1
|
Andriolo L, Sangiorgio A, Berruto M, Madry H, Peretti GM, Varenna M, Yiftah B, Zaffagnini S, Filardo G. Conservative treatments of bone marrow lesions. J Exp Orthop 2025; 12:e70151. [PMID: 40191034 PMCID: PMC11970530 DOI: 10.1002/jeo2.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Bone marrow lesions (BMLs) of the knee are a common magnetic resonance imaging finding and are present in a wide range of pathologies, including traumatic contusions and fractures, following cartilage surgery alterations, osteoarthritis, transient BMLs syndromes, subchondral insufficiency fractures of the knee and spontaneous osteonecrosis of the knee. Regardless of their aetiology, clinical management may prove challenging. This review focuses on the conservative treatment approaches to manage patients affected by knee BML, thanks to the contribution of field experts. Methods Experts from around the globe were involved in performing a review on the most used conservative treatment strategies to address BMLs, trying to summarize the available evidence from the most popular first-line treatments while documenting their applications and results for the different BML aetiologies. Results Positive results were documented for unloading knee braces, external shockwave therapy, hyperbaric oxygen therapy, pulsed electromagnetic fields therapy and bisphosphonates. Nonetheless, the analysis of the scientific literature documented a scarce number of publications specifically addressing the knee joint, with even less evidence when it comes to the results for the different aetiologies of BMLs. Conclusion The management of BMLs is challenging, and many factors influence clinical and radiological outcomes. This paper summarized the evidence on conservative treatments for knee BMLs. Although showing promising results, conservative options still need to be fully investigated. Open questions to be addressed concern treatment duration, BML stage and overlapping with concomitant therapies. Further studies are needed to identify the best first-line conservative approach or treatment combination based on each BML aetiology. Level of Evidence Level V: expert opinion.
Collapse
Affiliation(s)
- Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | - Massimo Berruto
- U.O.C. 1st Orthopedic Clinic, ASST Gaetano Pini‐CTOMilanItaly
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityHomburgGermany
| | - Giuseppe M. Peretti
- E.U.O.R.R. Unit, Department of Biomedical Sciences for Health, IRCCS Orthopedic Institute GaleazziUniversity “La Statale”MilanItaly
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical SciencesASST Gaetano Pini‐CTOMilanItaly
| | | | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
2
|
Li W, Taboas JM, Almarza AJ. Chondrogenic potential of superficial versus cartilage layer cells of the temporomandibular joint condyle in photopolymerizable gelatin-based hydrogels. Proc Inst Mech Eng H 2024; 238:741-754. [PMID: 39109566 PMCID: PMC11650919 DOI: 10.1177/09544119241267021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The objectives of this study were to compare the chondrogenic potential of cells derived from different layers of Mandibular condyle cartilage and to gain further understanding of the impact of chondrogenic cues when embedded into a novel hydrogel scaffold (PGH, a polymer blend of poly (ethylene glycol), gelatin, and heparin) compared to a gelatin hydrogel scaffold (GEL). Cartilage layer cells (CLCs) and fibroblastic superficial layer cells (SLCs) were harvested from the mandibular condyle of boer goats obtained from a local abattoir. After expansion, cells were seeded into PGH and GEL hydrogels and cultured in chondrogenic media for 3 weeks. Scaffolds were harvested at 0, 1, and 3 week(s) and processed for gross appearance, histochemical, biochemical, and mechanical assays. In terms of chondrogenesis, major differences were observed between scaffold materials, but not cell types. Glycosaminoglycan (GAG) staining showed GEL scaffolds deposited GAG during the 3 week period, which was also confirmed with the biochemical testing. Moreover, GEL scaffolds had significantly higher compressive modulus and peak stress than PGH scaffolds at all time points with the largest difference seen in week 3. It can be concluded that GEL outperformed PGH in chondrogenesis. It can also be concluded that materials play a more important role in the process of chondrogenesis than the tested cell populations. Fibroblastic SLCs were shown to have similar chondrogenic potential as CLCs cells, suggesting a rich pool of progenitor cells in the superficial fibroblastic layer capable of undergoing chondrogenesis given appropriate physical and chemical cues.
Collapse
Affiliation(s)
- Wuyang Li
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Juan M. Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alejandro Jose Almarza
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
3
|
Lee J, Lee E, Huh SJ, Kang JI, Park KM, Byun H, Lee S, Kim E, Shin H. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue. Tissue Eng Part A 2024; 30:225-243. [PMID: 38062771 DOI: 10.1089/ten.tea.2023.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
A combination of hydrogels and stem cell spheroids has been used to engineer three-dimensional (3D) osteochondral tissue, but precise zonal control directing cell fate within the hydrogel remains a challenge. In this study, we developed a composite spheroid-laden bilayer hydrogel to imitate osteochondral tissue by spatially controlled differentiation of human adipose-derived stem cells. Meticulous optimization of the spheroid-size and mechanical strength of gelatin methacryloyl (GelMA) hydrogel enables the cells to homogeneously sprout within the hydrogel. Moreover, fibers immobilizing transforming growth factor beta-1 (TGF-β1) or bone morphogenetic protein-2 (BMP-2) were incorporated within the spheroids, which induced chondrogenic or osteogenic differentiation of cells in general media, respectively. The spheroids-filled GelMA solution was crosslinked to create the bilayer hydrogel, which demonstrated a strong interfacial adhesion between the two layers. The cell sprouting enhanced the adhesion of each hydrogel, demonstrated by increase in tensile strength from 4.8 ± 0.4 to 6.9 ± 1.2 MPa after 14 days of culture. Importantly, the spatially confined delivery of BMP-2 within the spheroids increased mineral deposition and more than threefold enhanced osteogenic genes of cells in the bone layer while the cells induced by TGF-β1 signals were apparently differentiated into chondrocytes within the cartilage layer. The results suggest that our composite spheroid-laden hydrogel could be used for the biofabrication of osteochondral tissue, which can be applied to engineer other complex tissues by delivery of appropriate biomolecules.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
- Department of Bioengineering, Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Thomas V, Mercuri J. In vitro and in vivo efficacy of naturally derived scaffolds for cartilage repair and regeneration. Acta Biomater 2023; 171:1-18. [PMID: 37708926 DOI: 10.1016/j.actbio.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Intrinsically present bioactive cues allow naturally derived materials to mimic important characteristics of cartilage while also facilitating cellular recruitment, infiltration, and differentiation. Such traits are often what tissue engineers desire when they fabricate scaffolds, and yet, literature from the past decade is replete with examples of how most natural constructs with native biomolecules have only offered sub-optimal results in the treatment of cartilage defects. This paper provides an in-depth investigation of the performance of such scaffolds through a review of a collection of natural materials that have been used so far in repairing/regenerating articular cartilage. Although in vivo and clinical studies are the best indicators of scaffold efficacy, it was, however, observed that a large number of natural constructs had very promising scaffold characteristics to begin with, and would often show good in vitro/in vivo results. Finally, an examination of the biochemistry and biomechanics of repair tissues in studies that reported positive outcomes showed that these attributes often approached target cartilage values. The paper concludes with an outline of current trends as well as future directions for the field. STATEMENT OF SIGNIFICANCE: This review offers an exclusive focus on natural scaffold materials for cartilage repair and regeneration and provides a quantitative and qualitative analysis of their performance under a variety of in vitro and in vivo conditions. Readers can learn about environments where natural scaffolds have had the most success and tailor strategies to optimize their own work. Furthermore, given how the glycosaminoglycan (GAG) to hydroxyproline (HYP) ratio and moduli are fundamental attributes of hyaline cartilage, this paper adds to the body of knowledge by exploring how these characteristics reflect in preclinical outcomes. Such perspectives can greatly aid researchers better utilize natural materials for Cartilage Tissue Engineering (CTE).
