1
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Li C, Gao D, Zhang L, Li J, Zhang F, Xiao H, Cheng G. Antifouling Hydrogel Based on Zwitterionic Poly(carboxybetaine diacrylate) Cross-Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1968-1974. [PMID: 39794877 DOI: 10.1021/acs.langmuir.4c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Antifouling zwitterionic materials have extensive applications in the biomedical field. This study designed and successfully synthesized a novel poly(carboxybetaine) diacrylate (PCBDA) via cationic ring-opening polymerization of 2-methyl-2-oxazine, chain modification by the Michael reaction, and chain end transformation to acrylate. The cross-linker was obtained with a tunable molecular weight. Through photopolymerization, poly(carboxybetaine) (PCB) hydrogels with varying solid contents were obtained, and the effects of the solid content on the hydration properties, mechanical properties, and microstructure of the PCB hydrogels were investigated. Furthermore, the non-fouling properties of the PCB hydrogels were compared to those of commercial polyethylene glycol (PEG) hydrogels. Protein adsorption on PCB hydrogels was reduced by more than 60% compared to low-fouling PEG hydrogels. PCB hydrogels exhibit antibacterial adhesion properties similar to those of PEG hydrogels. In cell adhesion experiments, no cell adhesion was observed on the PCB hydrogels, indicating their superior anti-cell adhesion function. This advancement offers a more promising alternative to polyethylene glycol diacrylate (PEGDA) cross-linkers in the design of hydrogels.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liang Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jianan Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Fenming Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Han Xiao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
3
|
Cao B, Zhang J, Ma Y, Wang Y, Li Y, Wang R, Cao D, Yang Y, Zhang R. Dual-Polymer Functionalized Melanin-AgNPs Nanocomposite with Hydroxyapatite Binding Ability to Penetrate and Retain in Biofilm Sequentially Treating Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400771. [PMID: 38751055 DOI: 10.1002/smll.202400771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Indexed: 10/01/2024]
Abstract
Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.
Collapse
Affiliation(s)
- Bing Cao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jian Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yingfei Ma
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanan Wang
- The Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yun Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruixue Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Donghai Cao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
4
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
5
|
Bui HL, Su YH, Yang CJ, Huang CJ, Lai JY. Mucoadhesive, antioxidant, and lubricant catechol-functionalized poly(phosphobetaine) as biomaterial nanotherapeutics for treating ocular dryness. J Nanobiotechnology 2024; 22:160. [PMID: 38589911 PMCID: PMC11000383 DOI: 10.1186/s12951-024-02448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Dry eye disease (DED) is associated with ocular hyperosmolarity and inflammation. The marketed topical eye drops for DED treatment often lack bioavailability and precorneal residence time. In this study, we investigated catechol-functionalized polyzwitterion p(MPC-co-DMA), composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dopamine methacrylamide (DMA) monomers, as potential topical nanotherapeutics for DED. The copolymers were synthesized via random free-radical copolymerization, producing different proportions of catecholic functionalization. All as-prepared polymer compositions displayed good ocular biocompatibility. At a feeding ratio of 1:1, p(MPC1-co-DMA1) can facilitate a robust mucoadhesion via Michael addition and/or Schiff base reaction, thus prolonging ocular residence time after 4 days of topical instillation. The hydration lubrication of MPC and radical-scavenging DMA endow the nano-agent to ease tear-film hyperosmolarity and corneal inflammation. A single dose of p(MPC1-co-DMA1) (1 mg/mL) after 4 days post-instillation can protect the cornea against reactive oxygen species, inhibiting cell apoptosis and the over-expression of pro-inflammatory factors (IL-6 and TNF-α). In clinical assessment, DED-induced rabbit eyes receiving p(MPC1-co-DMA1) could increase lacrimal fluid secretion by 5-fold higher than cyclosporine A. The catechol-functionalized polyzwitterion with enhanced lubricity, mucoadhesion, and anti-oxidation/anti-inflammation properties has shown high promise as a bioactive eye drop formulation for treating DED.
Collapse
Affiliation(s)
- Hoang Linh Bui
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32023, Taiwan
| | - Yun-Han Su
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32023, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
- NCU-Covestro Research Center, National Central University, Taoyuan, 32023, Taiwan.
