1
|
Fuenteslópez CV, Papapavlou M, Thompson MS, Ye H. Engineering a long-lasting microvasculature in vitro model for traumatic injury research. BIOMATERIALS ADVANCES 2025; 174:214310. [PMID: 40220460 DOI: 10.1016/j.bioadv.2025.214310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Microvascular injuries can have systemic physiological effects that exacerbate other injuries and pose a danger to life. Reliable in vitro microvascular models are required to enhance understanding of traumatic injuries. This research aims to develop and optimise a three-dimensional (3D) hydrogel construct for the formation and long-term stability of an in vitro microvascular model for trauma research. First, we develop a 3D hydrogel scaffold using a physiologically relevant cell type to enable the formation of a durable microvascular endothelial network and validate it against the gold standard: HUVECs. Then, we explore the impact of modifying the hydrogel composition, specifically fibrinogen source and concentration, medium, and crosslinking ratio, on scaffold material properties and, consequently, the formation of endothelial networks, their architecture, and long-term integrity. Our results demonstrate that 3D hydrogel scaffolds are crucial for maintaining network stability beyond the initial 24 h. For trauma research applications, the material properties and mechanical behaviour of the hydrogels are critical. Microrheometry revealed that fibrinogen concentration significantly influences gelation times, absorbance rate, storage modulus (G'), loss modulus (G"), and complex viscosity, while also reducing creep compliance. Our multi-pronged approach to engineering microvasculature constructs revealed that variations in hydrogel composition, including fibrinogen concentration and source, crosslinking ratio and choice of medium, strongly affect the hydrogel material characteristics and, in turn, the resulting microvascular networks. Hydrogels made with high concentrations of human fibrinogen, a 200:10:1 crosslinking ratio, and endothelial basal medium (EBM) or EBM supplemented with VEGF performed best, demonstrating superior long-term network stability. The microvasculature construct developed here could be used as a potential platform for studying traumatic injuries, as well as testing interventions aimed at improving recovery and mitigating damage.
Collapse
Affiliation(s)
- Carla Verónica Fuenteslópez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Mariella Papapavlou
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Mark S Thompson
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
2
|
Lee H, Yoon S, Baek S. Effects of Hyaluronic Acid/Collagen Resorbable Gel Use in Endoscopic Dacryocystorhinostomy. EAR, NOSE & THROAT JOURNAL 2025; 104:NP223-NP228. [PMID: 35726957 DOI: 10.1177/01455613221104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate whether the use of hyaluronic acid/collagen resorbable gel (Regenwel®) has an inhibitory effect on rhinostomy obstruction during endoscopic dacryocystorhinostomy (Endo DCR). A total of 298 patients diagnosed with unilateral primary acquired nasolacrimal duct obstruction from May 2017 to June 2021 who underwent Endo DCR were enrolled. The patients were divided into the Regenwel group (152 patients) and the Control group (146 patients) that did not use Regenwel during surgery, and the medical records were compared and analyzed retrospectively. The mean age of the Regenwel group was 65.8 years, and that of the Control group was 63.2 years. Regarding anatomical success as the primary outcome, the Regenwel group had a higher success rate than the Control group (96.7% vs 86.3%, P = .012), and the functional success result confirmed that the Regenwel group had a higher success rate than the Control group (94.1% vs 84.3%, P = .024). Among secondary outcomes, granulation formation occurred less frequently in the Regenwel group than in the Control group (9.2% vs 32.2%, P < .001), and there was no statistically significant difference in postoperative bleeding between the 2 groups (0% vs 1.4%, P = .478). The Regenwel group had fewer infections after surgery than the Control group (5.3% vs 8.9%, P = .012) and required less frequent revision surgery (2.0% vs 15.8%, P < .001). In conclusion, Regenwel is a resorbable gel containing hyaluronic acid and collagen that is used during Endo DCR and is thought to contribute to the improvement of surgical success rate by preventing complications such as rhinostomy obstruction and bleeding after surgery.
Collapse
Affiliation(s)
- Hyunkyu Lee
- Department of Ophthalmology, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Sumin Yoon
- Department of Ophthalmology, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Sehyun Baek
- Department of Ophthalmology, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Hsieh CC, Dai JZ, Ni CC, Wei SY, Tsai MC, Chen PY, Fang L, Xie RH, Chen GY, Yin GC, Chen YC. Prevascularized Hydrogel Enhancing Innervation and Repair of Full-Thickness Volumetric Muscle Loss in Abdominal Wall Defects. Adv Healthc Mater 2025; 14:e2402433. [PMID: 40059482 DOI: 10.1002/adhm.202402433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/17/2025] [Indexed: 04/26/2025]
Abstract
Current materials for repairing abdominal peritoneal defects face rapid degradation, infection risk, insufficient vascular ingrowth, slow muscle regeneration, and suboptimal postoperative integration, often causing fibrotic healing and hindering volumetric muscle loss (VML) repair exceeding 30%. To address these issues, photo-cross-linkable gelatin hydrogels are combined with blood vessel-forming cells to reconstruct vascular networks, providing temporary nutrient and gas channels that support cell repair. By developing a polymer-chain propagation time technique, hydrogel properties are optimized, avoiding limitations of conventional light exposure. These gels guide blood-vessel formation in vitro and promote robust microvessel and neural development in vivo. Precise control of light exposure and propagation times balances cross-linking and degradation, fostering blood vessel growth and host motor neuron ingrowth. In 55% VML, these hydrogels enable full-thickness abdominal muscle regeneration, restoring up to 70% of lost muscle while mimicking healthy tissue's strength and structure. Achieving higher degradation rates and a vascular density exceeding 50 vessels/mm-2 is essential for functional muscle repair. These strategies effectively bridge current clinical gaps, advancing regenerative medicine. The ability to fine-tune degradation and stiffness underscores gelatin hydrogels' potential as cell carriers, allowing the reconstruction of temporary vascular and neural channels at injury sites and significantly enhancing muscle tissue regeneration.
