1
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
3
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
4
|
Coentro JQ, Di Nubila A, May U, Prince S, Zwaagstra J, Järvinen TAH, Zeugolis D. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed Mater 2022; 17. [PMID: 35176732 DOI: 10.1088/1748-605x/ac5673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor β1 (TGFβ1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFβ trap, a soluble recombinant protein that inhibits TGFβ signalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases. The antifibrotic potential of the dual delivery system was assessed in an in vitro skin fibrosis model induced by macromolecular crowding (MMC) and TGFβ1. SDS-PAGE and HPLC analyses revealed that ~ 50 % of the TGFβ trap and ~ 30 % of the TSA were released from the core and shell compartments, respectively, of the hydrogel system after 10 days (longest time point assessed) in culture. As a direct consequence of this slow release, the core (TGFβ trap) / shell (TSA) hydrogel system induced significantly (p < 0.05) lower than the control group (MMC and TGFβ1) collagen type I deposition (assessed via SDS-PAGE and immunocytochemistry), α smooth muscle actin (αSMA) expression (assessed via immunocytochemistry) and cellular proliferation (assessed via DNA quantification) and viability (assessed via calcein AM and ethidium homodimer-I staining) after 10 days in culture. On the other hand, direct TSA-TGFβ supplementation induced the lowest (p < 0.05) collagen type I deposition, αSMA expression and cellular proliferation and viability after 10 days in culture. Our results illustrate the potential of core-shell collagen hydrogel systems for sustained delivery of antifibrotic molecules.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biomedical Sciences Building, Galway, Galway, IRELAND
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - Stuart Prince
- Faculty of Medicine & Health Technology, Tampere University, Kalevantie 4, Tampere, 33014, FINLAND
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, K1A 0R6, CANADA
| | - Tero A H Järvinen
- Faculty of Medicine & Health Technology, Tampere University, Faculty of Medicine & Health Technology, Tampere, 33014, FINLAND
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, University College Dublin, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, Dublin, 4, IRELAND
| |
Collapse
|
5
|
Amaliya A, Ramadhanti R, Hadikrishna I, Maulina T. The Effectiveness of 0.2% Chlorhexidine Gel on Early Wound Healing after Tooth Extraction: A Randomized Controlled Trial. Eur J Dent 2022; 16:688-694. [PMID: 35016228 PMCID: PMC9507567 DOI: 10.1055/s-0041-1739544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective
This study aimed to evaluate the effect of 0.2% chlorhexidine (CHX) gel on wound healing after tooth extraction.
Materials and Methods
A single blind, randomized controlled trial was performed recruiting 32 participants who underwent dental extractions. Patients were randomly allocated for CHX group or placebo group. The primary outcomes were wound closure measured with calipers and healings were assessed by Landry et al index after 7 days of topical application of allocated gels on extraction sites.
Results
The wound closures were greater in CHX group compared with placebo group and healing scores were correlated with the use of CHX gel (
p
-value < 0.05).
Conclusion
In a population of healthy nonsmoker adults, application of 0.2% CHX gel twice a day for 7 days after tooth extraction has a beneficial effect on wound healing.
Collapse
Affiliation(s)
- Amaliya Amaliya
- Department of Periodontology, Faculty of Dentistry, Universitas Padjadjaran, West Java, Indonesia
| | - Rika Ramadhanti
- Faculty of Dentistry, Universitas Padjadjaran, West Java, Indonesia
| | - Indra Hadikrishna
- Department of Oral Surgery, Faculty of Dentistry, Universitas Padjadjaran, West Java, Indonesia
| | - Tantry Maulina
- Department of Oral Surgery, Faculty of Dentistry, Universitas Padjadjaran, West Java, Indonesia
| |
Collapse
|
6
|
A Novel Effective Formulation of Bioactive Compounds for Wound Healing: Preparation, In Vivo Characterization, and Comparison of Various Postbiotics Cold Creams in a Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8577116. [PMID: 34917159 PMCID: PMC8670929 DOI: 10.1155/2021/8577116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
The wound is a break in the integrity of the skin produced by injury, illness, or operation. Wound healing is an essential dynamic biological/physiological process that occurs in response to tissue damage. The huge health, economic, and social effects of wounds on patients and societies necessitate the research to find novel potential therapeutic agents in order to promote wound healing. Postbiotics, the newest member of the biotics family, are valuable functional bioactive substances produced by probiotics through their metabolic activity, which have several beneficial properties, including immunomodulatory, anti-inflammatory, antimicrobial, and angiogenesis characteristics, resulting in acceleration of wound healing. In the current study, three topical cold cream formulations containing postbiotics obtained from Lactobacillus fermentum, Lactobacillus reuteri, or Bacillus subtilis sp. natto probiotic strains were prepared. The effectiveness and wound healing activity of the developed postbiotics cold cream formulations were investigated compared to cold cream without postbiotics and no treatment via wound closure investigation, hydroxyproline content assay, and histological assessment in 25 Sprague Dawley rats divided into five groups. Interestingly, analysis of the results revealed that all three formulations containing postbiotics significantly accelerated the wound healing process. However, in general, the Bacillus subtilis natto cold cream manifested a better wound healing property. The pleasing wound healing characteristics of the topical postbiotics cold creams through the in vivo experiment suggest that formulations containing postbiotics can be considered as a promising nominee for wound healing approaches.