Collapse
Affiliation(s)
- Vishal Thomas
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA.
| |
Collapse
|
5
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
6
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
7
|
Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen Med 2022; 7:70. [PMID: 36494368 PMCID: PMC9734656 DOI: 10.1038/s41536-022-00266-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.
Collapse
Affiliation(s)
- Katherine H Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Shierly W Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022; 10:911281. [PMID: 36131726 PMCID: PMC9483725 DOI: 10.3389/fbioe.2022.911281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sandwiched between articular cartilage and subchondral bone, the calcified cartilage layer (CCL) takes on both biomechanical and biochemical functions in joint development and ordinary activities. The formation of CCL is not only unique in articular cartilage but can also be found in the chondro-osseous junction adjacent to the growth plate during adolescence. The formation of CCL is an active process under both cellular regulation and intercellular communication. Abnormal alterations of CCL can be indications of degenerative diseases including osteoarthritis. Owing to the limited self-repair capability of articular cartilage and core status of CCL in microenvironment maintenance, tissue engineering reconstruction of CCL in damaged cartilage can be of great significance. This review focuses on possible tissue engineering reconstruction methods targeting CCL for further OA treatment.
Collapse
Affiliation(s)
- Weiyang Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixi Ye
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueyao Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Senbo An
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| |
Collapse
|
9
|
Erickson CB, Hill R, Pascablo D, Kazakia G, Hansen K, Bahney C. A timeseries analysis of the fracture callus extracellular matrix proteome during bone fracture healing. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2021; 3:1-30. [PMID: 35765657 PMCID: PMC9236279 DOI: 10.36069/jols/20220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While most bones fully self-heal, certain diseases require bone allograft to assist with fracture healing. Bone allografts offer promise as treatments for such fractures due to their osteogenic properties. However, current bone allografts made of decellularized bone extracellular matrix (ECM) have high failure rates, and thus grafts which improve fracture healing outcomes are needed. Understanding specific changes to the ECM proteome during normal fracture healing would enable the identification of key proteins that could be used enhance osteogenicity of bone allograft. Here, we performed a timeseries analysis of the fracture callus in mice to investigate proteomic and mineralization changes to the ECM at key stages of fracture healing. We found that changes to the ECM proteome largely coincide with the distinct phases of fracture healing. Basement membrane proteins (AGRN, COL4, LAMA), cartilage proteins (COL2A1, ACAN), and collagen crosslinking enzymes (LOXL, PLOD, ITIH) were initially upregulated, followed by bone specific proteoglycans and collagens (IBSP, COL1A1). Various tissue proteases (MMP2, 9, 13, 14; CTSK, CTSG, ELANE) were expressed at different levels throughout fracture healing. These changes coordinated with mineralization of the fracture callus, which increased steeply during the initial stages of healing. Interestingly the later timepoint was characterized by a response to wound healing and high expression of clotting factors (F2, 7, 9, 10). We identified ELANE and ITIH2 as tissue remodeling enzymes having no prior known involvement with fracture healing. This data can be further mined to identify regenerative proteins for enhanced bone graft design.
Collapse
Affiliation(s)
- Christopher B. Erickson
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Ryan Hill
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Donna Pascablo
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
| | - Galateia Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics,University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Chelsea Bahney
- Stedman Philippon Research Institute (SPRI), Center for Regenerative and Personalized Medicine. Vail, CO
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA
| |
Collapse
|
10
|
Tam WL, Freitas Mendes L, Chen X, Lesage R, Van Hoven I, Leysen E, Kerckhofs G, Bosmans K, Chai YC, Yamashita A, Tsumaki N, Geris L, Roberts SJ, Luyten FP. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther 2021; 12:513. [PMID: 34563248 PMCID: PMC8466996 DOI: 10.1186/s13287-021-02580-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation. However, limited availability of these tissues and lack of predictive biological response result in limitations for clinical demands. Tissue engineering using viable cell-based implants is a strategic approach to address these unmet medical needs. Methods Herein, the in vitro and in vivo cartilage and bone tissue formation potencies of human pluripotent stem cells were investigated. The induced pluripotent stem cells were specified towards the mesodermal lineage and differentiated towards chondrocytes, which subsequently self-assembled into cartilaginous organoids. The tissue formation capacity of these organoids was then challenged in an ectopic and orthotopic bone formation model. Results The derived chondrocytes expressed similar levels of collagen type II as primary human articular chondrocytes and produced stable cartilage when implanted ectopically in vivo. Upon targeted promotion towards hypertrophy and priming with a proinflammatory mediator, the organoids mediated successful bridging of critical size long bone defects in immunocompromised mice. Conclusions These results highlight the promise of induced pluripotent stem cell technology for the creation of functional cartilage tissue intermediates that can be explored for novel bone healing strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02580-7.
Collapse
Affiliation(s)
- Wai Long Tam
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium
| | - Luís Freitas Mendes
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Xike Chen
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Raphaëlle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Biomechmanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000, Leuven, Belgium
| | - Inge Van Hoven
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Elke Leysen
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.,Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium.,Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Kathleen Bosmans
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium
| | - Yoke Chin Chai
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.,Department of Development and Regeneration, Stem Cell Institute, KU Leuven, O&N4, Herestraat 49, 3000, Leuven, Belgium
| | - Akihiro Yamashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kawahara-cho 53, Kyoto, 606-8507, Japan
| | - Noriyuki Tsumaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kawahara-cho 53, Kyoto, 606-8507, Japan
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium.,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.,Biomechmanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000, Leuven, Belgium.,GIGA In Silico Medicine, Quartier Hôpital, Avenue de l'Hôpital 11 B34, 4000, Liège, Belgium
| | - Scott J Roberts
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium.,Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Frank P Luyten
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, Onderwijs en Navorsing 8th floor, bus 813, 3000, Leuven, Belgium. .,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 Bus 813, 3000, Leuven, Belgium. .,Laboratory for Tissue Engineering (TE), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, O&N1, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Wang Y, Li A, Mehmood K, Hussain R, Abbas RZ, Javed MT, Chang YF, Hu L, Pan J, Li Y, Shi L, Tang Z, Zhang H. Long-term exposure to the fluoride blocks the development of chondrocytes in the ducks: The molecular mechanism of fluoride regulating autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112225. [PMID: 33864983 DOI: 10.1016/j.ecoenv.2021.112225] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 05/15/2023]
Abstract
Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.