Collapse
Affiliation(s)
- Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Jun-Zhi Dai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Chuan Ni
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ling Fang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
4
|
Ullah S, Zainol I. Fabrication and applications of biofunctional collagen biomaterials in tissue engineering. Int J Biol Macromol 2025; 298:139952. [PMID: 39824416 DOI: 10.1016/j.ijbiomac.2025.139952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration. Collagen fabrication with organ-specific biofunctionality facilitated organ tissue engineering as compared to unmodified collagen biomaterials. Collagen biofunctionality improved by subjecting collagen to synthesis, fibers and surface modifications, and blending with other components. Furthermore, collagen is loaded with bioactive molecules, growth factors, drugs and cells also enhancing the biofunctionality of collagen biomaterials. In this review, we will explore the recent advancements in biofunctional collagen biomaterials fabrication with organ-specific biofunctionality in tissue engineering to resolve various organ tissue engineering issues and regeneration challenges. Biofunctional collagen biomaterials stimulate microenvironments inside and around the implants to excellently regulate cellular activities, differentiate cells into organ native cells, enhanced ECM production and remodeling to regenerate organ tissues with native structure, function and maturation. This review critically explored biofunctional collagen biomaterials fabrication in resolving various organ tissue engineering issues and regeneration challenges, and opening new directions of biofunctional collagen biomaterials fabrication, design and applications.
Collapse
Affiliation(s)
- Saleem Ullah
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| | - Ismail Zainol
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| |
Collapse
|
5
|
Vasudevan A, Ghosal D, Ram Sahu S, Kumar Jha N, Vijayaraghavan P, Kumar S, Kaur S. Injectable Hydrogels for Liver: Potential for Clinical Translation. Chem Asian J 2025; 20:e202401106. [PMID: 39552124 DOI: 10.1002/asia.202401106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Injectable hydrogels are a sub-type of hydrogels which can be delivered into the host in a minimally invasive manner. They can act as carriers to encapsulate and deliver cells, drugs or active biomolecules across several disease conditions. Polymers, either synthetic or natural, or even a combination of the two, can be used to create injectable hydrogels. Clinically approved injectable hydrogels are being used as dressings for burn wounds, bone and cartilage reconstruction. Injectable hydrogels have recently gained tremendous attention for their delivery into the liver in pre-clinical models. However, their efficacy in clinical studies remains yet to be established. In this article, we describe principles for the design of these injectable hydrogels, delivery strategies and their potential applications in facilitating liver regeneration and ameliorating injury. We also discuss the several constraints related to translation of these hydrogels into clinical settings for liver diseases and deliberate some potential solutions to combat these challenges.
Collapse
Affiliation(s)
- Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Sita Ram Sahu
- School of Interdisciplinary Research, Indian Institute of Technology, New Delhi, 110016, India
| | - Narsing Kumar Jha
- Department of Applied Mechanics, Indian Institute of Technology, New Delhi, 110016, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
6
|
Torabi Rahvar P, Abdekhodaie MJ, Jooybar E, Gantenbein B. An enzymatically crosslinked collagen type II/hyaluronic acid hybrid hydrogel: A biomimetic cell delivery system for cartilage tissue engineering. Int J Biol Macromol 2024; 279:134614. [PMID: 39127277 DOI: 10.1016/j.ijbiomac.2024.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study presents new injectable hydrogels based on hyaluronic acid and collagen type II that mimic the polysaccharide-protein structure of natural cartilage. After collagen isolation from chicken sternal cartilage, tyramine-grafted hyaluronic acid and collagen type II (HA-Tyr and COL-II-Tyr) were synthesized. Hybrid hydrogels were prepared with different ratios of HA-Tyr/COL-II-Tyr using horseradish peroxidase and noncytotoxic concentrations of hydrogen peroxide to encapsulate human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The findings showed that a higher HA-Tyr content resulted in a higher storage modulus and a lower hydrogel shrinkage, resulting in hydrogel swelling. Incorporating COL-II-Tyr into HA-Tyr hydrogels induced a more favorable microenvironment for hBM-MSCs chondrogenic differentiation. Compared to HA-Tyr alone, the hybrid HA-Tyr/COL-II-Tyr hydrogel promoted enhanced chondrocyte adhesion, spreading, proliferation, and upregulation of cartilage-related gene expression. These results highlight the promising potential of injectable HA-Tyr/COL-II-Tyr hybrid hydrogels to deliver cells for cartilage regeneration.
Collapse
Affiliation(s)
- Parisa Torabi Rahvar
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Mohammad J Abdekhodaie
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada.
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Inselspital, Bern University Hospital, Department of Orthopedic Surgery & Traumatology, Bern, Switzerland
| |
Collapse
|
7
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
8
|
Rashidi S, Bagherpour G, Abbasi‐Malati Z, Khosrowshahi ND, Chegeni SA, Roozbahani G, Lotfimehr H, Sokullu E, Rahbarghazi R. Endothelial progenitor cells for fabrication of engineered vascular units and angiogenesis induction. Cell Prolif 2024; 57:e13716. [PMID: 39051852 PMCID: PMC11503262 DOI: 10.1111/cpr.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The promotion of vascularization and angiogenesis in the grafts is a crucial phenomenon in the healing process and tissue engineering. It has been shown that stem cells, especially endothelial progenitor cells (EPCs), can stimulate blood vessel formation inside the engineered hydrogels after being transplanted into the target sites. The incorporation of EPCs into the hydrogel can last the retention time, long-term survival, on-target delivery effects, migration and differentiation into mature endothelial cells. Despite these advantages, further modifications are mandatory to increase the dynamic growth and angiogenesis potential of EPCs in in vitro and in vivo conditions. Chemical modifications of distinct composites with distinct physical properties can yield better regenerative potential and angiogenesis during several pathologies. Here, we aimed to collect recent findings related to the application of EPCs in engineered vascular grafts and/or hydrogels for improving vascularization in the grafts. Data from the present article can help us in the application of EPCs as valid cell sources in the tissue engineering of several ischemic tissues.