Collapse
|
7
|
Maraldi M, Lisi M, Moretti G, Sponchioni M, Moscatelli D. Health care-associated infections: Controlled delivery of cationic antiseptics from polymeric excipients. Int J Pharm 2021; 607:120956. [PMID: 34333024 DOI: 10.1016/j.ijpharm.2021.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the treatment of health care-associated infections represents a serious issue, due to the increasing number of bacterial strains resistant to traditional antibiotics. The use of antiseptics like quaternary ammonium salts and biguanides is a viable alternative to face these life-threatening infections. However, their inherent toxicity as well as the necessity of providing a sustained release to avoid the formation of pathogen biofilms are compelling obstacles towards their assessment in the hospitals. Within this framework, the role of polymeric drug delivery systems is fundamental to overcome the aforementioned problems. Biocompatibility, biodegradability and excipient-drug interactions are crucial properties determining the efficacy of the formulation. In this work, we provide an in-depth analysis of the polymer drug delivery systems that have been developed or are under development for the sustained release of positively charged antiseptics, highlighting the crucial characteristics that allowed to achieve the most relevant therapeutic effects. We reported and compared natural occurring polymers and synthetic carriers to show their pros and cons and applicability in the treatment of health care-associated infections. Then, the discussion is focused on a particularly relevant class of materials adopted for the scope, represented by polyesters, which gave rise, due to their biodegradability, to the field of resorbable drug delivery devices. Finally, a specific analysis on the effect of the polymer functionalization over the formulation performances for the different types of polymeric carriers is presented.
Collapse
Affiliation(s)
- Matteo Maraldi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Marco Lisi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giacomo Moretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
8
|
Sun H, Yu Y, Zhang Y, Li J, Cheng Y, Huang S, Wang W, Zhang X. Glycosylated Nanotherapeutics with β-Lactamase Reversible Competitive Inhibitory Activity Reinvigorates Antibiotics against Gram-Negative Bacteria. Biomacromolecules 2021; 22:2834-2849. [PMID: 34164980 DOI: 10.1021/acs.biomac.1c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are currently first-line therapy for bacterial infections. However, the curative effect of antibiotic remedies is limited due to increasingly prevalent bacterial resistance. The strategy to reverse intrinsic acquired drug resistance presents a promising option for reinvigorating antibiotic therapy. Here, we developed a β-lactamase-inhibiting macromolecule composed of benzoxaborole and dextran for precise transport of β-lactam antibiotics to strains overexpressing β-lactamase. Benzoxaborole-derived nanotherapeutics enabled specific recognition and rapid internalization, and the nanotherapeutics with a high affinity toward bacteria distinctly inhibited the catalytic activity of bacterially secreted β-lactamase by a reversible competitive mechanism. Thus, the system entrapping cefoxitin harbored a significantly enhanced ability to kill drug-resistant Escherichia coli compared to the ability of the drug by specifically overcoming the membrane barrier and acquired resistance mechanism of β-lactamase overproduction. The reversible competitive nanotherapeutics exhibited a robust therapeutic efficacy in rat wounds infected with drug-resistant bacteria; the efficacy was due to efficient bacterial elimination and collateral benzoxaborole-dependent amelioration of the inflammatory response. The above results offered insights into the facile design of precise macromolecular adjuvants to exclusively reverse the acquired bacterial resistance mechanism and increase the utility of antibiotic therapies against antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, Vega-Baudrit J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. Int J Mol Sci 2021; 22:1408. [PMID: 33573351 PMCID: PMC7866792 DOI: 10.3390/ijms22031408] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials possess 3D architectures similar to human structures, providing physical support for cell growth and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems. Locally heated tumors above the polymer lower the critical solution temperature and can induce its conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result, these systems can contribute to the wound healing process in accelerating tissue healing, avoiding large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present a comprehensive review that aims to demonstrate these systems' capacity to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to patient convenience and reduce drug toxicity and side effects.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200 San José, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jose Castro-Alpízar
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060 San José, Costa Rica;
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), 11300 Montevideo, Uruguay;
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200 San José, Costa Rica;
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000 Heredia, Costa Rica
| |
Collapse
|
10
|
Iqubal MK, Saleem S, Iqubal A, Chaudhuri A, Pottoo FH, Ali J, Baboota S. Natural, Synthetic and their Combinatorial Nanocarriers Based Drug Delivery System in the Treatment Paradigm for Wound Healing Via Dermal Targeting. Curr Pharm Des 2020; 26:4551-4568. [PMID: 32532188 DOI: 10.2174/1381612826666200612164511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone
instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering
the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth
factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic
therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management
of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and
growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement
of nanotechnology can ameliorate the performance of these protective coverings. In recent years,
nano-based formulations have gained immense popularity among researchers for the wound healing process due
to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the
entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic
and herbal agents, and combination therapy available for the treatment and the current nano-based systems
available for delivery through the topical route for wound healing.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam- 31441, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
11
|
Abazari M, Ghaffari A, Rashidzadeh H, Momeni Badeleh S, Maleki Y. Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res B Appl Biomater 2019; 108:1934-1952. [PMID: 31886606 DOI: 10.1002/jbm.b.34535] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 01/07/2023]
Abstract
Wound healing process is a natural and intricate response of the body to its injuries and includes a well-orchestrated sequence of biochemical and cellular phenomena to restore the integrity of skin and injured tissues. Complex nature and associated complications of burn wounds lead to an incomplete and prolonged recovery of these types of wounds. Among different materials and systems which have been used in treating the wounds, nanotechnology driven therapeutic systems showed a great opportunity to improvement and enhancement of the healing process of different type of wounds. The aim of this study is to provide an overview of the recent studies about the various nanotechnology-based management of burn wounds and the future outlook of these systems in this area. Laboratory and animal models for assessing the efficacy of these systems in burn wound management also discussed.