Collapse
Affiliation(s)
- Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Khalid Mehmood
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - M Tariq Javed
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Guo JL, Kim YS, Koons GL, Lam J, Navara AM, Barrios S, Xie VY, Watson E, Smith BT, Pearce HA, Orchard EA, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomater 2021; 128:120-129. [PMID: 33930575 PMCID: PMC8222183 DOI: 10.1016/j.actbio.2021.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Osteochondral defects present a unique clinical challenge due to their combination of phenotypically distinct cartilage and bone, which require specific, stratified biochemical cues for tissue regeneration. Furthermore, the articular cartilage exhibits significantly worse regeneration than bone due to its largely acellular and avascular nature, prompting significant demand for regenerative therapies. To address these clinical challenges, we have developed a bilayered, modular hydrogel system that enables the click functionalization of cartilage- and bone-specific biochemical cues to each layer. In this system, the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) was click conjugated with either a cartilage- or bone-specific peptide sequence of interest, and then mixed with a suspension of thermoresponsive polymer and mesenchymal stem cells (MSCs) to generate tissue-specific, cell-encapsulated hydrogel layers targeting the cartilage or bone. We implanted bilayered hydrogels in rabbit femoral condyle defects and investigated the effects of tissue-specific peptide presentation and cell encapsulation on osteochondral tissue repair. After 12 weeks implantation, hydrogels with a chondrogenic peptide sequence produced higher histological measures of overall defect filling, cartilage surface regularity, glycosaminoglycan (GAG)/cell content of neocartilage and adjacent cartilage, and bone filling and bonding compared to non-chondrogenic hydrogels. Furthermore, MSC encapsulation promoted greater histological measures of overall defect filling, cartilage thickness, GAG/cell content of neocartilage, and bone filling. Our results establish the utility of this click functionalized hydrogel system for in vivo repair of the osteochondral unit. STATEMENT OF SIGNIFICANCE: Osteochondral repair requires mimicry of both cartilage- and bone-specific biochemical cues, which are highly distinct. While traditional constructs for osteochondral repair have mimicked gross compositional differences between the cartilage and bone in mineral content, mechanical properties, proteins, or cell types, few constructs have recapitulated the specific biochemical cues responsible for the differential development of cartilage and bone. In this study, click biofunctionalized, bilayered hydrogels produced stratified presentation of developmentally inspired peptide sequences for chondrogenesis and osteogenesis. This work represents, to the authors' knowledge, the first application of bioconjugation chemistry for the simultaneous repair of bone and cartilage tissue. The conjugation of tissue-specific peptide sequences successfully promoted development of both cartilage and bone tissues in vivo.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Virginia Y Xie
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | | | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Mark E Wong
- Department of Surgery, Division of Maxillofacial Surgery, The University of Texas School of Dentistry, Houston, TX, USA.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
13
|
The development of natural polymer scaffold-based therapeutics for osteochondral repair. Biochem Soc Trans 2021; 48:1433-1445. [PMID: 32794551 DOI: 10.1042/bst20190938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the limited regenerative capacity of cartilage, untreated joint defects can advance to more extensive degenerative conditions such as osteoarthritis. While some biomaterial-based tissue-engineered scaffolds have shown promise in treating such defects, no scaffold has been widely accepted by clinicians to date. Multi-layered natural polymer scaffolds that mimic native osteochondral tissue and facilitate the regeneration of both articular cartilage (AC) and subchondral bone (SCB) in spatially distinct regions have recently entered clinical use, while the transient localized delivery of growth factors and even therapeutic genes has also been proposed to better regulate and promote new tissue formation. Furthermore, new manufacturing methods such as 3D bioprinting have made it possible to precisely tailor scaffold micro-architectures and/or to control the spatial deposition of cells in requisite layers of an implant. In this way, natural and synthetic polymers can be combined to yield bioactive, yet mechanically robust, cell-laden scaffolds suitable for the osteochondral environment. This mini-review discusses recent advances in scaffolds for osteochondral repair, with particular focus on the role of natural polymers in providing regenerative templates for treatment of both AC and SCB in articular joint defects.
Collapse
|
14
|
Burdis R, Kelly DJ. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater 2021; 126:1-14. [PMID: 33711529 DOI: 10.1016/j.actbio.2021.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
The modest clinical impact of musculoskeletal tissue engineering (TE) can be attributed, at least in part, to a failure to recapitulate the structure, composition and functional properties of the target tissue. This has motivated increased interest in developmentally inspired TE strategies, which seek to recapitulate key events that occur during embryonic and post-natal development, as a means of generating truly biomimetic grafts to replace or regenerate damaged tissues and organs. Such TE strategies can be substantially enabled by emerging biofabrication and bioprinting strategies, and in particular the use of cellular aggregates, microtissues and organoids as 'building blocks' for the development of larger tissues and/or organ precursors. Here, the application of such biological building blocks for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. The importance of first scaling-down to later scale-up will be discussed, as this is viewed as a key component of engineering functional grafts using cellular aggregates or microtissues. In the context of engineering anatomically accurate tissues of scale suitable for tissue engineering and regenerative medicine applications, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues fuse and self-organise will be reviewed. Throughout the paper, we will highlight some of the key challenges facing this emerging field. STATEMENT OF SIGNIFICANCE: The field of bioprinting has grown substantially in recent years, but despite the hype and excitement it has generated, there are relatively few examples of bioprinting strategies producing implants with superior regenerative potential to that achievable with more traditional tissue engineering approaches. This paper provides an up-to-date review of emerging biofabrication and bioprinting strategies which use cellular aggregates and microtissues as 'building blocks' for the development of larger musculoskeletal tissues and/or organ precursors - a field of research that can potentially enable functional regeneration of damaged and diseased tissues. The application of cellular aggregates and microtissues for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. In the context of engineering anatomically accurate tissues of scale, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues self-organise is addressed, as well as key challenges facing this emerging field.
Collapse
|
15
|
Hall GN, Tam WL, Andrikopoulos KS, Casas-Fraile L, Voyiatzis GA, Geris L, Luyten FP, Papantoniou I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials 2021; 273:120820. [PMID: 33872857 DOI: 10.1016/j.biomaterials.2021.120820] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteum-derived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated. Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin. Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Wai Long Tam
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Konstantinos S Andrikopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece; Department of Physics, University of Patras, GR-265 00, Rio-Patras, Greece
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, Leuven, 3000, Belgium
| | - George A Voyiatzis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; GIGA in Silico Medicine, Université de Liège, Avenue de L'Hôpital 11 - BAT 34, 4000, Liège 1, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3001, Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium.