Collapse
Affiliation(s)
- Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Ghasem Bagherpour
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
| | - Zahra Abbasi‐Malati
- Student Research CenterTabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Sara Aghakhani Chegeni
- Department of Clinical Biochemistry and Laboratory MedicineTabriz University of Medical SciencesTabrizIran
| | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbulTurkey
- Biophysics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Wei SY, Chen PY, Tsai MC, Hsu TL, Hsieh CC, Fan HW, Chen TH, Xie RH, Chen GY, Chen YC. Enhancing the Repair of Substantial Volumetric Muscle Loss by Creating Different Levels of Blood Vessel Networks Using Pre-Vascularized Nerve Hydrogel Implants. Adv Healthc Mater 2024; 13:e2303320. [PMID: 38354361 DOI: 10.1002/adhm.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Volumetric muscle loss (VML), a severe muscle tissue loss from trauma or surgery, results in scarring, limited regeneration, and significant fibrosis, leading to lasting reductions in muscle mass and function. A promising approach for VML recovery involves restoring vascular and neural networks at the injury site, a process not extensively studied yet. Collagen hydrogels have been investigated as scaffolds for blood vessel formation due to their biocompatibility, but reconstructing blood vessels and guiding innervation at the injury site is still difficult. In this study, collagen hydrogels with varied densities of vessel-forming cells are implanted subcutaneously in mice, generating pre-vascularized hydrogels with diverse vessel densities (0-145 numbers/mm2) within a week. These hydrogels, after being transplanted into muscle injury sites, are assessed for muscle repair capabilities. Results showed that hydrogels with high microvessel densities, filling the wound area, effectively reconnected with host vasculature and neural networks, promoting neovascularization and muscle integration, and addressing about 63% of the VML.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Wei Fan
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15289, USA
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
10
|
Asim S, Hayhurst E, Callaghan R, Rizwan M. Ultra-low content physio-chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture. Int J Biol Macromol 2024; 264:130657. [PMID: 38458282 PMCID: PMC11003839 DOI: 10.1016/j.ijbiomac.2024.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Gelatin-based hydrogels are extensively used for 3D cell culture, bioprinting, and tissue engineering due to their cell-adhesive nature and tunable physio-chemical properties. Gelatin hydrogels for 3D cell culture are often developed using high-gelatin content (frequently 10-15 % w/v) to ensure fast gelation and improved stability. While highly stable, such matrices restrict the growth of encapsulated cells due to creating a dense, restrictive environment around the encapsulated cells. Hydrogels with lower polymer content are known to improve 3D cell growth, yet fabrication of ultra-low concentration gelatin hydrogels is challenging while ensuring fast gelation and stability. Here, we demonstrate that physical gelation and photo-crosslinking in gelatin results in a fast-gelling hydrogel at a remarkably low gelatin concentration of 1 % w/v (GelPhy/Photo). The GelPhy/Photo hydrogel was highly stable, allowed uniform 3D distribution of cells, and significantly improved the spreading of encapsulated 3T3 fibroblast cells. Moreover, human cholangiocarcinoma (HuCCT-1) cells encapsulated in 1 % GelPhy/Photo matrix grew and self-assembled into epithelial cysts with lumen, which could not be achieved in a traditional high-concentration gelatin hydrogel. These findings pave the way to significantly improve existing gelatin hydrogels for 3D cell culture applications.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Emma Hayhurst
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rachel Callaghan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; Health Research Institute (HRI), Michigan Technological University, USA.
| |
Collapse
|
11
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
12
|
Ma J, Zhong J, Sun F, Liu B, Peng Z, Lian J, Wu X, Li L, Hao M, Zhang T. Hydrogel sensors for biomedical electronics. CHEMICAL ENGINEERING JOURNAL 2024; 481:148317. [DOI: 10.1016/j.cej.2023.148317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 PMCID: PMC11606314 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Moriyama K, Inomoto N, Moriuchi H, Nihei M, Sato M, Miyagi Y, Tajiri A, Sato T, Tanaka Y, Johno Y, Goto M, Kamiya N. Characterization of enzyme-crosslinked albumin hydrogel for cell encapsulation. J Biosci Bioeng 2023; 136:471-476. [PMID: 37798227 DOI: 10.1016/j.jbiosc.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Albumin is an attractive component for the development of biomaterials applied as biomedical implants, including drug carriers and tissue engineering scaffolds, because of its high biocompatibility and low immunogenicity. Additionally, albumin-based gelators facilitate cross-linking reactions under mild conditions, which maintains the high viability of encapsulated living cells. In this study, we synthesized albumin derivatives to undergo gelation under physiological conditions via the peroxidase-catalyzed formation of cross-links. Albumin was modified with phenolic hydroxyl groups (Alb-Ph-OH) using carbodiimide chemistry, and the effect of degree of substitution on gelation was investigated. Various properties of the Alb-Ph-OH hydrogels, namely the gelation time, swelling ratio, pore size, storage modulus, and enzymatic degradability, were easily controlled by adjusting the degree of substitution and the polymer concentration. Moreover, the viability of cells encapsulated within the Alb-Ph-OH hydrogel was high. These results demonstrate the potential applicability of Alb-Ph-OH hydrogels as cell-encapsulating materials for biomedical applications, including tissue engineering.