Collapse
Affiliation(s)
- Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Azadeh Ghaffari
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Rashidzadeh
- Department of pharmaceutical biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yaser Maleki
- Department of Nanochemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater 2019; 100:255-269. [PMID: 31606531 DOI: 10.1016/j.actbio.2019.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Inspired by the wound healing characteristics of the oral mucosa, a biomimetic hydrogel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, we find out that the combination of high, rapid and sequential expression of some growth factors and the sterile-moist microenvironment are crucial for re-epithelialization and precise control of the inflammation process. On the base of our findings, a hydrogel loaded with several functional compounds was prepared to achieve a comprehensive simulation of the oral mucosal trauma microenvironment for skin wound healing. After 7 days treatment, the skin wound area of the treated group was only about 20% of that of the untreated group, and the proportion of collagen type III and type I in the treated group was much higher than that of the untreated group, suggesting lighter scar hyperplasia. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintaining of a sterile and humid environment is expected to have great application prospect in the field of chronic trauma repair and cosmetic surgery. STATEMENT OF SIGNIFICANCE: Long healing time and scar hyperplasia during wound healing have been a serious problem in the past decades of wound healing research. Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Therefore, in recent years, many scholars have begun to study the healing mechanism of oral mucosa, which supports a new inspiration for the study of skin wound repair: whether the injured skin can achieve a rapid scar-free healing effect similar to oral mucosa? Imitating the biological process of oral mucosa wound healing would be a promising therapeutic strategy in wound healing. Therefore, inspired by the wound healing characteristics of the oral mucosa, a biomimetic gel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, the combination of high, rapid and sequential expression of some growth factors and sterile-moist microenvironment was crucial for re-epithelialization and precise control of the inflammation process. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintance of a sterile and humid environment implies its potential use in the field of chronic trauma repair and cosmetic surgery.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jun Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315200, China
| | - Kai Shao
- Medical Experimental Center, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao 266035, China
| | - Lili Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Xuefang Lan
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jinsheng Shi
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China.
| |
Collapse
|
13
|
Sharma PK, Halder M, Srivastava U, Singh Y. Antibacterial PEG-Chitosan Hydrogels for Controlled Antibiotic/Protein Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5313-5322. [DOI: 10.1021/acsabm.9b00570] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Udit Srivastava
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| |
Collapse
|
14
|
Vijayan A, James PP, Nanditha CK, Kumar GSV. Multiple cargo deliveries of growth factors and antimicrobial peptide using biodegradable nanopolymer as a potential wound healing system. Int J Nanomedicine 2019; 14:2253-2263. [PMID: 30992665 PMCID: PMC6445221 DOI: 10.2147/ijn.s190321] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Treatment of wounds with the help of nanoparticles (NPs) is more effective and superior in comparison to traditional wound healing methods as it protects and sustains active drug release at the wound site thus enhancing the safety of the drug and reducing the possibility of side effects. The advantages of this method are the possibility of allowing a reduction in administered dose, limiting toxicity levels to the minimum, and increasing safety of topical delivery of the drug. Materials and methods We report the synthesis of a novel poly (lactic-co-glycolic acid) (PLGA) NP-based multicargo delivery system for growth factors and antimicrobial peptide. Growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were entrapped in PLGA NPs by solvent diffusion method and an antimicrobial peptide (K4) was conjugated to the NP by carbodiimide chemistry. The developed multiple cargo delivery systems with growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) were investigated and optimized for potential wound healing. Results The system showed a sustained release of growth factors and was evaluated for cytotoxicity by MTT and live/dead assay, which revealed that the bioactivity of the growth factor-entrapped NPs was higher than that of free growth factors, and it also induced enhanced cell proliferation in vitro. Conclusion The development of a system for the codelivery of growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) was investigated for potential wound healing application. The entrapment of growth factors with very high efficiency is an advantage in this method along with its sustained release from the nanoparticulate system, which will enhance the angiogenesis. Our system also displayed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Amritha Vijayan
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - Pinky Prabha James
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - C K Nanditha
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| | - G S Vinod Kumar
- Chemical Biology, Nano Drug Delivery Systems (NDDS), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India,
| |
Collapse
|
15
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
16
|
Liu W, Lee BS, Mieler WF, Kang-Mieler JJ. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro. Curr Eye Res 2018; 44:264-274. [PMID: 30295090 DOI: 10.1080/02713683.2018.1533983] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Current standard of care for neovascular eye diseases require repeated intravitreal bolus injections of anti-vascular endothelial growth factors (anti-VEGFs). The purpose of this study was to validate a degradable microsphere-thermoresponsive hydrogel drug delivery system (DDS) capable of releasing bioactive aflibercept in a controlled and extended manner for 6 months. MATERIALS AND METHODS The DDS was fabricated by suspending aflibercept-loaded poly(lactic-co-glycolic acid) microspheres within a biodegradable poly(ethylene glycol)-co-(l-lactic acid) diacrylate/N-isopropylacrylamide (PEG-PLLA-DA/NIPAAm) thermoresponsive hydrogel. Encapsulation efficiency of DDSs and in vitro release profiles were characterized by iodine-125 radiolabeled aflibercept. The degradation of hydrogel was determined by dry weight changes. The cytotoxicity from degraded DDS byproducts was investigated by quantifying cell viability using LIVE/DEAD® assay. In addition, dot blot and enzyme-linked immunosorbent assay were used to determine the bioactivity of released drug. Finally, morphology of microspheres and hydrogel were investigated by cryo-scanning electron microscopy before and after thermal transformation. RESULTS The microsphere-hydrogel DDS was capable of releasing bioactive aflibercept in a controlled and extended manner for 6 months. The amount and rate of aflibercept release can be controlled by both the cross-linker concentration and microspheres load amount. The initial burst (release within 24 h) was from 37.35 ± 4.92 to 74.56 ± 6.16 µg (2 and 3 mM hydrogel, each loaded with 10 and 20 mg/ml of microspheres, respectively), followed by controlled drug release of 0.07-0.15 µg/day. Higher PEG-PLLA-DA concentration (3 mM) degraded faster than the lower concentration (2 mM). No significant cytotoxicity from degraded DDS byproducts was found for all investigated time points. Bioactivity of released drug was maintained at therapeutic level over entire release period. CONCLUSIONS The microsphere-hydrogel DDS is safe and can deliver bioactive aflibercept in a controlled manner. This may provide a significant advantage over current bolus injection therapies in the treatment of ocular neovascularization.
