanted into the animal's body. Radiographic imaging, histology and immunohistology staining were performed on the harvested specimens at 4 and 12weeks post-surgery. The in vivo evaluation of the samples showed that all the cell/glass constructs accelerated bone healing process in comparison with blank controls. The best in vitro and in vivo results were associated to the BGs containing both strontium and cobalt ions. This group of bioactive glasses is able to promote both osteogenesis and angiogenesis and can therefore be highly suitable for the development of advanced functional bone substitutes. STATEMENT OF SIGNIFICANCE Bone regeneration is considered as an unmet clinical need. The most recent researches focused on incorporation of strontium (Sr2+) and cobalt (Co2+) ions into bioactive glasses structure. Strontium is an alkaline earth metal which is currently used in the treatment of osteoporosis. Also, cobalt is considered as another promising element in the bone regeneration field that may induce hypoxia-mediated angiogenesis. In this study, the osteogenic potential of the strontium- and cobalt-substituted bioactive glasses in granule form seeded with human umbilical cord perivascular cells (HUCPVCs) was evaluated in vitro and in vivo. Indeed, the main goal of this study was to improve the osteogenenic and angiogenic properties of bioactive glasses through the incorporation of strontium and cobalt ions in the glass composition. Although some researches have been conducted on this subject, the influence of the simultaneous use of strontium and cobalt ions on the improvement of bone healing in vivo has been not yet well understood and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Beheshti University of Medical Sciences, School of Pharmacy, Department of Pharmaceutical Biotechnology, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Robert G Hill
- Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Moura D, Souza M, Liverani L, Rella G, Luz G, Mano J, Boccaccini A. Development of a bioactive glass-polymer composite for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:224-232. [DOI: 10.1016/j.msec.2017.03.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
|
24
|
Christie JK, de Leeuw NH. Effect of strontium inclusion on the bioactivity of phosphate-based glasses. JOURNAL OF MATERIALS SCIENCE 2017; 52:9014-9022. [PMID: 32055076 PMCID: PMC6991965 DOI: 10.1007/s10853-017-1155-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/27/2017] [Indexed: 05/30/2023]
Abstract
We have conducted first-principles and classical molecular dynamics simulations of various compositions of strontium-containing phosphate glasses, to understand how strontium incorporation will change the glasses' activity when implanted into the body (bioactivity). To perform the classical simulations, we have developed a new interatomic potential, which takes account of the polarizability of the oxygen ions. The Sr-O bond length is ∼2.44-2.49 Å, and the coordination number is 7.5-7.8. The Q n distribution and network connectivity were roughly constant for these compositions. Sr bonds to a similar number of phosphate chains as Ca does; based on our previous work (Christie et al. in J Phys Chem B 117:10652, 2013), this implies that SrO ↔ CaO substitution will barely change the dissolution rate of these glasses and that the bioactivity will remain essentially constant. Strontium could therefore be incorporated into phosphate glass for biomedical applications.
Collapse
Affiliation(s)
- J. K. Christie
- Department of Materials, Loughborough University, Loughborough, LE11 3TU UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - N. H. de Leeuw
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| |
Collapse
|
25
|
Farag MM, Abd-Allah WM, Ahmed HYA. Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass. J Biomed Mater Res A 2017; 105:1646-1655. [PMID: 28187505 DOI: 10.1002/jbm.a.36035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 02/04/2023]
Abstract
In this work, we studied simultaneous effect of gamma irradiation and SrO substitution for Na2 O on bioactivity, cytotoxicity and antimicrobial properties of 45S5 glass. Gamma irradiation was mainly introduced in this work as an effective sterilizing technique, improvement of bulk properties and surface modification of glass. Where, gamma irradiation is considered a modifier for glass network due to generation of defects resulted from this irradiation. Furthermore, SrO was introduced into the glass structure in place of Na2 O in order to reduce a probable toxic effect of Na2 O for surrounding tissue by decreasing its percentage. Where, Sr2+ is characterized by its antibacterial properties, as well as, it induces formation of bone tissue and inhibits its resorption. The cell viability was studied for selected samples using Vero cells. As well as, antimicrobial activity was evaluated against Bacillus subtilis, Staphylococcus pneumonia, and Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed that substitution of Na2 O by SrO in glass composition decreased the glass dissolution in SBF. However, the glass dissolution increased after irradiation of such glass due to generation of nonbridgingoxygens (NBOs) throughout glass network by gamma irradiation, and this effect was more obvious for Sr-contained glass. On the other hand, two selected Sr-containing glasses (gamma irradiated at 0 and 25 kGy) showed a good ability to stimulate cell proliferation of normal fibroblast cells, as well as, they represented a potential ability to inhibit the growth of or kill bacteria, which is considered an important issue commonly found in a clinical situation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1646-1655, 2017.
