1
|
Ghosh A, Bera AK, Singh V, Basu S, Pati F. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. BIOMATERIALS ADVANCES 2024; 165:214007. [PMID: 39216318 DOI: 10.1016/j.bioadv.2024.214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal scarring is a common cause of blindness, affecting millions globally each year. A huge gap between the demand and supply of donor tissue currently limits corneal transplantation, the only definitive therapy for patients with corneal scarring. To overcome this challenge, researchers have harnessed the efficacy of 3D bioprinting to fabricate artificial corneal stromal constructs. With all the different bioinks available, the decellularized corneal matrix-based bioprinted construct can fulfill the required biological functionality but is limited by the lack of mechanical stiffness. Additionally, from a biophysical standpoint, it is necessary for an ideal corneal substitute to mimic the anisotropy of the cornea from the central optic zone to the surrounding periphery. In this study, we enhanced the mechanical robustness of decellularized cornea matrix (DCM) hydrogel by blending it with another natural polymer, sonicated silk fibroin solution in a defined ratio. Although hybrid hydrogel has an increased complex modulus than DCM hydrogel, it has a lower in vitro degradation rate and increased opaqueness due to the presence of crystalline beta-sheet conformation within the hydrogel. Therefore, we used this multi-material bioink-based approach to fabricate a corneal stromal equivalent where the outer peripheral corneal rim was printed with a mechanically robust polymeric blend of DCM and sonicated silk fibroin and the central optic zone was printed with only DCM. The bioprinted corneal stroma thus maintained its structural integrity and did not break when lifted with forceps. The two different bioinks were encapsulated with human limbus-derived mesenchymal stem cells (hLMSC) individually and 3D bioprinted in different patterns (concentric and parallel) to attain a native-like structure in terms of architecture and transparency. Thus, the bilayer cornea constructs maintained high cell viability and expressed keratocyte core proteins indicating optimal functionality. This approach helped to gain insight into bioprinting corneas with heterogeneous mechanical property without disturbing the structural clarity of the central optic zone.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vivek Singh
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Sayan Basu
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
4
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
6
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
7
|
Mandel I, Farkasdi S, Varga G, Nagy ÁK. Comparative Evaluation of Two Hyaluronic Acid Gel Products for the Treatment of Interdental Papillary Defects. Acta Stomatol Croat 2020; 54:227-237. [PMID: 33132386 PMCID: PMC7586896 DOI: 10.15644/asc54/3/1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives The aim was to investigate the efficacy of single injections of two different hyaluronic acid products, Flex Barrier and Revident, in reducing the size of black triangles to treat Nordland-Tarnow Class I and II recessions. Materials and Methods Forty adult patients were recruited with at least two upper and two lower interdental papilla defects in the front region between canine teeth. According to the Nordland-Tarnow classification of papillary defects, both Class I and Class II recessions were included in the investigation. Patients were randomly assigned to experimental groups to receive single injections of two different hyaluronic acid products, either Flex Barrier or Revident. The untreated sites served as controls. Photographs were taken before and immediately after the treatment, and again after one week and one month. To determine the size of the black triangles, Image J software was used. For statistical analysis, a mixed-design ANOVA was applied. Results Both Flex Barrier and Revident significantly decreased the size of the treated defects immediately after the treatment and also one week later (p<0.001). The beneficial effect of Revident lasted longer than Flex Barrier as it remained significant even after one month in Revident-treated patients, however, not in the Flex Barrier-treated group. Furthermore, Nordland-Tarnow Class I lesions generally showed a greater improvement than Class II lesions. Conclusion In this proof-of-concept, randomized clinical trial we have demonstrated the clinical applicability of both Flex Barrier and Revident, although Revident gave longer-lasting improvements than Flex Barrier. Further trials are needed to optimize multiple-application protocols for treating gingival black triangles.
Collapse
Affiliation(s)
- Iván Mandel
- - University of Pécs, Medical School, Department of Dentistry, Oral and Maxillofacial Surgery, Pécs, Hungary
| | - Sándor Farkasdi
- - Semmelweis University, Faculty of Dentistry, Department of Oral Biology, Budapest, Hungary
| | - Gábor Varga
- - Semmelweis University, Faculty of Dentistry, Department of Oral Biology, Budapest, Hungary
| | - Ákos Károly Nagy
- - University of Pécs, Medical School, Department of Dentistry, Oral and Maxillofacial Surgery, Pécs, Hungary
| |
Collapse
|
8
|
Bachmann B, Spitz S, Schädl B, Teuschl AH, Redl H, Nürnberger S, Ertl P. Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation. Front Bioeng Biotechnol 2020; 8:373. [PMID: 32426347 PMCID: PMC7204401 DOI: 10.3389/fbioe.2020.00373] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young’s modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young’s modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.