Collapse
Affiliation(s)
- Wenqiang Liu
- a Biomedical Engineering , Illinois Institute of Technology , Chicago , Illinois , USA
| | - Bao-Shiang Lee
- b Research Resource Center , University of Illinois at Chicago , Chicago , Illinois , USA
| | - William F Mieler
- c Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , Illinois , USA
| | | |
Collapse
|
17
|
Kiaee G, Mostafalu P, Samandari M, Sonkusale S. A pH-Mediated Electronic Wound Dressing for Controlled Drug Delivery. Adv Healthc Mater 2018; 7:e1800396. [PMID: 30073801 DOI: 10.1002/adhm.201800396] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/02/2018] [Indexed: 11/07/2022]
Abstract
Topical administration of drugs in a timely manner according to the physiological need at the wound site can enhance the healing rate of chronic wounds. Herein, an electronic wound dressing that enables active topical drug delivery in response to electrically induced pH change is demonstrated for potential treatment of chronic wounds. In this platform, the pH of the dressing is controlled using an electrical field. This allows precise electrical control over the temporal profile of pH-mediated drug release. This engineered dressing is comprised of microfabricated electrodes serving as anode and cathode, a pH sensitive hydrogel, and controlled electronic circuitry. The anode is coated with a pH sensitive poly(ethylene glycol)-diacrylate/Laponite hydrogel layer containing drug loaded chitosan nanoparticles (ChPs). Applying a DC voltage between the electrodes results in a local change in pH near the electrodes. In basic environments found near the anode, the ChPs release their drug due to the dehydration process, while in acidic environments the release profile is negligible. Turning off the DC voltage results in immediate pH recovery and cessation of drug release. The biocompatibility of the dressing has also been confirmed-the pH shift resulting from application of DC voltage does not affect the wound pH significantly.
Collapse
Affiliation(s)
- Gita Kiaee
- Nano Lab; Department of Electrical and Computer Engineering; Tufts University; Medford MA 02155 USA
| | - Pooria Mostafalu
- Nano Lab; Department of Electrical and Computer Engineering; Tufts University; Medford MA 02155 USA
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | - Mohamadmahdi Samandari
- Cellular and Molecular Biomechanics Laboratory; Department of Bioengineering; Imperial College London; SW7 2AZ London UK
- School of Mechanical Engineering; College of Engineering; University of Tehran; North Kargar St Tehran 14395-515 Iran
| | - Sameer Sonkusale
- Nano Lab; Department of Electrical and Computer Engineering; Tufts University; Medford MA 02155 USA
| |
Collapse
|
18
|
Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 2018:2495848. [PMID: 30154861 PMCID: PMC6091336 DOI: 10.1155/2018/2495848] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 02/08/2023] Open
Abstract
Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Hendrina Shipanga
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Arielle Rowe
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | | |
Collapse
|
19
|
Tian R, Qiu X, Yuan P, Lei K, Wang L, Bai Y, Liu S, Chen X. Fabrication of Self-Healing Hydrogels with On-Demand Antimicrobial Activity and Sustained Biomolecule Release for Infected Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17018-17027. [PMID: 29693373 DOI: 10.1021/acsami.8b01740] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial infection has been considered as one of the most critical challenges in bioengineering applications especially in tissue regeneration, which engenders severe threat to public health. Herein, a hydrogel performing properties of rapid self-healing, on-demand antibiosis and controlled cargo release was fabricated by a simple assembly of Fe complex as the cross-linker and hyaluronic acid as the gel network. This hydrogel is able to locally degrade and release Fe3+ to kill bacteria as needed because of hyaluronidase excreted by surrounding bacteria, resulting in efficient antibacterial activity against different types of bacteria. The sustained release property of certain types of growth factors was also observed from this hydrogel owing to its dense network. Moreover, this hydrogel could repeatedly heal itself in minutes because of the coordination interaction between Fe3+ and COOH, exhibiting good potential in bioengineering applications on the exposed tissue, where the materials are easily damaged during daily life. When topically applied onto damaged mouse skin with infection of Staphylococcus aureus, the hydrogel is able to inhibit microbial infections, meanwhile promoting cutaneous regeneration, which formed new skin with no inflammation within a 10 day treatment. These results demonstrate the potential application of this self-healing hydrogel for the integrated therapy of antibiosis and tissue regeneration.
Collapse
Affiliation(s)
- Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Kai Lei
- College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Lin Wang
- College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| |
Collapse
|
20
|
Chereddy KK, Vandermeulen G, Préat V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen 2018; 24:223-36. [PMID: 26749322 DOI: 10.1111/wrr.12404] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.
Collapse
Affiliation(s)
- Kiran Kumar Chereddy
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Véronique Préat
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| |
Collapse
|
21
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
22
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
23
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
24
|
Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowski W, Memic A, Tamayol A, Khademhosseini A. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 2018; 127:138-166. [PMID: 29626550 PMCID: PMC6003879 DOI: 10.1016/j.addr.2018.04.008] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted.
Collapse
Affiliation(s)
- Saghi Saghazadeh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Chiara Rinoldi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Maik Schot
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- MIRA Institute of Biomedical Technology and Technical Medicine, Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Sara Saheb Kashaf
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- The University of Chicago Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Fatemeh Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Elmira Jalilian
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Hossein Derakhshandeh
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Adnan Memic
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Karabin NB, Allen S, Kwon HK, Bobbala S, Firlar E, Shokuhfar T, Shull KR, Scott EA. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Commun 2018; 9:624. [PMID: 29434200 PMCID: PMC5809489 DOI: 10.1038/s41467-018-03001-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.
Collapse
Affiliation(s)
- Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sean Allen
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Ha-Kyung Kwon
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Emre Firlar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Kemme M, Heinzel-Wieland R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol. J Funct Biomater 2018; 9:E4. [PMID: 29324696 PMCID: PMC5872090 DOI: 10.3390/jfb9010004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
Profound screening and evaluation methods for biocide-releasing polymer films are crucial for predicting applicability and therapeutic outcome of these drug delivery systems. For this purpose, we developed an agar overlay assay embedding biopolymer composite films in a seeded microbial lawn. By combining this approach with model-dependent analysis for agar diffusion, antimicrobial potency of the entrapped drug can be calculated in terms of minimum inhibitory concentrations (MICs). Thus, the topical antiseptic 4-hexylresorcinol (4-HR) was incorporated into poly(lactic-co-glycolic acid) (PLGA) films at different loadings up to 3.7 mg/cm² surface area through a solvent casting technique. The antimicrobial activity of 4-HR released from these composite films was assessed against a panel of Gram-negative and Gram-positive bacteria, yeasts and filamentous fungi by the proposed assay. All the microbial strains tested were susceptible to PLGA-4-HR films with MIC values down to 0.4% (w/w). The presented approach serves as a reliable method in screening and quantifying the antimicrobial activity of polymer composite films. Moreover, 4-HR-loaded PLGA films are a promising biomaterial that may find future application in the biomedical and packaging sector.