Collapse
Affiliation(s)
- Kousuke Moriyama
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan.
| | - Noe Inomoto
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Hidetoshi Moriuchi
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Masanobu Nihei
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Miku Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshiki Miyagi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ayaka Tajiri
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yasuhiko Tanaka
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Yuuki Johno
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Slyker L, Bonassar LJ. Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels. Bioengineering (Basel) 2023; 10:1037. [PMID: 37760139 PMCID: PMC10526064 DOI: 10.3390/bioengineering10091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This study used the N-terminal functionalization of collagen with alginate oligomers to improve toughness and extensibility through metal-ion complexation. Alginate conjugation was confirmed via FTIR spectroscopy. The retention of native collagen fibrillar structure, thermal gelation, and helical conformation in functionalized gels was confirmed via scanning electron microscopy, oscillatory shear rheology, and circular dichroism spectroscopy, respectively. Alginate-calcium complexation enabled a more than two-fold increase in modulus and work density in functionalized collagen with the addition of 50 mM CaCl2, whereas unmodified collagen decreased in both modulus and work density with increasing calcium concentration. Additionally, the extensibility of alginate-functionalized collagen was increased at 25 and 50 mM CaCl2. Following 2-week culture with auricular chondrocytes, alginate-functionalization had no effect on the cytocompatibility of collagen gels, with no effects on cell density, and increased glycosaminoglycan deposition. Custom MATLAB video analysis was then used to quantify fracture toughness, which was more than 5-fold higher following culture in functionalized collagen and almost three-fold higher in unmodified collagen.
Collapse
Affiliation(s)
- Leigh Slyker
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lawrence J. Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
17
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
19
|
Farokhi M, Solouk A, Mirzadeh H, Herbert Teuschl A, Redl H. An Injectable Enzymatically Crosslinked and Mechanically Tunable Silk Fibroin/Chondroitin Sulfate Chondro‐Inductive Hydrogel. MACROMOLECULAR MATERIALS AND ENGINEERING 2023; 308. [DOI: 10.1002/mame.202200503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractAn injectable hybrid hydrogel is synthesized, comprising silk fibroin (SF) and chondroitin sulfate (CS) through di‐tyrosine formation bond of SF chains. CS and SF are reported with excellent biocompatibility as tissue engineering scaffolds. Nonetheless, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate articular cartilage. As CS is one of the cartilage extracellular matrix (ECM) components, it has the potential to enhance the biological activity of SF‐based hydrogel in terms of cartilage repair. Therefore, altering the CS concentrations (i.e., 0 wt%, 0.25 wt%, 0.5 wt%, 1 wt%, and 2 wt%), which are interpenetrated between SF β‐sheets and chains, can potentially adjust the physical, chemical, and mechanical features of these hybrid hydrogels. The formation of β‐sheets by 30 days of immersion in de‐ionized (DI) water can improve the compression strength of the SF/CS hybrid hydrogels in comparison with the same SF/CS hybrid hydrogels in the dried state. Biological investigation and observation depicts proper cell attachment, proliferation and cell viability for C28/I2 cells. Gene expression of sex‐determining region YBox 9 (SOX9), Collagen II α1, and Aggrecan (AGG) exhibits positive C3H10T1/2 growth and expression of cartilage‐specific genes in the 0.25 wt% and 0.5 wt% SF/CS hydrogels.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Atefeh Solouk
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Anderaes Herbert Teuschl
- Department of Life Science Engineering University of Applied Sciences Technikum Wien Höchstädtplatz 6 Vienna 1200 Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology AUVA Research Center Donaueschingenstrasse 13 Vienna 1200 Austria
| |
Collapse
|
20
|
Rong X, Mehwish N, Niu X, Zhu N, Lee BH. Human Albumin-Based Hydrogels for Their Potential Xeno-Free Microneedle Applications. Macromol Biosci 2023; 23:e2200463. [PMID: 36563292 DOI: 10.1002/mabi.202200463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Nowadays, hydrogels-based microneedles (MNs) have attracted a great interest owing to their outstanding qualities for biomedical applications. For the fabrication of hydrogels-based microneedles as tissue engineering scaffolds and drug delivery carriers, various biomaterials have been tested. They are required to feature tunable physiochemical properties, biodegradability, biocompatibility, nonimmunogenicity, high drug loading capacity, and sustained drug release. Among biomaterials, human proteins are the most ideal biomaterials for fabrication of hydrogels-based MNs; however, they are mechanically weak and poorly processible. To the best of the knowledge, there are no reports of xeno-free human protein-based MNs so far. Here, human albumin-based hydrogels and microneedles for tissue engineering and drug delivery by using relatively new processible human serum albumin methacryloyl (HSAMA) are engineered. The resultant HSAMA hydrogels display tunable mechanical properties, biodegradability, and good biocompatibility. Moreover, the xeno-free HSAMA microneedles display a sustained drug release profile and significant mechanical strength to penetrate the model skin. In vitro, they also show good biocompatibility and anticancer efficacy. Sustainable processible human albumin-based biomaterials may be employed as a xeno-free platform in vivo for tissue engineering and drug delivery in clinical trials in the future.