Collapse
Affiliation(s)
- Barbara Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Competence Center MechanoBiology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas H Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sylvia Nürnberger
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Division of Trauma-Surgery, Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
9
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
10
|
Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front Bioeng Biotechnol 2019; 7:190. [PMID: 31448271 PMCID: PMC6691020 DOI: 10.3389/fbioe.2019.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising technique for central nervous system (CNS) reconstruction and regeneration. Biomaterial scaffolds, frameworks, and platforms can support NPC proliferation and differentiation in vitro as well as serve as a temporary extracellular matrix after transplantation. However, further applications of biomaterials require improved biological attributes. Silk fibroin (SF), which is produced by Bombyx mori, is a widely used and studied protein polymer for biomaterial application. Here, we prepared aligned and random eletrospun regenerated SF (RSF) scaffolds, and evaluated their impact on the growth of NPCs. First, we isolated NPCs and then cultured them on either laminin-coated RSF mats or conventional laminin-coated coverslips for cell assays. We found that aligned and random RSF led to increases in NPC proliferation of 143.8 ± 13.3% and 156.3 ± 14.7%, respectively, compared to controls. Next, we investigated neuron differentiation and found that the aligned and the random RSF led to increases in increase in neuron differentiation of about 93.2 ± 6.4%, and 3167.1 ± 4.8%, respectively, compared to controls. Furthermore, we measured the survival of NPCs and found that RSF promoted NPC survival, and found there was no difference among those three groups. Finally, signaling pathways in cells cultured on RSF mats were studied for their contributions in neural cell differentiation. Our results indicate that RSF mats provide a functional microenvironment and represent a useful scaffold for the development of new strategies in neural engineering research.
Collapse
Affiliation(s)
- Guangfei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Kai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dan You
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Mingyu Xia
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Wen Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Renjie Chai
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Huawei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Institute of Biomedical Sciences, Institute of Brain Science, Fudan University, Shanghai, China
| | - Shan Sun
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Liu S, Niu C, Xu Z, Wang Y, Liang Y, Zhao Y, Zhao Y, Yang Y. Modulation of myelin formation by combined high affinity with extracellular matrix structure of electrospun silk fibroin nanoscaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1068-1082. [PMID: 31104582 DOI: 10.1080/09205063.2019.1621244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Remyelination is a major therapeutic goal in peripheral nerve regeneration, serving to restore function of demyelinated axons and provide neuroprotection. In order to apply myelin biogenesis strategies to peripheral nerve defects, the tissue engineered substitutes might be amenable to the promotion of this repair process. Electrospun nanofibers are considered as promising scaffolds for tissue engineering due to extracellular matrix mimicking factor and enhanced electrostatic interaction resulting in a controllable 3 D nanofibrous membrane. In order to explore the role of electrospun silk fibroin (SF) membrane in myelination, co-culture of dorsal root ganglion (DRG) neurons and Schwann cells (SCs) in vitro was established and observed. Scanning electron microscopy was used to observe DRG adhesion to the membranes, the electrospinning SF membrane is more favorable to the adhesion of DRG. The immunofluorescence staining of MAG and NF showed considerable amount of myelin were formed, and the myelin was tightly wrapped around the axons of the neurons, which was confirmed under the scanning electron microscope observation. Real-time quantitative PCR technique was used to determine the gene expression level of DRG neurons cultured at different time points. The results showed that the mRNA levels of N-cadherin, laminin, fibronectin were higher than those in the control group. Our results showed that the electrospun SF nanofibers can provide topographical and chemical cues that mimic (to a certain extent) the extracellular matrix.