Collapse
Affiliation(s)
- Michael Kemme
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany.
| | - Regina Heinzel-Wieland
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany.
| |
Collapse
|
27
|
Chen X, Xu ML, Wang CN, Zhang LZ, Zhao YH, Zhu CL, Chen Y, Wu J, Yang YM, Wang XD. A partition-type tubular scaffold loaded with PDGF-releasing microspheres for spinal cord repair facilitates the directional migration and growth of cells. Neural Regen Res 2018; 13:1231-1240. [PMID: 30028332 PMCID: PMC6065242 DOI: 10.4103/1673-5374.235061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ. Platelet-derived growth factor (PDGF) has been shown to promote the migration of bone marrow stromal cells; however, cytokines need to be released at a steady rate to maintain a stable concentration in vivo. Therefore, new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization, proliferation and differentiation. In the present study, a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres (PDGF-MSs). The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity, biocompatibility, and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells (MUSE-NPCs). We found that pre-freezing for 2 hours at −20°C significantly increased the yield of partition-type tubular scaffolds, and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs. The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release. The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells. These findings indicate that the combination of a partition-type tubular scaffold, PDGF-MSs and MUSE-NPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.
Collapse
Affiliation(s)
- Xue Chen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou; Department of Histology and Embryology, Medical College, Nantong University, Nantong; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Mei-Ling Xu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng-Niu Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Lu-Zhong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Hong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Lai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Min Yang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
28
|
Gronowicz G, Jacobs E, Peng T, Zhu L, Hurley M, Kuhn LT. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer. Tissue Eng Part A 2017; 23:1490-1501. [PMID: 28946792 DOI: 10.1089/ten.tea.2017.0111] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in response to BMP-2, leading to improved bone defect healing.
Collapse
Affiliation(s)
- Gloria Gronowicz
- 1 Department of Surgery, University of Connecticut Health Center , Farmington, Connecticut
| | - Emily Jacobs
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Tao Peng
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Li Zhu
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| | - Marja Hurley
- 3 Department of Medicine, University of Connecticut Health Center , Farmington, Connecticut
| | - Liisa T Kuhn
- 2 Department of Biomedical Engineering, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
29
|
Scholz M, Reske T, Böhmer F, Hornung A, Grabow N, Lang H. In vitro chlorhexidine release from alginate based microbeads for periodontal therapy. PLoS One 2017; 12:e0185562. [PMID: 28973028 PMCID: PMC5626444 DOI: 10.1371/journal.pone.0185562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is one of the most common infectious diseases globally that, if untreated, leads to destruction of the tooth supporting tissues and finally results in tooth loss. Evidence shows that standard procedures as mechanical root cleaning could be supported by further treatment options such as locally applied substances. Due to gingival crevicular fluid flow, substances are commonly washed out off the periodontal pockets. The evaluation of administration techniques and the development of local drug releasing devices is thus an important aspect in periodontal research. This study describes the development and examination of a new alginate based, biodegradable and easily applicable drug delivery system for chlorhexidine (CHX). Different micro beads were produced and loaded with CHX and the release profiles were investigated by high performance liquid chromatography (HPLC). The in vitro-demonstrated release of CHX from alginate based beads shows comparable releasing characteristics as clinically approved systems. Yet many characteristics of this new delivery system show to be favourable for periodontal therapy. Easy application by injection, low production costs and multifunctional adaptions to patient related specifics may improve the usage in routine care.
Collapse
Affiliation(s)
- Malte Scholz
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Thomas Reske
- Institute for Biomedical Engineering, University of Rostock, Rostock, Germany
| | - Femke Böhmer
- Institute for General Practice, Rostock University Medical Center, Rostock, Germany
| | - Anne Hornung
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
30
|
PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater 2017; 33:830-846. [DOI: 10.1016/j.dental.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
|
31
|
Osswald CR, Guthrie MJ, Avila A, Valio JA, Mieler WF, Kang-Mieler JJ. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System. Curr Eye Res 2017; 42:1293-1301. [PMID: 28557571 DOI: 10.1080/02713683.2017.1302590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Demonstrate in vivo that controlled and extended release of a low dose of anti-vascular endothelial growth factor (anti-VEGF) from a microsphere-hydrogel drug delivery system (DDS) has a therapeutic effect in a laser-induced rat model of choroidal neovascularization (CNV). METHODS Anti-VEGF (ranibizumab or aflibercept) was loaded into poly(lactic-co-glycolic acid) microspheres that were then suspended within an injectable poly(N-isopropylacrylamide)-based thermo-responsive hydrogel DDS.The DDS was shown previously to release bioactive anti-VEGF for ~200 days. CNV was induced using an Ar-green laser. The four experimental groups were as follows: (i) non-treated, (ii) drug-free DDS, (iii) anti-VEGF-loaded DDS, and (iv) bolus injection of anti-VEGF. CNV lesion areas were measured based on fluorescein angiograms and quantified using a multi-Otsu thresholding technique. Intraocular pressure (IOP) and dark-adapted electroretinogram (ERG) were also obtained pre- and post-treatment (1, 2, 4, 8, and 12 weeks). RESULTS The anti-VEGF-loaded DDS group had significantly smaller (60%) CNV lesion areas than non-treated animals throughout the study. A small transient increase in IOP was seen immediately after injection; however, all IOP measurements at all time points were within the normal range. There were no significant changes in ERG maximal response compared to pre-treatment measurements for the drug-loaded DDS, which suggests no adverse effects on retinal cellular function. CONCLUSIONS The current study demonstrates that the DDS can effectively decrease laser-induced CNV lesions in a murine model. Controlled and extended release from our DDS achieved greater treatment efficacy using an order of magnitude less drug than what is required with bolus administration. This suggests that our DDS may provide a significant advantage in the treatment of posterior segment eye diseases.