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 33305, Taoyuan, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
- Center for Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
6
|
Shi S, Hu M, Peng X, Cheng C, Feng S, Pu X, Yu X. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties. J Mater Chem B 2024; 12:3417-3435. [PMID: 38525920 DOI: 10.1039/d4tb00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
7
|
Feliciano A, Soares E, Bosman AW, van Blitterswijk C, Moroni L, LaPointe VLS, Baker MB. Complementary Supramolecular Functionalization Enhances Antifouling Surfaces: A Ureidopyrimidinone-Functionalized Phosphorylcholine Polymer. ACS Biomater Sci Eng 2023; 9:4619-4631. [PMID: 37413691 PMCID: PMC10428092 DOI: 10.1021/acsbiomaterials.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Fibrosis of implants remains a significant challenge in the use of biomedical devices and tissue engineering materials. Antifouling coatings, including synthetic zwitterionic coatings, have been developed to prevent fouling and cell adhesion to several implantable biomaterials. While many of these coatings need covalent attachment, a conceptually simpler approach is to use a spontaneous self-assembly event to anchor the coating to a surface. This could simplify material processing through highly specific molecular recognition. Herein, we investigate the ability to utilize directional supramolecular interactions to anchor an antifouling coating to a polymer surface containing a complementary supramolecular unit. A library of controlled copolymerization of ureidopyrimidinone methacrylate (UPyMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) was prepared and their UPy composition was assessed. The MPC-UPy copolymers were characterized by 1H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography (GPC) and found to exhibit similar mol % of UPy as compared to feed ratios and low dispersities. The copolymers were then coated on an UPy elastomer and the surfaces were assessed for hydrophilicity, protein absorption, and cell adhesion. By challenging the coatings, we found that the antifouling properties of the MPC-UPy copolymers with more UPy mol % lasted longer than the MPC homopolymer or low UPy mol % copolymers. As a result, the bioantifouling nature could be tuned to exhibit spatio-temporal control, namely, the longevity of a coating increased with UPy composition. In addition, these coatings showed nontoxicity and biocompatibility, indicating their potential use in biomaterials as antifouling coatings. Surface modification employing supramolecular interactions provided an approach that merges the simplicity and scalability of nonspecific coating methodology with the specific anchoring capacity found when using conventional covalent grafting with longevity that could be engineered by the supramolecular composition itself.
Collapse
Affiliation(s)
- Antonio
J. Feliciano
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Eduardo Soares
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Anton W. Bosman
- SupraPolix
B.V., Horsten 1, 5612 AX Eindhoven, The Netherlands
| | | | - Lorenzo Moroni
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Matthew B. Baker
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Sinha S, Kumar R, Anand J, Gupta R, Gupta A, Pant K, Dohare S, Tiwari P, Kesari KK, Krishnan S, Gupta PK. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS APPLIED NANO MATERIALS 2023; 6:12828-12848. [DOI: 10.1021/acsanm.3c01539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rhythm Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Akshima Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Sushil Dohare
- Department of Epidemiology, College of Public Health and Tropical Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Preeti Tiwari
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkari 1, Helsinki 00100, Finland
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Saravanan Krishnan
- Creative Carbon Laboratories Pvt Ltd., Chennai 600113, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
9
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
10
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Zhang X, Bai R, Sun Q, Zhuang Z, Zhang Y, Chen S, Han B. Bio-inspired special wettability in oral antibacterial applications. Front Bioeng Biotechnol 2022; 10:1001616. [PMID: 36110327 PMCID: PMC9468580 DOI: 10.3389/fbioe.2022.1001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Most oral diseases originate from biofilms whose formation is originated from the adhesion of salivary proteins and pioneer bacteria. Therefore, antimicrobial materials are mainly based on bactericidal methods, most of which have drug resistance and toxicity. Natural antifouling surfaces inspire new antibacterial strategies. The super wettable surfaces of lotus leaves and fish scales prompt design of biomimetic oral materials covered or mixed with super wettable materials to prevent adhesion. Bioinspired slippery surfaces come from pitcher plants, whose porous surfaces are infiltrated with lubricating liquid to form superhydrophobic surfaces to reduce the contact with liquids. It is believed that these new methods could provide promising directions for oral antimicrobial practice, improving antimicrobial efficacy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
12
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
14
|
Wu Y, Hong L, Hu X, Li Y, Yang C. Efficient Antimicrobial Effect of Alginate-Catechol/Fe 2+ Coating on Hydroxyapatite toward Oral Care Application. ACS APPLIED BIO MATERIALS 2022; 5:2152-2162. [PMID: 35446545 DOI: 10.1021/acsabm.1c01254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reducing the formation of oral bacterial biofilms is critical to prevent common dental diseases. Though many strategies for restricting bacterial adhesion on tooth surfaces have been reported, a simple method for efficient oral bacteriostasis is still highly expected. Herein, we have proved a soft gel made of an alginate-catechol conjugate (SA-DA) and the ferrous cation (Fe2+) as an effective antibacterial coating on hydroxyapatite (HAP, a tooth model). As suggested by quartz crystal microbalance (QCM) measurements, SA-DA/Fe2+ coating possessed a high binding affinity to HAP without destruction by either immersion in artificial saliva or simulated tooth brushing. Significantly less protein (bovine serum albumin) and Streptococcus mutans (S. mutans, an oral bacterial model) could be found on HAP after coating with SA-DA/Fe2+, indicating that the prepared gel could resist well the adhesion of biofouling and microbes due to its hydrophilicity. Notably, such an antibacterial effect (around 70% S. mutans was inhibited) could be maintained for 3 d, which resulted from the extremely good stability of SA-DA/Fe2+ coating, as confirmed by QCM analysis. Our results may offer possibilities for developing applications in order to further improve oral hygiene.