Collapse
Affiliation(s)
- Xiaona Rong
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Nabila Mehwish
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Xueming Niu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Niteng Zhu
- Wenzhou Medical University, School of Biomedical Engineering, Wenzhou, Zhejiang, 325000, China
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
21
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Mokhtarinia K, Rezvanian P, Masaeli E. Sustainable hydrogel-based cell therapy. SUSTAINABLE HYDROGELS 2023:443-470. [DOI: 10.1016/b978-0-323-91753-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Im GB, Lin RZ. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol 2022; 10:1053491. [PMID: 36466323 PMCID: PMC9713639 DOI: 10.3389/fbioe.2022.1053491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 10/17/2023] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have been widely used in various biomedical applications, especially in tissue engineering and regenerative medicine, for their excellent biocompatibility and biodegradability. GelMA crosslinks to form a hydrogel when exposed to light irradiation in the presence of photoinitiators. The mechanical characteristics of GelMA hydrogels are highly tunable by changing the crosslinking conditions, including the GelMA polymer concentration, degree of methacrylation, light wavelength and intensity, and light exposure time et al. In this regard, GelMA hydrogels can be adjusted to closely resemble the native extracellular matrix (ECM) properties for the specific functions of target tissues. Therefore, this review focuses on the applications of GelMA hydrogels for bioengineering human vascular networks in vitro and in vivo. Since most tissues require vasculature to provide nutrients and oxygen to individual cells, timely vascularization is critical to the success of tissue- and cell-based therapies. Recent research has demonstrated the robust formation of human vascular networks by embedding human vascular endothelial cells and perivascular mesenchymal cells in GelMA hydrogels. Vascular cell-laden GelMA hydrogels can be microfabricated using different methodologies and integrated with microfluidic devices to generate a vasculature-on-a-chip system for disease modeling or drug screening. Bioengineered vascular networks can also serve as build-in vasculature to ensure the adequate oxygenation of thick tissue-engineered constructs. Meanwhile, several reports used GelMA hydrogels as implantable materials to deliver therapeutic cells aiming to rebuild the vasculature in ischemic wounds for repairing tissue injuries. Here, we intend to reveal present work trends and provide new insights into the development of clinically relevant applications based on vascularized GelMA hydrogels.
Collapse
Affiliation(s)
- Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Ebrahimzadeh A, Khanalizadeh E, Khodabakhshaghdam S, Kazemi D, Baradar Khoshfetrat A. Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Injectable in situ-forming hydrogels appears to be a promising approach for tissue engineering applications. In this study, the effect of phenol moiety (Ph) addition to gelatin in enzymatically-gellable modified pectin hydrogel (Pec-Ph) was studied. Addition of gelatin-Ph to Pec-Ph (Pec-Ph/Gel-Ph) altered the physical properties of Pec-Ph-based hydrogels as compared to unmodified gelatin (Pec-Ph/Gel) addition. Swelling ratio and degradation rates of the Pec-Ph/Gel-Ph hydrogel decreased 35% and 50%, respectively, and the elasticity of Pec-Ph/Gel-Ph hydrogel was higher than the Pec-Ph/Gel hydrogels. Scanning electron microscopy images showed that the existence of phenolic groups in gelatin decreased the pore size of Pec-Ph/Gel-Ph hydrogels. Culture of chondrocyte cells in the Pec-Ph/Gel-Ph hydrogels showed more metabolic activity (4×) during a 14-day culture period. Hydrogels subcutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. The work showed the potential of Pec-Ph/Gel-Ph hydrogels as a promising in situ injectable hydrogel for soft tissue engineering applications.
Collapse
Affiliation(s)
- Asal Ebrahimzadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Elnaz Khanalizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | | | - Davoud Kazemi
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
25
|
Gonzalez-Obeso C, Backlund FG, Kaplan DL. Charge-Modulated Accessibility of Tyrosine Residues for Silk-Elastin Copolymer Cross-Linking. Biomacromolecules 2022; 23:760-765. [PMID: 35113522 PMCID: PMC9211056 DOI: 10.1021/acs.biomac.1c01192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modulation of reaction kinetics with horseradish peroxidase (HRP)-catalyzed cross-linking of proteins remains a useful strategy to modulate hydrogel formation. Here, we demonstrate that the presence of positively charged lysines in silk-elastin-like polymers impacts the thermal transition temperature of these proteins, while the location in the primary sequence modulates the reactivity of the tyrosines. The positively charged lysine side chains decreased π-π interactions among the tyrosines and reduced the rate of formation and number of HRP-mediated dityrosine bonds, dependent on the proximity of the charged group to the tyrosine. The results suggest that the location of repulsive charges can be used to tailor the reaction kinetics for enzymatic cross-linking, providing further control of gelation rates for in situ gel formation and the resulting protein-based gel characteristics.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| | - Fredrik G Backlund
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
26
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
27
|
Wei SY, Chen TH, Kao FS, Hsu YJ, Chen YC. Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel. J Tissue Eng 2022; 13:20417314221084096. [PMID: 35296029 PMCID: PMC8918759 DOI: 10.1177/20417314221084096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