Collapse
Affiliation(s)
- Christian R Osswald
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Micah J Guthrie
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Abigail Avila
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Joseph A Valio
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - William F Mieler
- b Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Jennifer J Kang-Mieler
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| |
Collapse
|
32
|
Bini RA, Silva MF, Varanda LC, da Silva MA, Dreiss CA. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids Surf B Biointerfaces 2017; 157:191-198. [PMID: 28595135 DOI: 10.1016/j.colsurfb.2017.05.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 05/20/2017] [Indexed: 02/07/2023]
Abstract
We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system.
Collapse
Affiliation(s)
- Rafael A Bini
- Federal University of Technology - Paraná - UTFPR, Biotechnology and Bioprocess Engineering, Campus Toledo Rua Cristo Rei, 19. 85902-490, Toledo, Brazil.
| | - Mônica F Silva
- University of São Paulo, Colloidal Materials Group, Chemistry Institute of São Carlos, São Carlos, 13566-590, Brazil
| | - Laudemir C Varanda
- University of São Paulo, Colloidal Materials Group, Chemistry Institute of São Carlos, São Carlos, 13566-590, Brazil
| | - Marcelo A da Silva
- King's College London, Institute of Pharmaceutical Science, 150 Stamford, Street, London SE1 9NH, UK
| | - Cécile A Dreiss
- King's College London, Institute of Pharmaceutical Science, 150 Stamford, Street, London SE1 9NH, UK
| |
Collapse
|
33
|
Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 2017; 491:265-272. [DOI: 10.1016/j.jcis.2016.12.058] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023]
|
34
|
Jacobs EE, Gronowicz G, Hurley MM, Kuhn LT. Biomimetic calcium phosphate/polyelectrolyte multilayer coatings for sequential delivery of multiple biological factors. J Biomed Mater Res A 2017; 105:1500-1509. [PMID: 28002652 DOI: 10.1002/jbm.a.35985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Combinations of growth factors synergistically enhance tissue regeneration, but typically require sequential, rather than co-delivery from biomaterials for maximum efficacy. Polyelectrolyte multilayer (PEM) coatings can deliver multiple factors without loss of activity; however, sequential delivery from PEM has been limited due to interlayer diffusion that results in co-delivery of the factors. This study shows that addition of a biomimetic calcium phosphate (bCaP) barrier layer to a PEM coating effectively prevents interlayer diffusion and enables sequential delivery of two different biomolecules via direct cell access. A simulated body fluid method was used to deposit a layer of bCaP followed by 30 bilayers of PEM made with poly-l-Lysine (+) and poly l-Glutamic acid (-) (bCaP-PEM). Measurements of MC3T3-E1 proliferation and viability over time on bCaP-PEM were used to demonstrate the sequential delivery kinetics of a proliferative factor [fibroblast growth factor-2 (FGF-2)] followed by a cytotoxic factor (antimycin A, AntiA). FGF-2 and AntiA both retained their bioactivity within bCaP-PEM, yet no release of FGF-2 or AntiA from bCaP-PEM was observed when cells were absent indicating a cell-mediated, local delivery process. This coating technique is useful for a variety of applications that would benefit from highly localized, sequential delivery of multiple biomolecules governed by cell initiated degradation that avoids off-target effects associated with diffusion-based release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1500-1509, 2017.
Collapse
Affiliation(s)
- E E Jacobs
- Reconstructive Sciences, University of Connecticut Health, Farmington, Connecticut.,Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - G Gronowicz
- Department of Surgery, University of Connecticut Health, Farmington, Connecticut
| | - M M Hurley
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - L T Kuhn
- Reconstructive Sciences, University of Connecticut Health, Farmington, Connecticut.,Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
35
|
Chen MM, Cao H, Liu YY, Liu Y, Song FF, Chen JD, Zhang QQ, Yang WZ. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf B Biointerfaces 2017; 151:189-195. [DOI: 10.1016/j.colsurfb.2016.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
36
|
Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 2017; 149:341-350. [DOI: 10.1016/j.colsurfb.2016.10.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
|
37
|
Cheng P, Zeng W, Li L, Huo D, Zeng L, Tan J, Zhou J, Sun J, Liu G, Li Y, Guan G, Wang Y, Zhu C. PLGA-PNIPAM Microspheres Loaded with the Gastrointestinal Nutrient NaB Ameliorate Cardiac Dysfunction by Activating Sirt3 in Acute Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600254. [PMID: 27981013 PMCID: PMC5157182 DOI: 10.1002/advs.201600254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Indexed: 05/06/2023]
Abstract
Acute myocardial infarction (AMI) is the death of cardiomyocytes caused by a lack of energy due to ischemia. Nutrients supplied by the blood are the main source of cellular energy for cardiomyocytes. Sodium butyrate (NaB), a gastrointestinal nutrient, is a short-chain fatty acid (butyric acid) that may act as an energy source in AMI therapy. Poly(lactic-co-glycolic acid)-Poly (N-isopropylacrylamide) microspheres loaded with NaB (PP-N) are synthesized to prolong the release of NaB and are injected into ischemic zones in a Sprague-Dawley rat AMI model. Here, this study shows that PP-N can significantly ameliorate cardiac dysfunction in AMI, and NaB can specially bind to Sirt3 structure, activating its deacetylation ability and inhibiting the generation of reactive oxygen species, autophagy, and angiogenesis promotion. The results indicate that NaB, acting as a nutrient, can protect cardiomyocytes in AMI. These results suggest that the gastrointestinal nutrient NaB may be a new therapy for AMI treatment, and PP-N may be the ideal therapeutic regimen.