Collapse
Affiliation(s)
- Yingchang Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
16
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Thongthai P, Kitagawa H, Noree S, Iwasaki Y, Liu Y, Abe GL, Yamaguchi S, Imazato S. Evaluation of the long-term antibiofilm effect of a surface coating with dual functionality of antibacterial and protein-repellent effects. Dent Mater J 2021; 41:189-196. [PMID: 34759128 DOI: 10.4012/dmj.2021-205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The provision of antibacterial properties to resinous restorative/reconstructive materials by incorporating polymerizable bactericides such as 12-methacryloyloxydodecylpyridinium bromide (MDPB) has been attempted. Previously, MDPB was combined with 2-methacryloyloxyethyl phosphorylcholine (MPC) to fabricate a copolymer coating to increase antibacterial effectiveness by protein repelling. In this study, we assessed the longevity of the protein-repelling, antibacterial, and antibiofilm effects of the MDPB-MPC copolymer. After 28 days of water immersion, MPC-containing copolymers exhibited lower adsorption of bovine serum albumin and salivary proteins; after 24 h of incubation, MDPB-containing copolymers demonstrated antibacterial effects against Streptococcus mutans. The copolymer containing both MDPB and MPC showed thinner biofilm formation with a higher percentage of membrane-compromised bacteria than control. The results were consistent with those before aging, indicating the long-lasting antibacterial, protein-repellent, and antibiofilm effects of this copolymer. The durable copolymer developed in this study can be applied to dental resins to control bacteria in the oral environment.
Collapse
Affiliation(s)
- Pasiree Thongthai
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Susita Noree
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University.,ORDIST, Kansai University
| | - Yuhan Liu
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | | | - Satoshi Yamaguchi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
18
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
19
|
Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:301-316. [PMID: 34104114 PMCID: PMC8168784 DOI: 10.1080/14686996.2021.1908095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Phosphorus is a ubiquitous and one of the most common elements found in living organisms. Almost all molecules containing phosphorus in our body exist as analogs of phosphate salts or phosphoesters. Their functions are versatile and important, being responsible for forming the genetic code, cell membrane, and mineral components of hard tissue. Several materials inspired from these phosphorus-containing biomolecules have been recently developed. These materials have shown unique properties at the biointerface, such as nonfouling ability, blood compatibility, lubricity, mineralization induction capability, and bone affinity. Several unfavorable events occur at the interface of materials and living organisms because most of these materials have not been designed while taking host responses into account. These unfavorable events are directly linked to reducing functions and shorten the usable periods of medical devices. Biomimetic phosphorus-containing polymers can improve the reliability of materials in biological systems. In addition, phosphorus-containing biomimetic polymers are useful not only for improving the biocompatibility of material surfaces but also for adding new functions due to the flexibility in molecular design. In this review, we describe the recent advances in the control of biointerfacial phenomena with phosphorus-containing polymers. We especially focus on zwitterioninc phosphorylcholine polymers and polyphosphoesters.
Collapse
Affiliation(s)
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
20
|
Sun F, Hung HC, Yan W, Wu K, Shimchuk AA, Gray SD, He W, Huang X, Zhang H. Inhibition of oral biofilm formation by zwitterionic nonfouling coating. J Biomed Mater Res B Appl Biomater 2021; 109:1418-1425. [PMID: 33538114 DOI: 10.1002/jbm.b.34801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 11/12/2022]
Abstract
Inhibition of oral biofilm formation is critical to prevent and treat dental caries and periodontal diseases. In this study, we synthesized zwitterionic poly(carboxybetaine) (pCB) based polymer as a nonfouling coating to provide anti-bacterial properties to tooth surfaces. Four catechol derived l-3,4-dihydroxyphenylalanine (DOPA) groups were conjugated to pCB to serve as a surface anchoring group. The pCB-(DOPA)4 polymer was coated on the hydroxyapatite (HA) and enamel samples by simple immersion and characterized by Raman spectroscopy. The nonfouling effectiveness of the pCB based coating was determined by protein adsorption and bacterial adhesion assays. The coating was transparent on sample surfaces. The protein adsorption was significantly reduced to 8.2% and 6.9%, respectively, on pCB-(DOPA)4 coated HA and enamel samples. The pCB-(DOPA)4 -coated samples also demonstrated significantly fewer adhered Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus mutants compared to the control. This novel coating material provides an innovative approach to resist biofilm formation on tooth surfaces and has great potential in future dental clinical applications.