Collapse
Affiliation(s)
- Sha Liu
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Changmei Niu
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Ziqi Xu
- b Medical School, Nantong University , Nantong , PR China
| | - Yingyu Wang
- c Wen Zheng College, Soochow University , Suzhou , PR China
| | - Yunyun Liang
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| | - Ying Zhao
- b Medical School, Nantong University , Nantong , PR China
| | - Yahong Zhao
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China.,d Department of Materials Science and Engineering , Institute for Nanobiotechnology, Johns Hopkins University , Baltimore , MD , USA
| | - Yumin Yang
- a Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration , Nantong University , Nantong , PR China
| |
Collapse
|
12
|
Yan R, Chen Y, Gu Y, Tang C, Huang J, Hu Y, Zheng Z, Ran J, Heng B, Chen X, Yin Z, Chen W, Shen W, Ouyang H. A collagen-coated sponge silk scaffold for functional meniscus regeneration. J Tissue Eng Regen Med 2019; 13:156-173. [PMID: 30485706 DOI: 10.1002/term.2777] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/09/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Tissue engineering is a promising solution for meniscal regeneration after meniscectomy. However, in situ reconstruction still poses a formidable challenge due to multifunctional roles of the meniscus in the knee. In this study, we fabricate a silk sponge from 9% (w/v) silk fibroin solution through freeze drying and then coat its internal space and external surface with collagen sponge. Subsequently, various characteristics of the silk-collagen scaffold are evaluated, and cytocompatibility of the construct is assessed in vitro and subcutaneously. The efficacy of this composite scaffold for meniscal regeneration is evaluated through meniscus reconstruction in a rabbit meniscectomy model. It is found that the internally coated collagen sponge enhances the cytocompatibility of the silk sponge, and the external layer of collagen sponge significantly improves the initial frictional property. Additionally, the silk-collagen composite group shows more tissue ingrowth and less cartilage wear than the pure silk sponge group at 3 months postimplantation in situ. These findings thus demonstrate that the composite scaffold had less damage to the joint surface than the silk alone through promoting functional meniscal regeneration after meniscectomy, which indicates its clinical potential in meniscus reconstruction.
Collapse
Affiliation(s)
- Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yanjia Gu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Orthopedic Surgery, The Children's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Boonchin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Qi X, Wei W, Shen J, Dong W. Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B 2019; 7:2577-2587. [PMID: 32254990 DOI: 10.1039/c8tb03312a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review systematically summarizes for the first time the recent progress on hydrogels containing salecan polysaccharides.
Collapse
Affiliation(s)
- Xiaoliang Qi
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine
- and Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Dong
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
14
|
Leyva E, Medrano-Cerano JL, Cano-Sánchez P, López-González I, Gómez-Velasco H, del Río-Portilla F, García-Hernández E. Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein-like domains. Biopolymers 2018; 110:e23242. [DOI: 10.1002/bip.23242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Eduardo Leyva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Jorge L. Medrano-Cerano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Itzel López-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Federico del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| |
Collapse
|
15
|
Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018; 38:47-67. [PMID: 28434263 PMCID: PMC5654697 DOI: 10.1080/07388551.2017.1312267] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.
Collapse
Affiliation(s)
- Hedieh Malekzad
- a Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG) , Iran University of Medical Sciences , Tehran , Iran
| | - Hamed Mirshekari
- b Department of Biotechnology , University of Kerala , Trivandrum , India
| | - Parham Sahandi Zangabad
- c Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS) , Tabriz , Iran
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
- e Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - S M Moosavi Basri
- f Bioenvironmental Research Center, Sharif University of Technology , Tehran , Iran
- g Civil & Environmental Engineering Department , Shahid Beheshti University , Tehran , Iran
| | - Fazel Baniasadi
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
| | | | - Mahdi Karimi
- i Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
- j Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
- k Applied Biotechnology Research Center, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Michael R Hamblin
- l Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA
- m Department of Dermatology , Harvard Medical School , Boston , MA , USA
- n Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
16
|
Advances in Nanotechnologies for the Fabrication of Silk Fibroin-Based Scaffolds for Tissue Regeneration. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wang Q, Zhang Y, Li B, Chen L. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 2017; 5:6963-6972. [PMID: 32264345 DOI: 10.1039/c7tb00949f] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The controlled co-release of osteoinductive and angiogenic factors is an efficient approach to promote vascularized bone regeneration, and a suitable controlled release system can largely reduce the usage of these factors to avoid cost and safety problems. In this study, a cell-free vascularized bone tissue engineering system based on a silk fibroin (SF)/nanohydroxyapatite (nHAp) scaffold was developed, in which very low doses of osteoinductive and angiogenic factors, bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), were embedded and released in a controlled manner to facilitate bone formation and vascularization, respectively. BMP-2 and VEGF were adsorbed onto SF microspheres (diameter of 1.5 ± 0.3 μm) that were prepared using a co-flow capillary device, and these microspheres were subsequently incorporated within the SF/nHAp scaffolds to provide controlled release. BMP-2 and VEGF were incorporated into SF microspheres via chemical covalent bonding and physical adsorption, respectively, leading to their controlled and sustained release from the SF/nHAp scaffolds. The rapid initial release of VEGF mimicked its expression at the early bone healing stage and promoted angiogenesis, and the relatively slow and sustained release of BMP-2 facilitated osteogenic differentiation both in vitro and in vivo, and the bone completely bridged the rat calvarial defects after 12 weeks of implantation. Overall, our findings suggest that the controlled dual release of very low doses of BMP-2 (300 ng per scaffold) and VEGF (20 ng per scaffold) from SF/nHAp scaffolds results in a synergistic effect on vascularized bone regeneration; this controlled release system can largely reduce the usage of BMP-2 as compared to other systems.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China.