Collapse
Affiliation(s)
- Panke Cheng
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Wen Zeng
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Li Li
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Da Huo
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Lingqing Zeng
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Ju Tan
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Jingting Zhou
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Jiansen Sun
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Ge Liu
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Yanzhao Li
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Ge Guan
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Yuxin Wang
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| | - Chuhong Zhu
- Department of AnatomyNational & Regional Engineering Laboratory of Tissue EngineeringState and Local Joint Engineering Laboratory For Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of ChongqingThird Military Medical UniversityChongqing400038China
| |
Collapse
|
38
|
Zivkovic L, Akar B, Roux BM, Spremo Potparevic B, Bajic V, Brey EM. Investigation of DNA damage in cells exposed to poly (lactic‐co‐glycolic acid) microspheres. J Biomed Mater Res A 2016; 105:284-291. [DOI: 10.1002/jbm.a.35849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Lada Zivkovic
- Institute of Physiology, Faculty of Pharmacy, Department of Biology and Human GeneticsUniversity of BelgradeBelgrade11000 Serbia
| | - Banu Akar
- Biomedical EngineeringIllinois Institute of TechnologyChicago Illinois
- Research Service, Edward HinesJr. V.A. HospitalHines Illinois
| | - Brianna M. Roux
- Biomedical EngineeringIllinois Institute of TechnologyChicago Illinois
- Research Service, Edward HinesJr. V.A. HospitalHines Illinois
| | - Biljana Spremo Potparevic
- Institute of Physiology, Faculty of Pharmacy, Department of Biology and Human GeneticsUniversity of BelgradeBelgrade11000 Serbia
| | - Vladan Bajic
- The Laboratory for Radiobiology and Molecular GeneticsInstitute for Nuclear Research “Vinca”, University of BelgradeBelgrade11000 Serbia
| | - Eric M. Brey
- Biomedical EngineeringIllinois Institute of TechnologyChicago Illinois
- Research Service, Edward HinesJr. V.A. HospitalHines Illinois
| |
Collapse
|
39
|
Zhu Y, Hoshi R, Chen S, Yi J, Duan C, Galiano RD, Zhang HF, Ameer GA. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release 2016; 238:114-122. [PMID: 27473766 DOI: 10.1016/j.jconrel.2016.07.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus. Altered cell migration due to microcirculatory deficiencies as well as excessive and prolonged reactive oxygen species production are implicated in the delayed healing of DFUs. The goal of this research was to assess whether sustained release of SDF-1, a chemokine that promotes endothelial progenitor cell homing and angiogenesis, from a citrate-based antioxidant thermoresponsive polymer would significantly improve impaired dermal wound healing in diabetes. Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) was synthesized via sequential polycondensation and free radical polymerization reactions. SDF-1 was entrapped via gelation of the PPCN+SDF-1 solution above its lower critical solution temperature (LCST) and its release and bioactivity was measured. The effect of sustained release of SDF-1 from PPCN (PPCN+SDF-1) versus a bolus application of SDF-1 in phosphate buffered saline (PBS) on wound healing was evaluated in a diabetic murine splinted excisional dermal wound model using gross observation, histology, immunohistochemistry, and optical coherence tomography microangiography. Increasing PPCN concentration decreased SDF-1 release rate. The time to 50% wound closure was 11days, 16days, 14days, and 17days for wounds treated with PPCN+SDF-1, SDF-1 only, PPCN only, and PBS, respectively. Wounds treated with PPCN+SDF-1 had the shortest time for complete healing (24days) and exhibited accelerated granulation tissue production, epithelial maturation, and the highest density of perfused blood vessels. In conclusion, sustained release of SDF-1 from PPCN is a promising and easy to use therapeutic strategy to improve the treatment of chronic non-healing DFUs.
Collapse
Affiliation(s)
- Yunxiao Zhu
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Ryan Hoshi
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Siyu Chen
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Ji Yi
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Chongwen Duan
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Robert D Galiano
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao F Zhang
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Guillermo A Ameer
- Biomedical Engineering Department, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Simpson-Querrey Institute, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
40
|
WYGANOWSKA-SWIATKOWSKA MARZENA, KOTWICKA MALGORZATA, URBANIAK PAULINA, NOWAK AGNIESZKA, SKRZYPCZAK-JANKUN EWA, JANKUN JERZY. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int J Mol Med 2016; 37:1594-600. [DOI: 10.3892/ijmm.2016.2550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 11/05/2022] Open
|
41
|
Bae YJ, Cho CH, Lee WJ, Huh JS, Lim JO. Optimization of recombinant human platelet-derived growth factor-BB encapsulated in Poly (lactic-co-glycolic acid) microspheres for applications in wound healing. Tissue Eng Regen Med 2016; 13:13-20. [PMID: 30603380 DOI: 10.1007/s13770-015-0029-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/21/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023] Open
Abstract
Growth factors play multiple and critical roles in wound repair processes. Platelet-derived growth factor (PDGF) is a potent growth factor that is particularly important in the early inflammatory phase of wound healing. In order to extend the half-life of PDGF, polymeric encapsulation is used. In the current study, Poly (lactic-co-glycolic acid) (PLGA) microspheres containing recombinant human (rh) PDGF-BB were prepared to prolong the effectiveness of this growth factor. PLGA microspheres were optimized using a modified w/o/w-double-emulsion/solvent evaporation method by changing the processing conditions of stirring speed and emulsifier (polyvinyl alcohol) concentration. Microspheres prepared using the optimized method released rhPDGF-BB for up to three weeks. An in vitro migration assay showed a significant decrease in the wound area in cells treated with rhPDGF-BB microspheres compared to control cells. These findings demonstrate the potential of rhPDGF-BB encapsulated in microspheres to enhance wound healing.