Collapse
Affiliation(s)
- M M Farag
- Glass Research Department, National Research Center, 33 El-Bohooth St, Dokki, Giza, 1262, Egypt
| | - W M Abd-Allah
- Radiation Chemistry Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hanaa Y A Ahmed
- The Regional Center of Mycology and Biotechnology- Al-Azhar University, Egypt
| |
Collapse
|
26
|
|
27
|
Li Y, Stone W, Schemitsch EH, Zalzal P, Papini M, Waldman SD, Towler MR. Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions. J Biomater Appl 2016; 31:674-683. [PMID: 27671104 DOI: 10.1177/0885328216672088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work considered the effect of both increasing additions of Strontium (Sr2+) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B2O3-P2O5-CaCO3-Na2CO3-TiO2-SrCO3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na+, Ca2+ and Sr2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released.
Collapse
Affiliation(s)
- Yiming Li
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Wendy Stone
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | | | - Paul Zalzal
- Oakville Memorial Hospital, Oakville, ON, Canada
| | - Marcello Papini
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen D Waldman
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada Chemical Engineering, Ryerson University, Toronto, ON, Canada
| | - Mark R Towler
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
28
|
Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep 2016; 6:32964. [PMID: 27604654 PMCID: PMC5015095 DOI: 10.1038/srep32964] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/15/2016] [Indexed: 11/08/2022] Open
Abstract
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.
Collapse
|
29
|
Arepalli SK, Tripathi H, Hira SK, Manna PP, Pyare R. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:108-16. [PMID: 27612694 DOI: 10.1016/j.msec.2016.06.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022]
Abstract
Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration.
Collapse
Affiliation(s)
- Sampath Kumar Arepalli
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| | - Himanshu Tripathi
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sumit Kumar Hira
- Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Ram Pyare
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
30
|
Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater 2016; 32:412-22. [PMID: 26777094 DOI: 10.1016/j.dental.2015.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Bioactive glass forms a bone mineral apatite interface and can be engineered to promote optimal bone regeneration. Strontium (Sr(2+)) stimulates osteoblast and inhibits osteoclast activities in vitro, and is used clinically as a treatment for osteoporosis. Dental bone defect repair requires rapid bone formation for early osseointegration but, can be subject to infection. The aim of this study was to investigate the osteogenic and antibacterial effects of strontium-substituted bioactive glasses in vitro. METHODS Strontium-substituted bioactive glasses were designed and produced. Then the osteogenic potential and antibacterial effects of bioactive glass particulates were explored. RESULTS Alkaline phosphatase activity, cell number, Type I collagen and mineral nodule formation of MC3T3-E1 cells were significantly promoted by the 5% strontium-substituted glass (5Sr). Furthermore, after incubation with 0.001g and 0.01g glass particulates, the growth of sub-gingival bacteria, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis was significantly inhibited; the antibacterial activity being dependent on the percentage of strontium in the glasses. SIGNIFICANCE These results show that strontium-substituted bioactive glasses significantly promote osteogenic responses of MC3T3-E1 osteoblast-like cells and inhibit the growth of A. actinomycetemcomitans and P. gingivalis.
Collapse
|
31
|
Miola M, Verné E, Ciraldo FE, Cordero-Arias L, Boccaccini AR. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr. Front Bioeng Biotechnol 2015; 3:159. [PMID: 26539431 PMCID: PMC4609893 DOI: 10.3389/fbioe.2015.00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Enrica Verné
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Luis Cordero-Arias
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
32
|
Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:242-50. [DOI: 10.1016/j.msec.2015.03.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/04/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
33
|
Reddy AA, Tulyaganov DU, Kharton VV, Ferreira JMF. Development of bilayer glass-ceramic SOFC sealants via optimizing the chemical composition of glasses—a review. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2925-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Basu B, Sabareeswaran A, Shenoy SJ. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis. J Biomed Mater Res B Appl Biomater 2014; 103:1168-79. [PMID: 25303146 DOI: 10.1002/jbm.b.33270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/28/2014] [Accepted: 08/03/2014] [Indexed: 11/10/2022]
Abstract
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass.
Collapse
Affiliation(s)
- Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Center and Interdisciplinary Bio-engineering Program, Indian Institute of Science, Bangalore, India
| | - A Sabareeswaran
- Histopathology laboratory, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - S J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
35
|
Kapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, Ferreira JMF. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 2014; 10:3264-78. [PMID: 24709542 DOI: 10.1016/j.actbio.2014.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, USA.
| | - Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vikram Dhuna
- Department of Biotechnology, DAV College, Amritsar 143-001, Punjab, India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - Kshitija Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Kim DA, Abo-Mosallam HA, Lee HY, Kim GR, Kim HW, Lee HH. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:665-71. [PMID: 25063167 DOI: 10.1016/j.msec.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 04/24/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO2-P2O5-CaO-ZnO-MgO(1-X)-SrOX-CaF2 (X=0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X=0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X=0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues.
Collapse
Affiliation(s)
- Dong-Ae Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714, Republic of Korea
| | | | - Hye-Young Lee
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Gyu-Ri Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
37
|
Massera J, Hupa L. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:657-68. [PMID: 24338267 DOI: 10.1007/s10856-013-5120-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/06/2013] [Indexed: 05/19/2023]
Abstract
Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.