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece.
| |
Collapse
|
16
|
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim GD, Affatato S, Al‐Haddad H, Lisignoli G, Ricotti L. Graphene Oxide-Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Adv Healthc Mater 2021; 10:e2001434. [PMID: 33586352 PMCID: PMC11468639 DOI: 10.1002/adhm.202001434] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Lorenzo Vannozzi
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Eti Teblum
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Madina Telkhozhayeva
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Gilbert Daniel Nessim
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Saverio Affatato
- IRCSS Istituto Ortopedico RizzoliLaboratorio Tecnologie BiomedicheVia di Barbiano, 1/10Bologna40136Italy
| | - Hind Al‐Haddad
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Leonardo Ricotti
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| |
Collapse
|
17
|
Scaffold-free human mesenchymal stem cell construct geometry regulates long bone regeneration. Commun Biol 2021; 4:89. [PMID: 33469154 PMCID: PMC7815708 DOI: 10.1038/s42003-020-01576-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Biomimetic bone tissue engineering strategies partially recapitulate development. We recently showed functional restoration of femoral defects using scaffold-free human mesenchymal stem cell (hMSC) condensates featuring localized morphogen presentation with delayed in vivo mechanical loading. Possible effects of construct geometry on healing outcome remain unclear. Here, we hypothesized that localized presentation of transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2 to engineered hMSC tubes mimicking femoral diaphyses induces endochondral ossification, and that TGF-β1 + BMP-2-presenting hMSC tubes enhance defect healing with delayed in vivo loading vs. loosely packed hMSC sheets. Localized morphogen presentation stimulated chondrogenic priming/endochondral differentiation in vitro. Subcutaneously, hMSC tubes formed cartilage templates that underwent bony remodeling. Orthotopically, hMSC tubes stimulated more robust endochondral defect healing vs. hMSC sheets. Tissue resembling normal growth plate was observed with negligible ectopic bone. This study demonstrates interactions between hMSC condensation geometry, morphogen bioavailability, and mechanical cues to recapitulate development for biomimetic bone tissue engineering. Herberg et al. previously showed functional healing of femoral defects using scaffold-free human mesenchymal stem cell (hMSC) condensates with localized morphogen presentation. In this study, they report the importance of the tubular geometry of MSC condensates in long bone regeneration. Unlike loosely packed hMSC sheets, only hMSC tubes induced regenerate tissue partially resembling normal growth plate.
Collapse
|
18
|
Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, Ki-Wai Ho K, Qin L. Innovative Tissue-Engineered Strategies for Osteochondral Defect Repair and Regeneration: Current Progress and Challenges. Adv Healthc Mater 2020; 9:e2001008. [PMID: 33103381 DOI: 10.1002/adhm.202001008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/19/2020] [Indexed: 12/20/2022]
Abstract
Clinical treatments for the repair of osteochondral defects (OCD) are merely palliative, not completely curative, and thus enormously unfulfilled challenges. With the in-depth studies of biology, medicine, materials, and engineering technology, the conception of OCD repair and regeneration should be renewed. During the past decades, many innovative tissue-engineered approaches for repairing and regenerating damaged osteochondral units have been widely explored. Various scaffold-free and scaffold-based strategies, such as monophasic, biphasic, and currently fabricated multiphasic and gradient architectures have been proposed and evaluated. Meanwhile, progenitor cells and tissue-specific cells have also been intensively investigated in vivo as well as ex vivo. Concerning bioactive factors and drugs, they have been combined with scaffolds and/or living cells, and even released in a spatiotemporally controlled manner. Although tremendous progress has been achieved, further research and development (R&D) is needed to convert preclinical outcomes into clinical applications. Here, the osteochondral unit structure, its defect classifications, and diagnosis are summarized. Commonly used clinical reparative techniques, tissue-engineered strategies, emerging 3D-bioprinting technologies, and the status of their clinical applications are discussed. Existing challenges to translation are also discussed and potential solutions for future R&D directions are proposed.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Van Osch Gjvm
- Department of Orthopedics and Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, 2600 AA, The Netherlands
| | - Jos Malda
- Department of Orthopaedics of University Medical Center Utrecht, and Department of Clinical Sciences of Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Kevin Ki-Wai Ho
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| |
Collapse
|
19
|
Chen J, Chin A, Almarza AJ, Taboas JM. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. Biomed Mater 2020; 15:045006. [PMID: 31470441 PMCID: PMC11934051 DOI: 10.1088/1748-605x/ab401f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ideal combination of hydrogel components for regeneration of cartilage and cartilaginous interfaces is a significant challenge because control over differentiation into multiple lineages is necessary. Stabilization of the phenotype of stem cell derived chondrocytes is needed to avoid undesired progression to terminal hypertrophy and tissue mineralization. A novel ternary blend hydrogel composed of methacrylated poly(ethylene glycol) (PEG), gelatin, and heparin (PGH) was designed to guide chondrogenesis by bone marrow derived mesenchymal stem cells (BMSCs) and maintenance of their cartilaginous phenotype. The hydrogel material effects on chondrogenic and osteogenic differentiation by BMSCs were evaluated in comparison to methacrylated gelatin hydrogel (GEL), a conventional bioink used for both chondrogenic and osteogenic applications. PGH and GEL hydrogels were loaded with goat BMSCs and cultured in chondrogenic and osteogenic mediums in vitro over six weeks. The PGH showed no sign of mineral deposition in an osteogenic environment in vitro. To further evaluate material effects, the hydrogels were loaded with adult human BMSCs (hBMSCs) and transforming growth factor β-3 and grown in subcutaneous pockets in mice over eight weeks. Consistent with the in vitro results, the PGH had greater potential to induce chondrogenesis by BMSCs in vivo compared to the GEL as evidenced by elevated gene expression of chondrogenic markers, supporting its potential for stable cartilage engineering. The PGH also showed a greater percentage of GAG positive cells compared to the GEL. Unlike the GEL, the PGH hydrogel exhibited anti-osteogenic effects in vivo as evidenced by negative Von Kossa staining and suppressed gene expression of hypertrophic and osteogenic markers. By nature of their polymer composition alone, the PGH and GEL regulated BMSC differentiation down different osteochondral lineages. Thus, the PGH and GEL are promising hydrogels to regenerate stratified cartilaginous interfacial tissues in situ, such as the mandibular condyle surface, using undifferentiated BMSCs and a stratified scaffold design.