The physically-crosslinked collagen hydrogels can provide suitable microenvironments for cell-based functional vascular network formation due to their biodegradability, biocompatibility, and good diffusion properties. However, encapsulation of cells into collagen hydrogels results in extensive contraction and rapid degradation of hydrogels, an effect known from their utilization as a pre-vascularized graft in vivo. Various types of chemically-crosslinked collagen-based hydrogels have been successfully synthesized to decrease volume contraction, retard the degradation rate, and increase mechanical tunability. However, these hydrogels failed to form vascularized tissues with uniformly distributed microvessels in vivo. Here, the enzymatically chemically-crosslinked collagen-Phenolic hydrogel was used as a model to determine and overcome the difficulties in engineering vascular networks. Results showed that a longer duration of inflammation and excessive levels of hydrogen peroxide limited the capability for blood vessel forming cells-mediated vasculature formation in vivo. Lowering the unreacted amount of crosslinkers reduced the densities of infiltrating host myeloid cells by half on days 2-4 after implantation, but blood vessels remained at low density and were mainly located on the edge of the implanted constructs. Co-implantation of a designed spacer with cell-laden hydrogel maintained the structural integrity of the hydrogel and increased the degree of hypoxia in embedded cells. These effects resulted in a two-fold increase in the density of perfused blood vessels in the hydrogel. Results agreed with computer-based simulations. Collectively, our findings suggest that simultaneous reduction of the crosslinker-induced host immune response and increase in hypoxia in hydrogen peroxide-triggered chemically-crosslinked hydrogels can effectively improve the formation of cell-mediated functional vascular networks.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Sheng Kao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jung Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
28
|
Elham Badali, Hosseini M, Mohajer M, Hassanzadeh S, Saghati S, Hilborn J, Khanmohammadi M. Enzymatic Crosslinked Hydrogels for Biomedical Application. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x22030026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
30
|
Mao SY, Peng HW, Wei SY, Chen CS, Chen YC. Dynamically and Spatially Controllable Albumin-Based Hydrogels for the Prevention of Postoperative Adhesion. ACS Biomater Sci Eng 2021; 7:3293-3305. [PMID: 34152719 DOI: 10.1021/acsbiomaterials.1c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the degree of severity and the geometry of wounds vary, it is necessary to prepare an antiadhesive hydrogel that possesses dynamically controllable material properties, exhibits biodegradability, and possesses drug-releasing properties. Injectable, oxygen peroxide-sensitive, and photo-cross-linkable hydrogels that permit in situ dynamic and spatial control of their physicochemical properties were synthesized for the prevention of postoperative adhesion. Albumin is the most abundant protein in blood serum and serves as a carrier for several molecules that exhibit poor water solubility. It is therefore a suitable biomaterial for the fabrication of hydrogels since it presents a low risk of life-threatening complications and does not require immunosuppressive therapy for preventing graft rejection. The physicochemical properties of this hydrogel can then be spatially postadjusted via transdermal exposure to light to release drugs, depending on what is required for the injury. A significant reduction in postoperative peritoneal adhesion was observed in an animal model involving severe sidewall and bowel abrasions. This study demonstrated that the fabricated dually cross-linked, albumin-based hydrogels have great potential in such applications because they showed a low immune response, easy handling, full wound coverage, and tunable biodegradability. Precise spatial and controllable drug-release profiles may also be achieved via in situ transdermal post-tuning of the biomaterials, depending on the injury.
Collapse
Affiliation(s)
- Syuan-Yu Mao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Hui-Wen Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Shih-Yen Wei
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
31
|
Shojarazavi N, Mashayekhan S, Pazooki H, Mohsenifard S, Baniasadi H. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl 2021; 36:803-817. [PMID: 34121491 DOI: 10.1177/08853282211024020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was optimized to reach a desired mechanical stiffness. Accordingly, the concentrations of alginate and SFN to have an optimum compression modulus in the hydrogel were found to be 1.685 and 1.724% w/v, respectively. The gelation time was found to be about 10 s for all the samples. Scanning electron microscope (SEM) images showed homogeneous dispersion of the SFN in the hydrogel, mimicking the natural cartilage environment. Furthermore, water uptake capacity, degradation rate, cell cytotoxicity, and glycosaminoglycan and collagen II secretions were determined for the optimum hydrogel to support its potential as an injectable scaffold for articular cartilage defects.
Collapse
Affiliation(s)
- Nastaran Shojarazavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Pazooki
- Department of Chemical and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sadaf Mohsenifard
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
32
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Chen CL, Tsai CY, Chen YS, Lin TY, Hsu YJ, Wei SY, Chen YC. Two-Stage Patterned Cell-Based Treatments for Skin Regeneration. J Biomed Nanotechnol 2021; 16:1740-1754. [PMID: 33485401 DOI: 10.1166/jbn.2020.3003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During the process of wound healing, avoiding the formation of aligned collagen fibrils and subsequent scarring has become the focus of numerous research efforts. However, the goal of regeneration of native or scar-free skin remains a challenge. The complex and equivocal connection between inflammation and regeneration within the process of healing contributes to unsatisfactory treatment outcomes. Inspired by the scarless repair observed in fetal wound healing, we create a two-stage treatment combining the hydrocolloid dressing to attenuate the immune response in the initial three days, and the biomimetic cell-laden hydrogel to improve skin regeneration, which meet the specific needs of each stage in the healing process. To further accelerate the skin regeneration, the patterned cell-laden hydrogels were fabricated by photo-mask based photolithography technique. The efficacy and possible mechanisms of skin regeneration using this patterned cell-laden hydrogel therapy was investigated. Results show that these two-stage patterned cell-laden treatments were able to promote vascular network formation, accelerate wound closure, decrease scar formation, increase tissue regeneration and restore structure and mechanical properties of the skin in a full-thickness murine wound model. These data suggest that our patterned cell-based two-stage treatments can be used as a promising therapeutic option for wound healing by accelerating skin tissue regeneration.