Collapse
Affiliation(s)
- Jonathan Massera
- Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500, Turku, Finland,
| | | |
Collapse
|
38
|
Roohani-Esfahani SI, Wong KY, Lu Z, Juan Chen Y, Li JJ, Gronthos S, Menicanin D, Shi J, Dunstan C, Zreiqat H. Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in vivo cytocompatibility and osteogenesis. J Mater Chem B 2014; 2:1866-1878. [DOI: 10.1039/c3tb21504k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M. Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived SiO2–CaO–P2O5–MgO-SrO Bioactive Glass. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/15533174.2013.783869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yashar Rezaei
- a Dental Materials Department, School of Dentistry , Tehran University of Medical Sciences , Tehran , Iran
- b Dental Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Fathollah Moztarzadeh
- c Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Sima Shahabi
- a Dental Materials Department, School of Dentistry , Tehran University of Medical Sciences , Tehran , Iran
- d Laser Research Center in Dentistry , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammadreza Tahriri
- c Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| |
Collapse
|
40
|
Sabareeswaran A, Basu B, Shenoy SJ, Jaffer Z, Saha N, Stamboulis A. Early osseointegration of a strontium containing glass ceramic in a rabbit model. Biomaterials 2013; 34:9278-86. [PMID: 24050873 DOI: 10.1016/j.biomaterials.2013.08.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO2-3Al2O3-1.5P2O5-3SrO-2SrF2 during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone.
Collapse
Affiliation(s)
- Arumugan Sabareeswaran
- Histopathology Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, India
| | | | | | | | | | | |
Collapse
|
41
|
Bellucci D, Sola A, Cannillo V. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2138-51. [DOI: 10.1016/j.msec.2013.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 01/06/2023]
|
42
|
Goel A, Kapoor S, Tilocca A, Rajagopal RR, Ferreira JMF. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B 2013; 1:3073-3082. [DOI: 10.1039/c3tb20163e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Bonhomme C, Gervais C, Folliet N, Pourpoint F, Coelho Diogo C, Lao J, Jallot E, Lacroix J, Nedelec JM, Iuga D, Hanna JV, Smith ME, Xiang Y, Du J, Laurencin D. 87Sr Solid-State NMR as a Structurally Sensitive Tool for the Investigation of Materials: Antiosteoporotic Pharmaceuticals and Bioactive Glasses. J Am Chem Soc 2012; 134:12611-28. [DOI: 10.1021/ja303505g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire Chimie de la Matière
Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 11 place Marcelin
Berthelot, 75231 Paris Cedex 05, France
| | - Christel Gervais
- Laboratoire Chimie de la Matière
Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 11 place Marcelin
Berthelot, 75231 Paris Cedex 05, France
| | - Nicolas Folliet
- Laboratoire Chimie de la Matière
Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 11 place Marcelin
Berthelot, 75231 Paris Cedex 05, France
| | - Frédérique Pourpoint
- Laboratoire Chimie de la Matière
Condensée de Paris, UMR CNRS 7574, UPMC Université Paris 06, Collège de France, 11 place Marcelin
Berthelot, 75231 Paris Cedex 05, France
| | - Cristina Coelho Diogo
- IMPC, Institut des Matériaux
de Paris Centre, FR2482, UPMC Université Paris 06, Collège de France, 11 place Marcelin Berthelot,
75231 Paris Cedex 05, France
| | - Jonathan Lao
- Clermont Université, Université
Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique
Corpusculaire, BP 10448, 63000 Clermont-Ferrand, France
| | - Edouard Jallot
- Clermont Université, Université
Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique
Corpusculaire, BP 10448, 63000 Clermont-Ferrand, France
| | - Joséphine Lacroix
- Clermont Université, Université
Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique
Corpusculaire, BP 10448, 63000 Clermont-Ferrand, France
| | - Jean-Marie Nedelec
- Clermont Université, ENSCCF, ICCF, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR
6296, ICCF, F-63177 Aubière
| | - Dinu Iuga
- Department of Physics, University of Warwick, CV4 7AL Coventry, U.K
| | - John V. Hanna
- Department of Physics, University of Warwick, CV4 7AL Coventry, U.K
| | - Mark E. Smith
- Department of Physics, University of Warwick, CV4 7AL Coventry, U.K
- Vice-Chancellor’s Office,
University House, Lancaster University,
LA1 4YW, Lancaster, U.K
| | - Ye Xiang
- Department
of Materials Science and
Engineering, CASCaM, University of North Texas, Denton, Texas 76203, United States
| | - Jincheng Du
- Department
of Materials Science and
Engineering, CASCaM, University of North Texas, Denton, Texas 76203, United States
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier,
UMR 5253, CNRS UM2 UM1 ENSCM, CC 1701 Université de Montpellier 2, Place E. Bataillon, 34095 Montpellier
cedex 5, France
| |
Collapse
|
44
|
Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV. Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14674f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|