Collapse
Affiliation(s)
- Fang Sun
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA.,School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Weishi Yan
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, USA
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Andy A Shimchuk
- School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Sterling D Gray
- School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Wei He
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA.,The Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuelian Huang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Zhou L, Wong HM, Li QL. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite. Int J Nanomedicine 2020; 15:8963-8982. [PMID: 33223830 PMCID: PMC7671468 DOI: 10.2147/ijn.s281014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Quan Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei230000, People’s Republic of China
| |
Collapse
|
22
|
Photo-immobilization of pseudozwitterionic polymers with balanced electrical charge for developing anti-coagulation surfaces. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5639651. [PMID: 33062684 PMCID: PMC7547360 DOI: 10.1155/2020/5639651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Initial bacterial adhesion to medical devices and subsequent biofilm formation are known as the leading causes of surgical site infection (SSI). Therefore, inhibition of bacterial adhesion and biofilm formation on the surface of medical devices can reduce the risk of SSIs. In this study, a highly hydrophilic, antibiofouling surface was prepared by coating the bioabsorbable suture surface with poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate) (PMB). The PMB-coated and noncoated sutures exhibited similar mechanical strength and surface morphology. The effectiveness of the PMB coating on the suture to suppress adhesion and biofilm formation of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus was investigated both in vitro and in vivo. The bacterial adhesion test revealed that PMB coating significantly reduced the number of adherent bacteria, with no difference in the number of planktonic bacteria. Moreover, fluorescence microscopy and scanning electron microscopy observations of adherent bacteria on the suture surface after contact with bacterial suspension confirmed PMB coating-mediated inhibition of biofilm formation. Additionally, we found that the PMB-coated sutures exhibited significant antibiofouling effects in vivo. In conclusion, PMB-coated sutures demonstrated bacteriostatic effects associated with a highly hydrophilic, antibiofouling surface and inhibited bacterial adhesion and biofilm formation. Therefore, PMB-coated sutures could be a new alternative to reduce the risk of SSIs.
Collapse
|
24
|
A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. Acta Biomater 2020; 114:421-430. [PMID: 32711080 DOI: 10.1016/j.actbio.2020.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023]
Abstract
Implant-associated infections is one of the most challenging post-operative complications in bone-related implantations. To tackle this clinical issue, we developed a low-cost and durable surface coating for medical grade titanium implants that uses positively charged silane molecules. The in vitro antimicrobial tests revealed that the titanium surface coated with (3-aminopropyl) triethoxysilane, which has the appropriate length of hydrophobic alkyl chain and positive charged amino group, suppressed more than 90% of the initial bacterial adhesion of S. aureus, P. aeruginosa, and E. coli after 30 min of incubation. In terms of growth inhibitory rate, the treated surface was able to reduce 75.7% ± 11.9% of bacterial growth after a 24-hour culturing, thereby exhibiting superior anti-biofilm formation in the late stage. When implanted into the rat model infected by S. aureus, the treated surface eliminated the implant-associated infection through the mechanism of inhibition of bacterial adhesion on the implant surface. Additionally, the treated surface was highly compatible with mammalian cells. In general, our design demonstrated its potential for human clinical trials as a low-cost and effective antibacterial strategy to minimize post-operative implant-related bacterial infection.