Collapse
Affiliation(s)
- Jingming Chen
- Department of Bioengineering; University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Center for Craniofacial Regeneration; University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | | | |
Collapse
|
20
|
Abstract
Decellularized corneal scaffolds have the potential to be used as alternatives to donor corneas during keratoplasty. Here a decellularization technique is described that involves the use of sodium dodecyl sulfate, Triton-X100, DNAse and RNAse to remove cells and cellular constituents. We have previously found that this combination of chemicals and enzymes to be effective at removing cells while retaining extracellular matrix proteins. In addition, different methods for assessing if the decellularization process has been successful are discussed. These include techniques to identify and quantify the presence of cells, DNA and extracellular matrix components as well as methods to examine the collagen fibril organization and scaffold transparency.
Collapse
|
21
|
Qin Y, Li G, Wang C, Zhang D, Zhang L, Fang H, Yan S, Zhang K, Yin J. Biomimetic Bilayer Scaffold as an Incubator to Induce Sequential Chondrogenesis and Osteogenesis of Adipose Derived Stem Cells for Construction of Osteochondral Tissue. ACS Biomater Sci Eng 2020; 6:3070-3080. [PMID: 33463252 DOI: 10.1021/acsbiomaterials.0c00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Toward osteochondral tissue construction, the present study introduced a bilayer scaffold to induce sequential chondrogenesis and osteogenesis of stem cells in vitro. Two scaffolds that are both based on poly(l-glutamic acid) (PLGA) and chitosan (CS) were combined to form the bilayer scaffold. The cartilage region was the covalently cross-linked PLGA/CS hydrogel with a tubular pore structure, possessing a swollen network to prevent cellular adhesion, while inducing spontaneous cellular aggregate formation. The bone region was the electrostatically cross-linked PLGA-grafted nano hydroxyapatite (nHA-g-PLGA)/CS scaffold, which supported cellular adhesion and spreading. Human adipose derived stem cells (hASCs) were seeded into the cartilage region and observed to aggregate, formimg multicellular spheroids, which subsequently fused to rod-like aggregates with a larger size. At the same time, hASCs in aggregates crossed the interface and entered the bone region, presenting adhesion and spreading. With the induction of bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) during the first 14 days and BMP-2 alone during the last 14 days, hASCs aggregates in the cartilage region underwent chondrogenesis, expressing an abundant cartilage matrix including glycosaminoglycans (GAGs) and type II collagen (COL II) at 28 days. The chondrogenic induced hASCs migrated in the bone region turned to osteogenesis at 28 days, which was associated with their large spreading area and the switch of the induce factor. Thus, the present bilayer scaffold induced the different distribution of hASCs, resulting in subsequent chondrogenesis and osteogenesis, realizing osteochondral tissue construction in vitro.
Collapse
Affiliation(s)
- Yechi Qin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danqing Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Zhang D, Xu X, Long X, Cheng K, Li J. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomater Sci 2020; 7:3984-3999. [PMID: 31429424 DOI: 10.1039/c9bm00746f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the development of surface modification technology, interface properties have great effects on the interaction between biomedical materials and cells and biomolecules, which significantly affects the biocompatibility and functionality of materials. As an orderly and perfect system, biological organisms in nature effectively integrate all kinds of bio-interfaces with physiological functions, which shed light on the importance of biomolecules in organisms. It gives birth to a bio-inspiration strategy to design and fabricate smart materials with specific functionalities, e.g. osteogenic and chondrocytic induced materials inspired by bone sialoprotein and chondroitin sulfate. Through this mimicking approach, various functional materials were utilized to decorate the interfaces and further optimize the performance of biomedical materials, which would widely expand their applications. In this review, followed by a summary and brief introduction of surface modification methods, we highlight recent advances in the fabrication of functional polymeric materials inspired by a range of biomolecules for decorating interfaces. Then, the other applications of biomolecule inspired materials including tissue engineering, diagnosis and treatment of diseases and physiological function regulation are presented and the future outlook is discussed as well.
Collapse
Affiliation(s)
- Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Kronemberger GS, Matsui RAM, Miranda GDASDCE, Granjeiro JM, Baptista LS. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World J Stem Cells 2020; 12:110-122. [PMID: 32184936 PMCID: PMC7062040 DOI: 10.4252/wjsc.v12.i2.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/19/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Akemi Morais Matsui
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| | - Guilherme de Almeida Santos de Castro e Miranda
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 25255-030 Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
24
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
25
|
Nachtsheim J, Dursun G, Markert B, Stoffel M. Chondrocyte colonisation of a tissue-engineered cartilage substitute under a mechanical stimulus. Med Eng Phys 2019; 74:58-64. [PMID: 31611181 DOI: 10.1016/j.medengphy.2019.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/30/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
Cell-free collagen scaffolds as cartilage substitute for small focal defects show promising results in first clinical studies. However, chondrocyte migration between scaffolds and the colonisation process of a cell-free implant is yet to be fully understood. We here focus on mechanobiological interdependencies between cell migration and mechanical stimulus in a 3D environment. We develop an in vitro model composed of a human chondrocyte-seeded collagen base and adjacent cell-free collagen type I scaffolds of varying collagen concentrations. Constructs are either cultured statically or dynamically under the influence of a physiological compression (0.5Hz, 0.5% initial strain). After 20 days we identify vital chondrocytes inside all collagen implants, proving that chondrocytes migrated from the underlying scaffold into the implants. Chondrocytes have not colonised the entire sample and are predominantly found in the bottom of the implant. In static culture conditions, a nearly equal cell number is found inside of all collagen scaffolds. In dynamic culture, the total amount of cells is increased by 30% to 320%, with the highest population in a commercial implant. Differences in cell population between the materials in dynamic culturing can be referred to differences in mechanical properties of the scaffolds, such as strain-rate insensitivity fostering the colonisation process.
Collapse
Affiliation(s)
- Julia Nachtsheim
- Institute of General Mechanics, RWTH Aachen University, Germany.
| | - Gözde Dursun
- Institute of General Mechanics, RWTH Aachen University, Germany
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, Germany
| | - Marcus Stoffel
- Institute of General Mechanics, RWTH Aachen University, Germany
| |
Collapse
|
26
|
Herberg S, McDermott AM, Dang PN, Alt DS, Tang R, Dawahare JH, Varghai D, Shin JY, McMillan A, Dikina AD, He F, Lee YB, Cheng Y, Umemori K, Wong PC, Park H, Boerckel JD, Alsberg E. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. SCIENCE ADVANCES 2019; 5:eaax2476. [PMID: 31489377 PMCID: PMC6713501 DOI: 10.1126/sciadv.aax2476] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/19/2019] [Indexed: 05/28/2023]
Abstract
Endochondral ossification during long bone development and natural fracture healing initiates by mesenchymal cell condensation, directed by local morphogen signals and mechanical cues. Here, we aimed to mimic development for regeneration of large bone defects. We hypothesized that engineered human mesenchymal condensations presenting transforming growth factor-β1 (TGF-β1) and/or bone morphogenetic protein-2 (BMP-2) from encapsulated microparticles promotes endochondral defect regeneration contingent on in vivo mechanical cues. Mesenchymal condensations induced bone formation dependent on morphogen presentation, with BMP-2 + TGF-β1 fully restoring mechanical function. Delayed in vivo ambulatory loading significantly enhanced the bone formation rate in the dual morphogen group. In vitro, BMP-2 or BMP-2 + TGF-β1 initiated robust endochondral lineage commitment. In vivo, however, extensive cartilage formation was evident predominantly in the BMP-2 + TGF-β1 group, enhanced by mechanical loading. Together, this study demonstrates a biomimetic template for recapitulating developmental morphogenic and mechanical cues in vivo for tissue engineering.
