1
|
Zhao S, Zhou X, Dang J, Wang Y, Jiang J, Zhao T, Sun D, Chen C, Dai X, Liu Y, Zhang M. Construction of a layer-by-layer self-assembled rosemarinic acid delivery system on the surface of CFRPEEK implants for enhanced anti-inflammatory and osseointegration activities. J Mater Chem B 2024; 12:3031-3046. [PMID: 38411199 DOI: 10.1039/d3tb02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Carbon fiber-reinforced polyether ether ketone (CFRPEEK) implants have attracted widespread attention in the field of clinical bone defect repair. However, the surface bioinertness confines the application of CFRPEEK implants. Inspired by the study of rosmarinic acid (RA)-promoted osteogenic differentiation, a self-assembly surface modification method based on electrostatic interactions, involving deposition of sodium carboxymethyl cellulose/chitosan and rosmarinic acid layer by layer on the surface of poly-L-lysine modified hydroxy CFRPEEK (SCPP/CC5@RA), is proposed to introduce RA on the surface of CFRPEEK for bioactivation. After layer-by-layer self-assembly (LBL), the surface of SCPP/CC5@RA exhibits weak electrophoresis (11.43 eV), suitable hydrophilicity, and bioactivity. The results of in vitro studies indicate that the RA release behavior of SCPP/CC5@RA effectively regulates the immune-inflammatory response and promotes the differentiation of osteoblasts. The rapid release of RA (0.17 μg mL-1) in the initial stage can downregulate the secretion of inflammation-related cytokines and significantly reduce oxidative stress levels; the sustained release of RA (0.06 μg mL-1) in the late stage can upregulate the expression of osteogenesis-related genes and induce mineralization of osteoblasts. Moreover, the rabbit tibia defect model demonstrates that the LBL technique can enhance the osseointegration of CFRPEEK implants. Compared with the control group, the bone trabecular thickness of the SCPP/CC5@RA group increases by 1.36 times, and the maximum pushing force increases by 2.67 times. In summary, this study provides a promising LBL based RA delivery system for the development of a dual-functional CFRPEEK implant in the field of bone implant biomaterials.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Xingyu Zhou
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Junbo Dang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yilong Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Junhui Jiang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Tianhao Zhao
- Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
| | - Dahui Sun
- Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
| | - Chen Chen
- Jilin Province Guoda Bioengineering Co., Ltd, Changchun 130000, P. R. China
| | - Xin Dai
- Jilin Province Guoda Bioengineering Co., Ltd, Changchun 130000, P. R. China
| | - Yan Liu
- Jilin Province Guoda Bioengineering Co., Ltd, Changchun 130000, P. R. China
| | - Mei Zhang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
2
|
Chelliah R, Wei S, Daliri EBM, Elahi F, Yeon SJ, Tyagi A, Liu S, Madar IH, Sultan G, Oh DH. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:2220. [DOI: https:/doi.10.3390/foods10092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Liaoning 116034, China
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Chelliah R, Wei S, Daliri EBM, Elahi F, Yeon SJ, Tyagi A, Liu S, Madar IH, Sultan G, Oh DH. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021; 10:2220. [PMID: 34574330 PMCID: PMC8469013 DOI: 10.3390/foods10092220] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Liaoning 116034, China
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (A.T.)
| |
Collapse
|
4
|
Wang B, Guo H, Geng T, Sun K, Zhang L, Lu Z, Jin Q. The effect of strontium ranelate on titanium particle-induced periprosthetic osteolysis regulated by WNT/β-catenin signaling in vivo and in vitro. Biosci Rep 2021; 41:BSR20203003. [PMID: 33443286 PMCID: PMC7846966 DOI: 10.1042/bsr20203003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Aseptic loosening following periprosthetic osteolysis is the primary complication that limits the lifetime of total joint arthroplasty (TJA). The wear particles trigger a chronic inflammation response in the periprosthetic tissue and turn over the bone balance to bone resorption. The present study aimed to investigate the possible effect and mechanism of strontium ranelate (SR), a clinically safe drug for osteoporosis, on particle-induced periprosthetic osteolysis. Thirty-six female C57BL/6j mice underwent tibial Ti-nail implantation to establish an animal model of aseptic loosening. After 12 weeks, micro-CT results showed that strontium ranelate could inhibit periprosthetic bone resorption. In vitro, Ti particles were used to stimulate RAW264.7 cell line to collect conditioned medium, and co-culture MC3T3-E1 cell line with conditioned medium to establish a cell model of aseptic loosening. The results of alkaline phosphatase (ALP) detection, immunofluorescence, and flow cytometry demonstrated that strontium ranelate could regulate the expression of OPG/RANKL, promote differentiation and mineralization, and inhibit apoptosis in osteoblasts. Moreover, we revealed that SR's exerted its therapeutic effect by down-regulating sclerostin, thereby activating the Wnt/β-catenin signal pathway. Therefore, this research suggests that strontium ranelate could be a potential drug for the prevention and treatment of particle-induced aseptic loosening post-TJA.
Collapse
Affiliation(s)
- Bolun Wang
- Department of Orthopedic Surgery, Ningxia Medical University, 1160 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Haohui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Tianxiang Geng
- Department of Orthopedic Surgery, Ningxia Medical University, 1160 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Kening Sun
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Zhidong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| | - Qunhua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing Area, Yinchuan, Ningxia, P.R. China 750004
| |
Collapse
|
5
|
Das B, Dadhich P, Pal P, Dutta J, Srivas PK, Dutta A, Mohapatra PKD, Maity AM, Bera S, Dhara S. Doping of carbon nanodots for saving cells from silver nanotoxicity: A study on recovering osteogenic differentiation potential. Toxicol In Vitro 2019; 57:81-95. [DOI: 10.1016/j.tiv.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
|
6
|
Exceptional contact elasticity of human enamel in nanoindentation test. Dent Mater 2019; 35:87-97. [DOI: 10.1016/j.dental.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
|
7
|
Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, Yang X, Zhu X, Zhang K, Fan Y, Zhang X. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials 2017; 147:133-144. [DOI: 10.1016/j.biomaterials.2017.09.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 01/07/2023]
|
8
|
Rodriguez R, Yoshimura K, Shibata Y, Miyamoto Y, Tanaka R, Uyama R, Sasa K, Suzuki D, Miyazaki T, Kamijo R. Nanoindentation time-dependent deformation/recovery suggestive of methylglyoxal induced glycation in calcified nodules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2545-2553. [PMID: 28754466 DOI: 10.1016/j.nano.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
Although empirical findings have indicated increase in bone fracture risk in type 2 diabetes patients, that has yet to be proven by results obtained at the material level. Here, we report evidence showing nanoscale time-dependent deformation/recovery of in vitro calcified nodules mimicking bone turnover in type 2 diabetes in respect to methylglyoxal (MG)-induced glycation. Nanoindentation test results revealed that calcified nodules cultured with MG did not show adequate dimensional recovery, despite a large creep rate during constant load indentation testing. This lesser recovery is likely based on the linear matrix polymerization network formed by advanced glycation end products (AGEs) as a secondary product of MG. Since elevated serum MG and abnormal bone turnover related to the amount of AGEs are observed in cases of type 2 diabetes, this time-dependent behavior may be one of the factors of the bone fracture mechanism at the material level in affected patients.
Collapse
Affiliation(s)
- Reena Rodriguez
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Uyama
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Dai Suzuki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|