Collapse
|
25
|
Ishihara K, Kozaki Y, Inoue Y, Fukazawa K. Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yoichiro Kozaki
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| |
Collapse
|
26
|
Jeong JO, Kim S, Park J, Lee S, Park JS, Lim YM, Lee JY. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays. J Mater Chem B 2020; 8:7225-7232. [PMID: 32638708 DOI: 10.1039/c9tb02087j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioelectrodes, including metallic and conductive polymer (CP) bioelectrodes, often suffer from biofouling by contamination from microbacteria and/or biomolecules in biological systems, which can cause substantial impairment of biofunctionality and biocompatibility. Herein, we have employed an in situ polymerization of methacryloyloxyethyl phosphorylcholine (MPC) by gamma radiation to introduce fouling-resistant properties onto the surface of the conductive polymer, polypyrrole (PPy). The concentrations of an MPC monomer were varied during the grafting. PPy electrodes modified with MPC (PPy-g-MPC) revealed excellent anti-biofouling properties, as demonstrated by multiple analyses, such as serum protein adsorption, fibroblast adhesion, bacteria adhesion, and scar tissue formation in vivo. Importantly, PPy-g-MPC, which was modified with 0.2 M MPC using gamma radiation, exhibited electrical properties similar to unmodified PPy electrodes, indicating that our MPC grafting strategies did not cause impairment of electrical/electrochemical properties of the original PPy electrodes while successfully introducing anti-biofouling properties. Zwitterionic MPC polymer grafting on PPy electrodes by in situ polymerization with gamma radiation will benefit the development of highly biocompatible and functional bioelectrodes, such as neural electrodes, stimulators, and biosensors.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. and Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Semin Kim
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jong-Seok Park
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Youn-Mook Lim
- Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), 29 Gumgugil, Jeongeup, 56212, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
27
|
Qiao Y, Li Y, Zhang Q, Wang Q, Gao J, Wang L. Dopamine-Mediated Zwitterionic Polyelectrolyte-Coated Polypropylene Hernia Mesh with Synergistic Anti-inflammation Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5251-5261. [PMID: 32336102 DOI: 10.1021/acs.langmuir.0c00602] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over 20 million ventral hernia repairs are performed worldwide annually and only a minority (<10%) of cases are not mesh-based. However, even polypropylene (PP), endorsed as the "gold standard" of all prosthetic materials used in this field, is still subject to many complications caused by the foreign body reaction (FBR). Here, we describe the buildup of dopamine-mediated zwitterionic poly(sulfobetaine methacrylate) (PSBMA) coatings to inhibit nonspecific protein adsorption. Based on the universal adhesive ability of polydopamine (PDA), PSBMA has been coated on the PP mesh surface via two strategies: sequential deposition (PSBMA-PDA-PP) and co-deposition (PSBMA@PDA-PP). The presence of PSBMA shows great contribution to obviously decreased hydrophobicity of the PP surface (WCAco = 36.3° and WCAseq = 30.7°) as well as improved protein resistance (Reductionco = 74% and Reductionseq = 82%). Notably, as the intermedia between PP and PSBMA, PDA can endow the PP mesh with antioxidant activity, further featuring synergistic anti-inflammation therapeutic effect when coupled with PSBMA. With almost equal surface content of PSBMA, PSBMA-PDA-PP exhibited a more superior ability against macrophage adhesion and proliferation and showed more significantly decreased releases of TNF-α and IL-6 (p < 0.05) than those of PSBMA@PDA-PP, fundamentally attributed to its more neutral surface potential and the protection for polyphenols of PDA from oxidation with PSBMA as the outer layer. Furthermore, the coating layers demonstrated good stability and no sacrifice of the pristine mechanical property. The proposed dopamine-mediated PSBMA coatings possess high potential in biomedical implant areas for attenuating the FBR.
Collapse
Affiliation(s)
- Yansha Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jing Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
28
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
29
|
Oai K, Inoue Y, Nakao A, Fukazawa K, Ishihara K. Antibacterial effect of nanometer‐size grafted layer of quaternary ammonium polymer on poly(ether ether ketone) substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keiko Oai
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | | | - Kyoko Fukazawa
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| |
Collapse
|
30
|
Kang S, Kim J, Kim S, Wufuer M, Park S, Kim Y, Choi D, Jin X, Kim Y, Huang Y, Jeon B, Choi TH, Park JU, Lee Y. Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomater Sci 2020; 8:1580-1591. [DOI: 10.1039/c9bm01802f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article presents the efficacy of heat-induced MPC-grafting against excessive fibrous capsule formation and related inflammation in tissues surrounding silicone breast implants inserted in a pig model.
Collapse
|
31
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Mortazavian H, Picquet GA, Lejnieks J, Zaidel LA, Myers CP, Kuroda K. Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. J Funct Biomater 2019; 10:E56. [PMID: 31861070 PMCID: PMC6963222 DOI: 10.3390/jfb10040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, we have prepared a series of 4- and 6-arm star-shaped polymers with varying molecular weight and hydrophobicity in order to provide insight into the role and relationship that shape and composition have on the binding and protecting of oral relevant surfaces (hydroxyapatite, HAP) from bacteria colonization. Star-shaped acrylic acid polymers were prepared by free-radical polymerization in the presence of chain transfer agents with thiol groups, and their binding to the HAP surfaces and subsequent bacteria repulsion was measured. We observed that binding was dependent on both polymer shape and hydrophobicity (star vs. linear), but their relative efficacy to reduce oral bacteria attachment from surfaces was dependent on their hydrophobicity only. We further measured the macroscopic effects of these materials to modify the mucin-coated HAP surfaces through contact angle experiments; the degree of angle change was dependent on the relative hydrophobicity of the materials suggesting future in vivo efficacy. The results from this study highlight that star-shaped polymers represent a new material platform for the development of dental applications to control bacterial adhesion which can lead to tooth decay, with various compositional and structural aspects of materials being vital to effectively design oral care products.