Collapse
Affiliation(s)
- S. Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - A. M. McDermott
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
- Philadelphia, PA, USA
| | - P. N. Dang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - D. S. Alt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - R. Tang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - D. Varghai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - J.-Y. Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - A. McMillan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - A. D. Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - F. He
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Y. B. Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Y. Cheng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - K. Umemori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - P. C. Wong
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - H. Park
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - J. D. Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
- Philadelphia, PA, USA
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - E. Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Idaszek J, Costantini M, Karlsen TA, Jaroszewicz J, Colosi C, Testa S, Fornetti E, Bernardini S, Seta M, Kasarełło K, Wrzesień R, Cannata S, Barbetta A, Gargioli C, Brinchman JE, Święszkowski W. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 2019; 11:044101. [DOI: 10.1088/1758-5090/ab2622] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Wagner DR, Karnik S, Gunderson ZJ, Nielsen JJ, Fennimore A, Promer HJ, Lowery JW, Loghmani MT, Low PS, McKinley TO, Kacena MA, Clauss M, Li J. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells 2019; 11:281-296. [PMID: 31293713 PMCID: PMC6600851 DOI: 10.4252/wjsc.v11.i6.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
Collapse
Affiliation(s)
- Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alanna Fennimore
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Hunter J Promer
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - M Terry Loghmani
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| | - Matthias Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| |
Collapse
|
29
|
Sheehy E, Kelly D, O'Brien F. Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater Today Bio 2019; 3:100009. [PMID: 32159148 PMCID: PMC7061547 DOI: 10.1016/j.mtbio.2019.100009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent, clinical need for an alternative to the use of autologous grafts for the ever increasing number of bone grafting procedures performed annually. Herein, we describe a developmentally inspired approach to bone tissue engineering, which focuses on leveraging biomaterials as platforms for recapitulating the process of endochondral ossification. To begin, we describe the traditional biomaterial-based approaches to tissue engineering that have been investigated as methods to promote in vivo bone regeneration, including the use of three-dimensional biomimetic scaffolds, the delivery of growth factors and recombinant proteins, and the in vitro engineering of mineralized bone-like tissue. Thereafter, we suggest that some of the hurdles encountered by these traditional tissue engineering approaches may be circumvented by modulating the endochondral route to bone repair and, to that end, we assess various biomaterials that can be used in combination with cells and signaling factors to engineer hypertrophic cartilaginous grafts capable of promoting endochondral bone formation. Finally, we examine the emerging trends in biomaterial-based approaches to endochondral bone regeneration, such as the engineering of anatomically shaped templates for bone and osteochondral tissue engineering, the fabrication of mechanically reinforced constructs using emerging three-dimensional bioprinting techniques, and the generation of gene-activated scaffolds, which may accelerate the field towards its ultimate goal of clinically successful bone organ regeneration.
Collapse
Affiliation(s)
- E.J. Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - D.J. Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - F.J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Mikael PE, Golebiowska AA, Xin X, Rowe DW, Nukavarapu SP. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification. Ann Biomed Eng 2019; 48:992-1005. [PMID: 31037444 DOI: 10.1007/s10439-019-02279-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
Abstract
Despite its regenerative ability, long and segmental bone defect repair remains a significant orthopedic challenge. Conventional tissue engineering efforts induce bone formation through intramembranous ossification (IO) which limits vascular formation and leads to poor bone regeneration. To overcome this challenge, a novel hybrid matrix comprised of a load-bearing polymer template and a gel phase is designed and assessed for bone regeneration. Our previous studies developed a synthetic ECM, hyaluronan (HA)-fibrin (FB), that is able to mimic cartilage-mediated bone formation in vitro. In this study, the well-characterized HA-FB hydrogel is combined with a biodegradable polymer template to form a hybrid matrix. In vitro evaluation of the matrix showed cartilage template formation, cell recruitment and recruited cell osteogenesis, essential stages in endochondral ossification. A transgenic reporter-mouse critical-defect model was used to evaluate the bone healing potential of the hybrid matrix in vivo. The results demonstrated host cell recruitment into the hybrid matrix that led to new bone formation and subsequent remodeling of the mineralization. Overall, the study developed and evaluated a novel load-bearing graft system for bone regeneration via endochondral ossification.
Collapse
Affiliation(s)
- Paiyz E Mikael
- Department of Materials Science, & Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, 06032, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Materials Science, & Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|
31
|
Katagiri H, Mendes LF, Luyten FP. Reduction of BMP6‐induced bone formation by calcium phosphate in wild‐type compared with nude mice. J Tissue Eng Regen Med 2019; 13:846-856. [DOI: 10.1002/term.2837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/01/2018] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroki Katagiri
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| | - Luis Filipe Mendes
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| | - Frank P. Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research CenterKatholieke Universiteit Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue EngineeringKatholieke Universiteit Leuven Leuven Belgium
| |
Collapse
|
32
|
Kunisch E, Knauf AK, Hesse E, Freudenberg U, Werner C, Bothe F, Diederichs S, Richter W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication 2018; 11:015001. [PMID: 30376451 DOI: 10.1088/1758-5090/aae75a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Collapse
Affiliation(s)
- Elke Kunisch
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Front Chem 2018; 6:499. [PMID: 30406081 PMCID: PMC6204355 DOI: 10.3389/fchem.2018.00499] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering (TE) has been used as an attractive and efficient process to restore the original tissue structures and functions through the combination of biodegradable scaffolds, seeded cells, and biological factors. As a unique type of scaffolds, hydrogels have been frequently used for TE because of their similar 3D structures to the native extracellular matrix (ECM), as well as their tunable biochemical and biophysical properties to control cell functions such as cell adhesion, migration, proliferation, and differentiation. Various types of hydrogels have been prepared from naturally derived biomaterials, synthetic polymers, or their combination, showing their promise in TE. This review summarizes the very recent progress of hydrogels used for TE applications. The strategies for tuning biophysical and biochemical properties, and structures of hydrogels are first introduced. Their influences on cell functions and promotive effects on tissue regeneration are then highlighted.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou, China
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, Tsukuba, Japan
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou, China
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
34
|
Rowland CR, Glass KA, Ettyreddy AR, Gloss CC, Matthews JRL, Huynh NPT, Guilak F. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials 2018; 177:161-175. [PMID: 29894913 PMCID: PMC6082159 DOI: 10.1016/j.biomaterials.2018.04.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface.