Collapse
Affiliation(s)
- Yun Ju Bae
- 1Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea.,Korea Institute of Industrial Technology, Biomedical Manufacturing Technology Center, Daegu, Korea
| | - Chi Heung Cho
- 3Department of Food Science and Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University, Yongin, Korea
| | - Woo Jong Lee
- Korea Institute of Industrial Technology, Biomedical Manufacturing Technology Center, Daegu, Korea
| | - Jeung Soo Huh
- 4Department of Materials Science and Metallurgy, College of Engineering, Kyungpook National University, Daegu, Korea
| | - Jeong Ok Lim
- 1Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea.,5Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
42
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
43
|
Donnadio A, Ambrogi V, Pietrella D, Pica M, Sorrentino G, Casciola M. Carboxymethylcellulose films containing chlorhexidine–zirconium phosphate nanoparticles: antibiofilm activity and cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra04151e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid composite films of carboxymethylcellulose and chlorhexidine intercalated nanosized zirconium phosphate result able to reduce the formation of biofilms on wound surface.
Collapse
Affiliation(s)
- Anna Donnadio
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Donatella Pietrella
- Dipartimento di Scienze Farmaceutiche
- Microbiology and Immunology Laboratory
- University of Perugia
- 06122 Perugia
- Italy
| | - Monica Pica
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Giulia Sorrentino
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - Mario Casciola
- Dipartimento di Chimica, Biologia, Biotecnologia
- CEMIN, University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
44
|
Akar B, Jiang B, Somo SI, Appel AA, Larson JC, Tichauer KM, Brey EM. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation. Biomaterials 2015; 72:61-73. [PMID: 26344364 DOI: 10.1016/j.biomaterials.2015.08.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022]
Abstract
Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo.
Collapse
Affiliation(s)
- Banu Akar
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Bin Jiang
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Jeffery C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, United States
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, United States; Research Service, Hines Veterans Administration Hospital, Hines, IL, United States.
| |
Collapse
|
45
|
Abstract
INTRODUCTION Complete regeneration and restoration of the skin's structure and function with no or minimal scarring remains the goal of wound healing research. Novel pharmaceutical carriers have the potential to deliver wound healing drugs such as antibiotics, antimicrobials, human EGFs, and so on. Thus, offering a potential platform to overcome the limitations of conventional wound dressings. AREAS COVERED This review will describe various techniques such as microspheres, nanoparticles, liposomes, solid lipid nanoparticles, nano and microemulsions, sponges and wafers, and so on, that are successfully applied as carriers for wound healing drugs. Results of various studies including in vitro and in vivo experiments are also discussed. EXPERT OPINION Controlled and localized delivery of wound healing drugs to the wounds is more convenient than systemic administration as higher concentrations of the medication are delivered directly to the desired area in a sustained manner. They are also capable of providing optimum environmental conditions to facilitate wound healing while eliminating the need for frequent changes of dressings. As the number of people suffering from chronic wounds is increasing around the world, controlled delivery of wound healing agents have enormous potential for patient-friendly wound management.
Collapse
Affiliation(s)
- Lalduhsanga Pachuau
- a Department of Pharmaceutical Sciences, Assam University , Silchar, Assam 788011, India +91 986 236 2392 ;
| |
Collapse
|
46
|
Geiger BC, Nelson MT, Munj HR, Tomasko DL, Lannutti JJ. Dual drug release from CO2-infused nanofibers via hydrophobic and hydrophilic interactions. J Appl Polym Sci 2015. [DOI: 10.1002/app.42571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brett C. Geiger
- Department of Biomedical Engineering; The Ohio State University; Columbus Ohio 43210
| | - Mark Tyler Nelson
- Department of Biomedical Engineering; The Ohio State University; Columbus Ohio 43210
| | - Hrishikesh R. Munj
- William G. Lowrie Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - David L. Tomasko
- William G. Lowrie Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - John J. Lannutti
- Department of Materials Science and Engineering; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
47
|
van der Smissen A, Hoffmeister PG, Friedrich N, Watarai A, Hacker MC, Schulz-Siegmund M, Anderegg U. Artificial extracellular matrices support cell growth and matrix synthesis of human dermal fibroblasts in macroporous 3D scaffolds. J Tissue Eng Regen Med 2015; 11:1390-1402. [DOI: 10.1002/term.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/26/2015] [Accepted: 04/22/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Anja van der Smissen
- Department of Dermatology, Venereology and Allergology; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| | - Peter-Georg Hoffmeister
- Pharmaceutical Technology, Institute of Pharmacy; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| | - Nadja Friedrich
- Department of Dermatology, Venereology and Allergology; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| | - Akira Watarai
- Department of Dermatology, Venereology and Allergology; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
- School of Medicine; Kitasato University; Japan
| | - Michael C. Hacker
- Pharmaceutical Technology, Institute of Pharmacy; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology; Leipzig University; Germany
- Collaborative Research Centre (SFB-TR67); Matrix Engineering Leipzig and Dresden; Germany
| |
Collapse
|
48
|
Osswald CR, Kang-Mieler JJ. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System. Ann Biomed Eng 2015; 43:2609-17. [DOI: 10.1007/s10439-015-1314-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
|
49
|
Jabbari E. Nanoparticles for Stem‐Cell Engineering. STEM‐CELL NANOENGINEERING 2015:143-169. [DOI: 10.1002/9781118540640.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Mehdizadeh H, Somo SI, Bayrak ES, Brey EM, Cinar A. Design of Polymer Scaffolds for Tissue Engineering Applications. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503133e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hamidreza Mehdizadeh
- Illinois Institute of Technology, 3300 S Federal Street, Chicago, Illinois 60616, United States
| | - Sami I. Somo
- Illinois Institute of Technology, 3300 S Federal Street, Chicago, Illinois 60616, United States
| | - Elif S. Bayrak
- Illinois Institute of Technology, 3300 S Federal Street, Chicago, Illinois 60616, United States
| | - Eric M. Brey
- Illinois Institute of Technology, 3300 S Federal Street, Chicago, Illinois 60616, United States
| | - Ali Cinar
- Illinois Institute of Technology, 3300 S Federal Street, Chicago, Illinois 60616, United States
| |
Collapse
|