| | | | | | | |
Collapse
|
18
|
Khamhaengpol A, Siri S. Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum. Appl Biochem Biotechnol 2017; 183:110-125. [PMID: 28205050 DOI: 10.1007/s12010-017-2433-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Unlike silkworm (Bombyx mori) fibroin (SF), weaver ant (Oecophylla smaragdina) fibroin (WAF) is much less studied. Due to differences in amino acid composition and protein structure, this work aimed to produce the recombinant WAF protein, designated as WAF1, and investigated on its potential application as a biomaterial for producing a cell-substratum. The composite electrospun scaffolds derived from poly(vinyl alcohol) (PVA), WAF1, and extracted SF were produced by electrospinning. SEM images revealed non-woven and smooth fibers of PVA, PVA-WAF1, and PVA-SF scaffolds with the average diameters of 204.1 ± 59.9, 206.5 ± 71.5, and 238.4 ± 77.9 nm, respectively. ATR-FTIR spectra indicated characteristic absorption peaks related to the chemical structure of PVA and protein. The PVA-WAF1 scaffold demonstrated a higher water uptake, a slightly higher rate of degradation, and a similar low cytotoxicity as compared with the PVA-SF scaffold. Although the adhesion and proliferation of cells on the PVA-WAF1 scaffold were lower than those on the PVA-SF scaffold, it showed significantly greater values of adhering and proliferating cells than the PVA scaffold. The results of this work suggested that WAF1 could be used as a biomaterial for producing a cell-substratum that supports cell adhesion and growth.
Collapse
Affiliation(s)
- Arunrat Khamhaengpol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sineenat Siri
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
19
|
Sun J, Zhang Y, Li B, Gu Y, Chen L. Controlled release of BMP-2 from a collagen-mimetic peptide-modified silk fibroin–nanohydroxyapatite scaffold for bone regeneration. J Mater Chem B 2017; 5:8770-8779. [PMID: 32264271 DOI: 10.1039/c7tb02043k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlled release of BMP-2 from a collagen-mimetic peptide-modified scaffold for bone regeneration.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science
- Soochow University
- Suzhou
- P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
- Orthopedic Institute
| | - Yong Gu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Liang Chen
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
20
|
Schuh CMAP, Monforte X, Hackethal J, Redl H, Teuschl AH. Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:188. [PMID: 27817094 DOI: 10.1007/s10856-016-5783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Xavier Monforte
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Johannes Hackethal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas H Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
21
|
Silk fibroin as a non-thrombogenic biomaterial. Int J Biol Macromol 2016; 90:11-9. [DOI: 10.1016/j.ijbiomac.2016.01.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
|
22
|
Guillaume O, Park J, Monforte X, Gruber-Blum S, Redl H, Petter-Puchner A, Teuschl AH. Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:37. [PMID: 26704554 DOI: 10.1007/s10856-015-5648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Recent studies have demonstrated that combining cells with meshes prior to implantation successfully enhanced hernia repair. The idea is to create a biologic coating surrounding the mesh with autologous cells, before transplantation into the patient. However, due to the lack of a prompt and robust cell adhesion to the meshes, extensive in vitro cultivation is required to obtain a homogenous cell layer covering the mesh. In this context, the objective of this publication is to manufacture meshes made of silk fibres and to enhance the cytoadhesion and cytocompatibility of the biomaterial by surface immobilization of a pro-adhesive wheat germ agglutinin (lectin WGA). We first investigated the affinity between the glycoprotein WGA and cells, in solution and then after covalent immobilization of WGA on silk films. Then, we manufactured meshes made of silk fibres, tailored them with WGA grafting and finally evaluated the cytocompatibility and the inflammatory response of silk and silk-lectin meshes compared to common polypropylene mesh, using fibroblasts and peripheral blood mononuclear cells, respectively. The in vitro experiments revealed that the cytocompatibility of silk can be enhanced by surface immobilization with lectin WGA without exhibiting negative response in terms of pro-inflammatory reaction. Grafting lectin to silk meshes could bring advantages to facilitate cell-coating of meshes prior to implantation, which is an imperative prerequisite for abdominal wall tissue regeneration using cell-based therapy.