Collapse
Affiliation(s)
- Hamid Mortazavian
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.M.); (J.L.)
| | - Guillaume A. Picquet
- Oral Care Early Research, Colgate-Palmolive Company, Piscataway, NJ 08855, USA; (G.A.P.); (L.A.Z.)
| | - Jānis Lejnieks
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.M.); (J.L.)
| | - Lynette A. Zaidel
- Oral Care Early Research, Colgate-Palmolive Company, Piscataway, NJ 08855, USA; (G.A.P.); (L.A.Z.)
| | - Carl P. Myers
- Oral Care Early Research, Colgate-Palmolive Company, Piscataway, NJ 08855, USA; (G.A.P.); (L.A.Z.)
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.M.); (J.L.)
| |
Collapse
|
33
|
Noree S, Thongthai P, Kitagawa H, Imazato S, Iwasaki Y. Reduction of Acidic Erosion and Oral Bacterial Adhesion through the Immobilization of Zwitterionic Polyphosphoesters on Mineral Substrates. CHEM LETT 2019. [DOI: 10.1246/cl.190709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Susita Noree
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
- ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-0836, Japan
| |
Collapse
|
34
|
Rençber S, Aydın Köse F, Karavana SY. Dexamethasone loaded PLGA nanoparticles for potential local treatment of oral precancerous lesions. Pharm Dev Technol 2019; 25:149-158. [DOI: 10.1080/10837450.2019.1673407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seda Rençber
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| | - Fadime Aydın Köse
- Faculty of Pharmacy, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
New Engineered Fusion Peptide with Dual Functionality: Antibacterial and Strong Binding to Hydroxyapatite. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Chitosan-Graft-Poly(N-Isopropylacrylamide)/PVA Cryogels as Carriers for Mucosal Delivery of Voriconazole. Polymers (Basel) 2019; 11:polym11091432. [PMID: 31480489 PMCID: PMC6780328 DOI: 10.3390/polym11091432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to prepare and characterize physically crosslinked gel formulations of chitosan (CS)-graft-poly(N-isopropyl acrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) for smart delivery of an antifungal drug, Voriconazole, for mucosal applications. For this purpose, cryogels of CS-g-PNIPAAm/PVA and CS/PVA were tested by means of texture profile analysis and rheology to determine optimal matrix properties for topical application. The ratio of 75/25 v/v % CS-g-PNIPAAm/PVA was selected to be used for formulation since it gave low compressibility and hardness (1.2 and 0.6 N) as well as high adhesion properties and non-Newtonian flow behavior. The cryogels and formulations were further characterized by means of FTIR spectroscopy, swelling behavior, texture analysis, scanning electron microscopy (SEM), thermal (differential scanning calorimetry (DSC) and TGA), and rheological behavior. The drug loading capacity and in vitro release profile of the drug, storage stability, and cytotoxicity tests were also performed for the gel formulation. The FTIR, DSC, and TGA results verified the successful formation of cryogels. Swelling studies revealed a pH-dependent swelling ability with a maximum swelling degree of 1200% in acid and 990% in phosphate buffer (pH = 7.4). Thermal studies showed that CS-g-PNIPAAm/PVA 75/25 had higher thermal stability proving the structural complexity of the polymer. The loading capacity of Voriconazole was found to be 70% (w/w). The in vitro release profiles of Voriconazole showed Fickian release behavior for CS-g-PNIPAAm/PVA 75/25 gel with an approximate delivery of 38% within 8 h, slower than matrices containing unmodified chitosan. The storage stability test exhibited that the gel formulation was still stable even after aging for two months. Moreover, the cell culture assays revealed a non-toxic character of the polymeric matrix. Overall results showed that the CS-g-PNIPAAm/PVA 75/25 hydrogel has the potential to be used as a smart polymeric vehicle for topical applications.
Collapse
|
37
|
Chen DW, Yu HH, Luo LJ, Rajesh Kumar S, Chen CH, Lin TY, Lai JY, Jessie Lue S. Osteoblast Biocompatibility and Antibacterial Effects Using 2-Methacryloyloxyethyl Phosphocholine-Grafted Stainless-Steel Composite for Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E939. [PMID: 31261737 PMCID: PMC6669514 DOI: 10.3390/nano9070939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022]
Abstract
Poor osteogenesis and bacterial infections lead to an implant failure, so the enhanced osteogenic and antimicrobial activity of the implantable device is of great importance in orthopedic applications. In this study, 2-methacryloyloxyethyl phosphocholine (MPC) was grafted onto 316L stainless steel (SS) using a facile photo-induced radical graft polymerization method via a benzophenone (BP) photo initiator. Atomic force microscopy (AFM) was employed to determine the nanoscale morphological changes on the surface. The grafted BP-MPC layer was estimated to be tens of nanometers thick. The SS-BP-MPC composite was more hydrophilic and smoother than the untreated and BP-treated SS samples. Staphylococcus aureus (S. aureus) bacteria binding onto the SS-BP-MPC composite film surface was significantly reduced compared with the pristine SS and SS-BP samples. Mouse pre-osteoblast (MC3T3-E1) cells showed good adhesion on the MPC-modified samples and better proliferation and metabolic activity (73% higher) than the pristine SS sample. Biological studies revealed that grafting MPC onto the SS substrate enhanced the antibacterial efficiency and also retained osteoblast biocompatibility. This proposed procedure is promising for use with other implant materials.