Collapse
Affiliation(s)
- Christopher R Rowland
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | | | | | - Catherine C Gloss
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Jared R L Matthews
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Nguyen P T Huynh
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Duke University, Durham, NC 27710, USA
| | - Farshid Guilak
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
37
|
Chao W, Zhang Y, Chai L, Wang H. Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:138-150. [PMID: 29908452 DOI: 10.1016/j.aquatox.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Endochondral ossification, the process by which most of the bone is formed, is regulated by many specific groups of molecules and extracellular matrix components. Hind limb of Bufo gargarizans is a model to study endochondral ossification during metamorphosis. Chinese toad (Bufo gargarizans) were exposed to different fluoride concentrations (0, 1, 5, 10 and 20 mg L-1) from G3 to G42. The development of hind limb of B. gargarizans was observed using the double staining methodology. The transcriptome of hind limb of B. gargarizans was conducted using RNA-seq approach, and differentially expressed gene was also validated. In addition, the location of Sox9 and Ihh in the growth cartilage was determined using in situ hybridization. Our results showed that 5 mg L-1 stimulated bone mineralization, while 10 and 20 mg L-1 exposure could inhibit the tibio-fibula, tarsus and metacarpals ossification. Besides, 10 mg F/L treatment could down-regulate Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 expression, while up-regulate ObRb and HHAT mRNA expression in the hind limb of B. gargarizans. Transcript level changes of Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 were consistent with the results of RT-qPCR. In situ hybridization revealed that Ihh was expressed in prehypertrophic chondrocytes, while Sox9 was abundantly expressed in proliferous, prehypertrophic and hypertrophic chondrocytes. However, 10 mg F-/L did not cause any affect in the location of the Ihh and Sox9 mRNA. Therefore, high concentration of fluoride could affect the ossification-related genes mRNA expression and then inhibit the endochondral ossification. The present study thus will greatly contribute to our understanding of the effect of environmental contaminant on ossification in amphibian.
Collapse
Affiliation(s)
- Wu Chao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
38
|
Wong SA, Rivera KO, Miclau T, Alsberg E, Marcucio RS, Bahney CS. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Front Bioeng Biotechnol 2018; 6:58. [PMID: 29868574 PMCID: PMC5962790 DOI: 10.3389/fbioe.2018.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The majority of fractures heal through the process of endochondral ossification, in which a cartilage intermediate forms between the fractured bone ends and is gradually replaced with bone. Recent studies have provided genetic evidence demonstrating that a significant portion of callus chondrocytes transform into osteoblasts that derive the new bone. This evidence has opened a new field of research aimed at identifying the regulatory mechanisms that govern chondrocyte transformation in the hope of developing improved fracture therapies. In this article, we review known and candidate molecular pathways that may stimulate chondrocyte-to-osteoblast transformation during endochondral fracture repair. We also examine additional extrinsic factors that may play a role in modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis and mineralization of the extracellular matrix. Taken together the mechanisms reviewed here demonstrate the promising potential of using developmental engineering to design therapeutic approaches that activate endogenous healing pathways to stimulate fracture repair.
Collapse
Affiliation(s)
- Sarah A Wong
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin O Rivera
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Eben Alsberg
- Department of Orthopaedic Surgery and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
39
|
Stem Cells for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:219-240. [DOI: 10.1007/978-3-319-76735-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
da Silva Morais A, Oliveira JM, Reis RL. Small Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:423-439. [DOI: 10.1007/978-3-319-76735-2_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Stüdle C, Vallmajó-Martín Q, Haumer A, Guerrero J, Centola M, Mehrkens A, Schaefer DJ, Ehrbar M, Barbero A, Martin I. Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 2018; 171:219-229. [PMID: 29705655 DOI: 10.1016/j.biomaterials.2018.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Despite the various reported approaches to generate osteochondral composites by combination of different cell types and materials, engineering of templates with the capacity to autonomously and orderly develop into cartilage-bone bi-layered structures remains an open challenge. Here, we hypothesized that the embedding of cells inducible to endochondral ossification (i.e. bone marrow derived mesenchymal stromal cells, BMSCs) and of cells capable of robust and stable chondrogenesis (i.e. nasal chondrocytes, NCs) adjacent to each other in bi-layered hydrogels would develop directly in vivo into osteochondral tissues. Poly(ethylene glycol) (PEG) hydrogels were functionalized with TGFβ3 or BMP-2, enzymatically polymerized encapsulating human BMSCs, combined with a hydrogel layer containing human NCs and ectopically implanted in nude mice without pre-culture. The BMSC-loaded layers reproducibly underwent endochondral ossification and generated ossicles containing bone and marrow. The NC-loaded layers formed cartilage tissues, which (under the influence of BMP-2 but not of TGFβ3 from the neighbouring layer) remained phenotypically stable. The proposed strategy, resulting in orderly connected osteochondral composites, should be further assessed for the repair of osteoarticular defects and will be useful to model developmental processes leading to cartilage-bone interfaces.
Collapse
Affiliation(s)
- Chiara Stüdle
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Queralt Vallmajó-Martín
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Haumer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Guerrero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matteo Centola
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Anika Therapeutics Srl, Padua, Italy
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Chen T, Bai J, Tian J, Huang P, Zheng H, Wang J. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B Biointerfaces 2018; 167:354-363. [PMID: 29689491 DOI: 10.1016/j.colsurfb.2018.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022]
Abstract
This work focuses on the optimization design of a functional biomimetic scaffold for the repair of osteochondral defects and includes the study of single integrated osteochondral tissue engineering scaffolds with a multi-layered functional structure. Rabbit model experiments were used to evaluate the repair of osteochondral defects. The results revealed that good integration was achieved both at the interfaces between the scaffold material and the host tissue and between the newly formed subchondral bone and cartilage. The highest total histological score of 24.2 (based on the modified O'Driscoll scoring system at 12 weeks post-operation) was achieved for osteochondral repair. The completely repaired cylindrical full-thickness defects for the rabbit animal model reached 5 mm in diameter. The thickness of the regenerated cartilage was almost in line with that of the surrounding normal cartilage, the number and arrangement of cells in the superficial area of cartilage were very close to those of normal hyaline cartilage, and there were clear cartilage lacunas in the regenerated cartilage. The hybrid-use of growth factors and LIPUS stimulation exhibited good potential in enhancing vascularization and the formation of new bone and cartilage, providing better conditions for the overall osteochondral repair.
Collapse
Affiliation(s)
- Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiafan Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiajun Tian
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Pinhe Huang
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Hua Zheng
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, PR China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| |
Collapse
|
43
|
Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proc Natl Acad Sci U S A 2018; 115:4625-4630. [PMID: 29666250 DOI: 10.1073/pnas.1720658115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.