Collapse
|
35
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
36
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Bertassoni LE. Progress and Challenges in Microengineering the Dental Pulp Vascular Microenvironment. J Endod 2020; 46:S90-S100. [PMID: 32950200 PMCID: PMC9924144 DOI: 10.1016/j.joen.2020.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The dental pulp is highly vascularized and innervated tissue that is uniquely designed, being highly biologically active, while being enclosed within the calcified structure of the tooth. It is well-established that the dental pulp vasculature is a key requirement for the functional performance of the tooth. Therefore, controlled regeneration of the dental pulp vasculature is a challenge that must be met for future regenerative endeavors in endodontics. METHODS In this perspective review, we address recent progress and challenges on the use of microengineering methods and biomaterials scaffolds to fabricate the dental pulp vascular microenvironment. RESULTS The conditions required to control the growth and differentiation of vascular capillaries are discussed, together with the conditions required for the formation of mature and stable pericyte-supported microvascular networks in 3-dimensional hydrogels and fabricated microchannels. Recent biofabrication methods, such as 3-dimensional bioprinting and micromolding are also discussed. Moreover, recent advances in the field of organs-on-a-chip are discussed regarding their applicability to dental research and endodontic regeneration. CONCLUSION Collectively, this short review offers future directions in the field that are presented with the objective of pointing toward successful pathways for successful clinical and translational strategies in regenerative endodontics, with especial emphasis on the dental pulp vasculature.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA., Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA., Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA., Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
38
|
Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, Asadi N, Salehi R, Nasrabadi HT. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Curr Med Chem 2020; 27:2658-2680. [DOI: 10.2174/0929867326666190711103956] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
:Hydrogels are known as polymer-based networks with the ability to absorb water and other body fluids. Because of this, the hydrogels are used to preserve drugs, proteins, nutrients or cells. Hydrogels possess great biocompatibility, and properties like soft tissue, and networks full of water, which allows oxygen, nutrients, and metabolites to pass. Therefore, hydrogels are extensively employed as scaffolds in tissue engineering. Specifically, hydrogels made of natural polymers are efficient structures for tissue regeneration, because they mimic natural environment which improves the expression of cellular behavior.:Producing natural polymer-based hydrogels from collagen, hyaluronic acid (HA), fibrin, alginate, and chitosan is a significant tactic for tissue engineering because it is useful to recognize the interaction between scaffold with a tissue or cell, their cellular reactions, and potential for tissue regeneration. The present review article is focused on injectable hydrogels scaffolds made of biocompatible natural polymers with particular features, the methods that can be employed to engineer injectable hydrogels and their latest applications in tissue regeneration.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions. Polym J 2020. [DOI: 10.1038/s41428-020-0344-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Liao X, Yang X, Deng H, Hao Y, Mao L, Zhang R, Liao W, Yuan M. Injectable Hydrogel-Based Nanocomposites for Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 8:251. [PMID: 32296694 PMCID: PMC7136457 DOI: 10.3389/fbioe.2020.00251] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), including a series of pathological disorders, severely affect millions of people all over the world. To address this issue, several potential therapies have been developed for treating CVDs, including injectable hydrogels as a minimally invasive method. However, the utilization of injectable hydrogel is a bit restricted recently owing to some limitations, such as transporting the therapeutic agent more accurately to the target site and prolonging their retention locally. This review focuses on the advances in injectable hydrogels for CVD, detailing the types of injectable hydrogels (natural or synthetic), especially that complexed with stem cells, cytokines, nano-chemical particles, exosomes, genetic material including DNA or RNA, etc. Moreover, we summarized the mainly prominent mechanism, based on which injectable hydrogel present excellent treating effect of cardiovascular repair. All in all, it is hopefully that injectable hydrogel-based nanocomposites would be a potential candidate through cardiac repair in CVDs treatment.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xushan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Rongjun Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
41
|
Ding Y, Zhao AS, Liu T, Wang YN, Gao Y, Li JA, Yang P. An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair. Ann Biomed Eng 2020; 48:1511-1523. [PMID: 32034609 DOI: 10.1007/s10439-020-02471-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
In this contribution, an injectable hydrogel was developed with chitosan, gelatin, β-glycerphosphate and Arg-Gly-Asp (RGD) peptide: this hydrogel is liquid in room temperature and rapidly gels at 37 °C; RGD peptide promises better growth microenvironment for various cells, especially endothelial cells (EC), smooth muscle cells (SMC) and mesenchymal stem cells (MSC). Both stromal cell-derived factor-1 (SDF-1) nanoparticle and vascular endothelial growth factor (VEGF) nanoparticles were loaded in the injectable hydrogel to simulate the natural nanoparticles in the extracellular matrix (ECM) to promote angiogenesis. In vitro EC/SMC and MSC/SMC co-culture experiment indicated that the nanocomposite hydrogel accelerated constructing embryonic form of blood vessels, and chick embryo chorioallantoic membrane model demonstrated its ability of improving cells migration and blood vessel regeneration. We injected this nanocomposite hydrogel into rat myocardial infarction (MI) model and the results indicated that the rats heart function recovered better compared control group. We hope this injectable nanocomposite hydrogel may possess wider application in tissue engineering.
Collapse
Affiliation(s)
- Yilei Ding
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - An-Sha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Tianmei Liu
- The Department of Pharmacy, Chengdu Xinhua Hospital, Chengdu, 610031, People's Republic of China
| | - Ya-Nan Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Yuan Gao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jing-An Li
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
42
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int J Biol Macromol 2019; 139:760-772. [DOI: 10.1016/j.ijbiomac.2019.08.047] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
43
|
Yang W, Ma B. A Mini-Review: The Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells and Relevant Signaling Cascades. Curr Stem Cell Res Ther 2019; 14:214-218. [PMID: 30207242 DOI: 10.2174/1574888x13666180912141228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) characterized multi-directional differentiation, low immunogenicity and high portability, serve as ideal "seed cells" in ophthalmological disease therapy. Therefore, in this mini-review, we examined the recent literature concerning the potential application of BMSCs for the treatment of ophthalmological disease, that includes: the cellular activity of BMSCs transplantation, migration and homing, as well as the immuno-modulatory and antiinflammatory effects of BMSCs and signaling involved. Each aspect is complementary to the others and together these aspects promoted further understanding of the potential use of BMSCs in treating ophthalmological diseases.
Collapse
Affiliation(s)
- Wen Yang
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| | - Bo Ma
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| |
Collapse
|
44
|
Ying H, Zhou J, Wang M, Su D, Ma Q, Lv G, Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:487-498. [DOI: 10.1016/j.msec.2019.03.093] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
45
|
Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration. Plast Reconstr Surg 2019; 143:993e-1002e. [DOI: 10.1097/prs.0000000000005529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Almouemen N, Kelly HM, O'Leary C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput Struct Biotechnol J 2019; 17:591-598. [PMID: 31080565 PMCID: PMC6502738 DOI: 10.1016/j.csbj.2019.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Within the past 25 years, tissue engineering (TE) has grown enormously as a science and as an industry. Although classically concerned with the recapitulation of tissue and organ formation in our body for regenerative medicine, the evolution of TE research is intertwined with progress in other fields through the examination of cell function and behaviour in isolated biomimetic microenvironments. As such, TE applications now extend beyond the field of tissue regeneration research, operating as a platform for modifiable, physiologically-representative in vitro models with the potential to improve the translation of novel therapeutics into the clinic through a more informed understanding of the relevant molecular biology, structural biology, anatomy, and physiology. By virtue of their biomimicry, TE constructs incorporate features of extracellular macrostructure, molecular adhesive moieties, and biomechanical properties, converging with computational and structural biotechnology advances. Accordingly, this mini-review serves to contextualise TE for the computational and structural biotechnology reader and provides an outlook on how the disciplines overlap with respect to relevant advanced analytical applications.