Collapse
Affiliation(s)
- Dave W Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Hsin-Hsin Yu
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Li-Jyuan Luo
- Graduate institute of Biomedical Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Chien-Hao Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Tung-Yi Lin
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 401, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Jui-Yang Lai
- Graduate institute of Biomedical Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan.
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering and Green Technology Research Center, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 333, Taiwan.
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 243, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 320, Taiwan.
| |
Collapse
|
38
|
Koyama J, Fukazawa K, Ishihara K, Mori Y. In situ surface modification on dental composite resin using 2-methacryloyloxyethyl phosphorylcholine polymer for controlling plaque formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109916. [PMID: 31499946 DOI: 10.1016/j.msec.2019.109916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Composite resins (CRs) are widely used as dental restorative materials for caries treatment. They cause problems of secondary caries since Streptococcus mutans stays in the dental plaque, which the surface exists and produces acidic compounds during metabolism. The dental plaque depositions are induced by the protein adsorption on the surface. Therefore, suppression of protein adsorption on the surface of the CRs is important for inhibiting the formation of plaque and secondary caries. In this study we developed a surface treatment to provide an antibiofouling nature to the CRs by chemical reaction with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers in the oral cavity during dental treatment. To carry out the photochemical reaction on the remaining polymerizable groups of CRs, we synthesized the MPC polymer with a polymerizable group in the side chain. The MPC polymer could bind on the surfaces of the CRs chemically under dental treatment procedures. The treated surface showed significant resistance to oral protein adsorption and bacterial adhesion even when the surface was brushed with a toothbrush. Thus, we concluded that the photochemical reaction of the MPC polymer with the CRs in the oral cavity was good for making an antibiofouling surface and preventing secondary caries.
Collapse
Affiliation(s)
- Jun Koyama
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Simotsuke, Tochigi 329-0498, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Simotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
39
|
Hakobyan S, Roohpour N, Gautrot JE. Modes of adsorption of polyelectrolytes to model substrates of hydroxyapatite. J Colloid Interface Sci 2019; 543:237-246. [DOI: 10.1016/j.jcis.2019.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
|
40
|
Kang M, Kim S, Kim H, Song Y, Jung D, Kang S, Seo JH, Nam S, Lee Y. Calcium-Binding Polymer-Coated Poly(lactide- co-glycolide) Microparticles for Sustained Release of Quorum Sensing Inhibitors to Prevent Biofilm Formation on Hydroxyapatite Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7686-7694. [PMID: 30768237 DOI: 10.1021/acsami.8b18301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quorum sensing (QS) inhibitor-based therapy is an attractive strategy to inhibit bacterial biofilm formation without excessive induction of antibiotic resistance. Thus, we designed Ca2+-binding poly(lactide- co-glycolide) (PLGA) microparticles that can maintain a sufficient concentration of QS inhibitors around hydroxyapatite (HA) surfaces in order to prevent biofilm formation on HA-based dental or bone tissues or implants and, therefore, subsequent pathogenesis. Poly(butyl methacrylate- co-methacryloyloxyethyl phosphate) (PBMP) contains both Ca2+-binding phosphomonoester groups and PLGA-interacting butyl groups. The PBMP-coated PLGA (PLGA/PBMP) microparticles exhibited superior adhesion to HA surfaces without altering the sustained release properties of uncoated PLGA microparticles. PLGA/PBMP microparticle-encapsulating furanone C-30, a representative QS inhibitor, effectively inhibited the growth of Streptococcus mutans and its ability to form biofilms on HA surface for prolonged periods of up to 100 h, which was much longer than either furanone C-30 in its free form or when encapsulated in noncoated PLGA microparticles.