Collapse
Affiliation(s)
- O Guillaume
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria.
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - J Park
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - X Monforte
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 5, 1200, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - S Gruber-Blum
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Department of General, Visceral and Oncological Surgery, Wilhelminenspital der Stadt Wien, Montleartstrasse 37, 1171, Vienna, Austria
| | - H Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A Petter-Puchner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Department of General, Visceral and Oncological Surgery, Wilhelminenspital der Stadt Wien, Montleartstrasse 37, 1171, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A H Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 5, 1200, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Yao D, Liu H, Fan Y. Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med (Maywood) 2016; 241:238-45. [PMID: 26445979 PMCID: PMC4935447 DOI: 10.1177/1535370215606994] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.
Collapse
Affiliation(s)
- Danyu Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China National Research Center for Rehabilitation Technical Aids, Beijing 100176, People's Republic of China
| |
Collapse
|
24
|
|
25
|
Faragò S, Lucconi G, Perteghella S, Vigani B, Tripodo G, Sorrenti M, Catenacci L, Boschi A, Faustini M, Vigo D, Chlapanidas T, Marazzi M, Torre ML. A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device. Pharm Dev Technol 2015; 21:453-62. [PMID: 25757645 DOI: 10.3109/10837450.2015.1022784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the aim of establishing the formulation of a new hydrophilic auto-gelling medical device for biomedical applications, fibroin-based microspheres were prepared. The proposed microspheres were produced by a cost-effective and industrially scalable technique, such as the spray-drying. Spray-dried silk fibroin microspheres were obtained and the effects of different hydrophilic polymer on the process yield, microsphere morphology and conformation transition of fibroin were evaluated. The final auto-gelling formulations were obtained by adding calcium gluconate (as a calcium source for alginate crosslinking) to the prepared microspheres and tested by an in vitro gelling test. This study showed that the combination of fibroin with sodium alginate and poloxamer produced the most promising auto-gelling formulation for specific biomedical applications, such as the treatment of pressure ulcers.
Collapse
Affiliation(s)
- Silvio Faragò
- a Silk Division , Innovhub, Stazioni Sperimentali per l'Industria , Milan , Italy
| | - Giulia Lucconi
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Sara Perteghella
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Barbara Vigani
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Giuseppe Tripodo
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Milena Sorrenti
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Laura Catenacci
- b Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Alessandra Boschi
- a Silk Division , Innovhub, Stazioni Sperimentali per l'Industria , Milan , Italy
| | - Massimo Faustini
- c Department of Veterinary Science and Public Health , University of Milan , Milan , Italy , and
| | - Daniele Vigo
- c Department of Veterinary Science and Public Health , University of Milan , Milan , Italy , and
| | | | - Mario Marazzi
- d Struttura Semplice Tissue Therapy, Niguarda Hospital , Milan , Italy
| | | |
Collapse
|
26
|
Urtasun N, Baieli MF, Cascone O, Wolman FJ, Miranda MV. High-level expression and purification of recombinant wheat germ agglutinin in Rachiplusia nu larvae. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Wei B, Guo Y, Xu Y, Mao F, Yao Q, Jin C, Gu Q, Wang L. Composite scaffolds composed of bone marrow mesenchymal stem cell-derived extracellular matrix and marrow clots promote marrow cell retention and proliferation. J Biomed Mater Res A 2014; 103:2374-82. [PMID: 25410417 DOI: 10.1002/jbm.a.35373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Wei
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Yang Guo
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Yan Xu
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Fengyong Mao
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Chengzhe Jin
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Qiangrong Gu
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| | - Liming Wang
- Department of Orthopaedic Surgery; Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
- China-Korea United Cell Therapy Center, Nanjing First Hospital, Nanjing Medical University; Nanjing 210006 People's Republic of China
| |
Collapse
|
28
|
Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2014; 25:243-9. [DOI: 10.1007/s00590-014-1515-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
|