Collapse
Affiliation(s)
- Nour Almouemen
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Helena M. Kelly
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Cian O'Leary
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
47
|
Abstract
Developing a multiple functional wound dressing suitable for different stages of wound healing is important for patients with special wound such as burn or decubital ulcers. In this study, poly (vinyl alcohol) (PVA), dextran, and chitosan are integrated to produce ideal wound dressing where glutaraldehyde (GA) is used as the cross-linker. The result demonstrated that 6% PVA hydrogel with 0.25% chitosan was found to provide antimicrobial ability. The PVA/chitosan hydrogel combined with 4% dextran utilizing GA cross-linking also presents the high cell proliferation ability, which suggests that the hydrogel is potential as a wound dressing. In the following physical analyses, the addition of chitosan and dextran appeared to promote the thermostability, mechanical properties, water retention, and moisturizing ability in the PVA hydrogel. In conclusion, the PVA/chitosan/dextran hydrogel has promising potential such as high water content, antimicrobial property, and well cell proliferation, which can be applied to wound healing application.
Collapse
|
48
|
Wen X, Shen M, Bai Y, Xu C, Han X, Yang H, Yang L. Biodegradable cell‐laden starch foams for the rapid fabrication of 3D tissue constructs and the application in neural tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:104-116. [PMID: 30916468 DOI: 10.1002/jbm.b.34370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoxiao Wen
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
| | - Minjie Shen
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Yanjie Bai
- School of Public Health, Medical CollegeSoochow University Suzhou 215006 China
| | - Changlu Xu
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Materials Science and Engineering ProgramUniversity of California Riverside, Riverside California 92521
| | - Xinglong Han
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical CollegeSoochow University Suzhou 215000 China
| | - Huilin Yang
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow University Suzhou 215006 China
- International Research Center for Translational Orthopaedics (IRCTO) Suzhou 215006 China
| | - Lei Yang
- Institute of OrthopaedicsFirst Affiliated Hospital of Soochow University, Soochow University Suzhou 215006 China
- International Research Center for Translational Orthopaedics (IRCTO) Suzhou 215006 China
| |
Collapse
|
49
|
Anderson DEJ, Truong KP, Hagen MW, Yim EKF, Hinds MT. Biomimetic modification of poly(vinyl alcohol): Encouraging endothelialization and preventing thrombosis with antiplatelet monotherapy. Acta Biomater 2019; 86:291-299. [PMID: 30639349 DOI: 10.1016/j.actbio.2019.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 01/04/2023]
Abstract
Poly(vinyl alcohol) (PVA) has shown promise as a biomaterial for cardiovascular application. However, its antifouling properties prevent in vivo endothelialization. This work examined the endothelialization and thrombogenicity of modified PVA with different concentrations of proteins and adhesion peptides: collagen, laminin, fibronectin, GFPGER, YIGSR, and cRGD. Material surface properties were quantified, and the endothelialization potential was determined with human endothelial colony forming cells. Additionally, platelet attachment was assessed in vitro with human platelet rich plasma, and promising samples were tested in an ex vivo shunt model. This well-established arteriovenous shunt model was used with and without clinically-relevant antiplatelet therapies, specifically acetylsalicylic acid (ASA) with and without clopidogrel to examine the minimum necessary treatment to prevent thrombosis. Collagen, laminin, and GFPGER biomolecules increased endothelialization, with GFPGER showing the greatest effect at the lowest concentrations. GFPGER-PVA tubes tested under whole blood did exhibit an increase in platelet (but not fibrin) attachment compared to plain PVA and clinical controls. However, application of ASA monotherapy reduced the thrombogenicity of GFPGER-PVA below the clinical control with the ASA. This work is significant in developing cardiovascular biomaterials-increasing endothelialization potential while reducing bleeding side effects by using an antiplatelet monotherapy, typical of clinical patients. STATEMENT OF SIGNIFICANCE: We modified the endothelialization potential of synthetic, hydrogel vascular grafts with proteins and peptides of the vascular tissue matrix. Cell attachment was dramatically increased with the GFPGER peptide, and while some additional platelet attachment was seen under flow with whole blood, this was completely knocked down using clinical antiplatelet monotherapy. This indicates that long-term patency of this biomaterial could be improved without the associated bleeding risk of multiple platelet therapies.
Collapse
Affiliation(s)
- Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR 97239, USA
| | - Katie P Truong
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR 97239, USA
| | - Matthew W Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR 97239, USA
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L3G1, Canada
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave., Portland, OR 97239, USA.
| |
Collapse
|
50
|
Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019; 7:843-855. [PMID: 30648168 DOI: 10.1039/c8bm01246f] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomedical hydrogels as sole repair matrices or combined with pre-seeded cells and bioactive growth factors are extensively applied in tissue engineering and regenerative medicine. Hydrogels normally provide three dimensional structures for cell adhesion and proliferation or the controlled release of the loading of drugs or proteins. Various physiochemical properties of hydrogels endow them with distinct applications. In this review, we present the commonly used crosslinking method for hydrogel synthesis involving physical and chemical crosslinks and summarize their current progress and future perspectives.
Collapse
Affiliation(s)
- Weikang Hu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | |
Collapse
|