Collapse
|
44
|
Matsiko A, Thompson EM, Lloyd-Griffith C, Cunniffe GM, Vinardell T, Gleeson JP, Kelly DJ, O'Brien FJ. An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J Tissue Eng Regen Med 2018; 12:e2147-e2150. [PMID: 29327428 DOI: 10.1002/term.2638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Mimicking endochondral ossification to engineer constructs offers a novel solution to overcoming the problems associated with poor vascularisation in bone repair. This can be achieved by harnessing the angiogenic potency of hypertrophic cartilage. In this study, we demonstrate that tissue-engineered hypertrophically primed cartilage constructs can be developed from collagen-based scaffolds cultured with mesenchymal stem cells. These constructs were subsequently implanted into femoral defects in rats. It was evident that the constructs could support enhanced early stage healing at 4 weeks of these weight-bearing femoral bone defects compared to untreated defects. This study demonstrates the value of combining knowledge of development biology and tissue engineering in a developmental engineering inspired approach to tissue repair.
Collapse
Affiliation(s)
- Amos Matsiko
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Emmet M Thompson
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Cai Lloyd-Griffith
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Gráinne M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Tatiana Vinardell
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - John P Gleeson
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.,SurgaColl Technologies Ltd, Invent Centre, Glasnevin, Dublin 9, Ireland
| | - Daniel J Kelly
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| |
Collapse
|
45
|
Sielatycki JA, Saito M, Yuasa M, Moore‐Lotridge SN, Uppuganti S, Colazo JM, Hysong AA, Robinette JP, Okawa A, Yoshii T, Schwartz HS, Nyman JS, Schoenecker JG. Autologous chondrocyte grafting promotes bone formation in the posterolateral spine. JOR Spine 2018; 1:e1001. [PMID: 31463433 PMCID: PMC6686810 DOI: 10.1002/jsp2.1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND CONTEXT Pseudarthrosis following spinal fusion remains problematic despite modern surgical and grafting techniques. In surgical spinal fusion, new bone forms via intramembranous and endochondral ossification, with endochondral ossification occurring in the hypoxic zones of the fusion bed. During bone development and fracture healing, the key cellular mediator of endochondral ossification is the hypertrophic chondrocyte given its ability to function in hypoxia and induce neovascularization and ossification. We therefore hypothesize that hypertrophic chondrocytes may be an effective bone graft alternative. PURPOSE Spinal fusion procedures have increased substantially; yet 5% to 35% of all spinal fusions may result in pseudoarthrosis. Pseudoarthrosis may occur because of implant failure, infection, or biological failure, among other reasons. Advances in surgical techniques and bone grafting have improved fusion; however pseudarthrosis rates remain unacceptably high. Thus, the goal of this study is to investigate hypertrophic chondrocytes as a potential biological graft alternative. METHODS Using a validated murine fracture model, hypertrophic chondrocytes were harvested from fracture calluses and transplanted into the posterolateral spines of identical mice. New bone formation was assessed by X-ray, microcomputed tomography (μCT), and in vivo fluorescent imaging. Results were compared against a standard iliac crest bone graft and a sham surgery control group. Funding for this work was provided by the Department of Orthopaedics and Rehabilitation, the OREF (Grant #16-150), and The Caitlin Lovejoy Fund. RESULTS Radiography, μCT, and in vivo fluorescent imaging demonstrated that hypertrophic chondrocytes promoted bone formation at rates equivalent to iliac crest autograft. Additionally, μCT analysis demonstrated similar fusion rates in a subset of mice from the iliac crest and hypertrophic chondrocyte groups. CONCLUSIONS This proof-of-concept study indicates that hypertrophic chondrocytes can promote bone formation comparable to iliac crest bone graft. These findings provide the foundation for future studies to investigate the potential therapeutic use of hypertrophic chondrocytes in spinal fusion.
Collapse
Affiliation(s)
- J. Alex Sielatycki
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
| | - Masanori Saito
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
- Department of Orthopaedic SurgeryTokyo Medical and Dental UniversityTokyoJapan
| | - Masato Yuasa
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
- Department of Orthopaedic SurgeryTokyo Medical and Dental UniversityTokyoJapan
| | - Stephanie N. Moore‐Lotridge
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
| | - Sasidhar Uppuganti
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
| | - Juan M. Colazo
- Vanderbilt University School of MedicineNashvilleTennessee
| | | | | | - Atsushi Okawa
- Department of Orthopaedic SurgeryTokyo Medical and Dental UniversityTokyoJapan
| | - Toshitaka Yoshii
- Department of Orthopaedic SurgeryTokyo Medical and Dental UniversityTokyoJapan
| | - Herbert S. Schwartz
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
| | - Jeffry S. Nyman
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennessee
- Center for Bone BiologyVanderbilt University Medical CenterNashvilleTennessee
- Department of Veterans AffairsTennessee Valley Health Care SystemNashvilleTennessee
| | - Jonathan G. Schoenecker
- Department of Orthopaedics and RehabilitationVanderbilt University Medical CenterNashvilleTennessee
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTennessee
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennessee
| |
Collapse
|
46
|
Li JJ, Ebied M, Xu J, Zreiqat H. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering. Adv Healthc Mater 2018; 7:e1701061. [PMID: 29280321 DOI: 10.1002/adhm.201701061] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Indexed: 01/17/2023]
Abstract
The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Raymond Purves Bone and Joint Research Laboratories Kolling Institute Northern Sydney Local Health District Sydney Medical School Northern University of Sydney St Leonards NSW 2065 Australia
| | - Mohamed Ebied
- Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
| | - Jen Xu
- Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
| |
Collapse
|
47
|
Herberg S, Varghai D, Cheng Y, Dikina AD, Dang PN, Rolle MW, Alsberg E. High-density human mesenchymal stem cell rings with spatiotemporally-controlled morphogen presentation as building blocks for engineering bone diaphyseal tissue. Nanotheranostics 2018; 2:128-143. [PMID: 29577017 PMCID: PMC5865267 DOI: 10.7150/ntno.23354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023] Open
Abstract
Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Current address: Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel Varghai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuxuan Cheng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Phuong N Dang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA.,National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.,School of Dentistry, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
48
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
49
|
Gonzalez-Fernandez T, Tierney EG, Cunniffe GM, O'Brien FJ, Kelly DJ. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Eng Part A 2017; 22:776-87. [PMID: 27079852 DOI: 10.1089/ten.tea.2015.0576] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these results suggest that the developed gene-activated alginate hydrogels were able to support transfection of encapsulated MSCs and directed their phenotype toward either a chondrogenic or an osteogenic phenotype depending on whether TGF-β3 and BMP2 were delivered in combination or isolation.
Collapse
Affiliation(s)
- Tomas Gonzalez-Fernandez
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Erica G Tierney
- 4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Grainne M Cunniffe
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland
| | - Fergal J O'Brien
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
50
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|