Collapse
Affiliation(s)
- Minji Kang
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Sungwhan Kim
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Heejin Kim
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Dongwook Jung
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Sohee Nam
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| |
Collapse
|
41
|
Ishihara K. Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A 2019; 107:933-943. [DOI: 10.1002/jbm.a.36635] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 Japan
| |
Collapse
|
42
|
Yi S, Lee WK, Park JH, Lee JS, Seo JH. One-Pot Synthesis of a Zwitterionic Small Molecule Bearing Disulfide Moiety for Antibiofouling Macro- and Nanoscale Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1768-1777. [PMID: 30103611 DOI: 10.1021/acs.langmuir.8b01532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of this study is to develop a simple one-pot method for the synthesis of a zwitterionic small molecule bearing disulfide moiety, which can effectively inhibit nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces. To this end, the optimal molecular structure of a pyridine disulfide derivative was explored and a zwitterionic small molecule was successfully synthesized from the tertiary amine residue on the pyridine ring through a one-pot method. The coating conditions of the synthesized zwitterionic molecules on the gold surface were optimized through contact angle measurements, and the strong interactions between the gold surface and the disulfide moiety of the zwitterion small molecule were confirmed by surface plasmon resonance (SPR) analysis and X-ray photoelectron spectroscopy. The antibiofouling properties of the coated gold surface were analyzed by fluorescence microscopic observations after contacting with FITC-labeled bovine serum albumin (BSA) and SPR sensor as contacting with BSA solution. In addition, the effect of zwitterion-coating on the salt stability of and protein adsorption on nanoscopic gold surfaces were examined through a NaCl stability test and BSA adsorption test, respectively. From the obtained results, it was confirmed that the simply synthesized zwitterionic small molecule was effective in inhibiting nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces; further, it enhanced the salt stability of gold nanoparticle surfaces.
Collapse
Affiliation(s)
- Seungjoo Yi
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Ji-Ho Park
- Department of Chemistry , Sogang University , 35 Baekbeom-ro , Mapo-gu , Seoul 04107 , Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| |
Collapse
|
43
|
Guo G, Jin W, Jin L, Chen L, Lei Y, Wang Y. Hydrogel hybrid porcine pericardium for the fabrication of a pre-mounted TAVI valve with improved biocompatibility. J Mater Chem B 2019; 7:1427-1434. [PMID: 32255013 DOI: 10.1039/c8tb02565g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcatheter aortic valve implantation (TAVI) has been developed years ago for patients who cannot undergo a surgical aortic valve replacement (SAVR). Although TAVI possesses the advantages of lower trauma and simpler manipulation compared to SAVR, the need for storage in glutaraldehyde (GLU) and a tedious intraoperative assembly process have caused great inconvenience for its further application. A pre-mounted TAVI valve assembled by mounting a dry valve frame to a delivery system is expected to address these problems. However, the currently used GLU treated leaflet cannot unfold normally after being crimped for a long-term and loses its function when the BHV is assembled to the catheter. Besides, its cytotoxicity and immune response after implantation are still problems to be solved. In the present study, a hydrogel hybrid porcine pericardium (HHPP) approach was developed to endow the BHVs with a favorable unfolding property and good biocompatibility. Three monomers with different charge characteristics (sodium acrylate, 2-methacryloyloxyethyl phosphorylcholine, and acryloyloxyethyltrimethyl ammonium chloride) were complexed with GLU treated PP (GLU-PP) to form three kinds of HHPPs (SAAH-PP, MPCH-PP, and DACH-PP). The results of the crimping simulation experiment showed that all HHPPs could quickly recover in PBS after being folded for 10 days, while the traditional BHVs (GLU-PP) could not recover under the same conditions. Bovine serum albumin adsorption and platelet adhesion test showed that SAAH-PP and MPCH-PP had good anti-adhesion abilities. A cell culture study indicated that all the three HHPPs promoted HUVEC growth and proliferation. In vivo biocompatibility studies showed that the immune response induced by MPCH-PP was reduced compared to that by GLU-PP. These studies demonstrated that the strategy of MPC hydrogel hybridization may be an effective approach to prepare a pre-mounted TAVI valve with improved biocompatibility.
Collapse
Affiliation(s)
- Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | |
Collapse
|
44
|
Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomater 2019; 85:180-191. [PMID: 30583111 DOI: 10.1016/j.actbio.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
To overcome the drawbacks of the UV grafting method, an alternative, thermal grafting process is suggested. The uniform and geometry-independent grafting of zwitterionic polymers on curved cross-linked polyethylene (CLPE), which is used in artificial hip joints, surface was successfully achieved. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(2-(methacryloyloxy)ethyl)dimethyl(3-sulfopropyl)ammonium hydroxide) (PMEDSAH) were grafted on the CLPE by two methods: a UV-based process and a thermal process. The thermal method yielded zwitterionic surfaces with similar hydrophilicities and graft layer thicknesses to those prepared via the UV grafting method. The X-ray photoelectron spectra and surface zeta potential results showed that the PMPC and PMEDSAH layers were successfully grafted onto the CLPE surface. In addition, 3-D confocal microscopy, as well as friction and wear volume tests, confirmed that there was a significant decrease in the friction coefficient and wear, which indicates that the thermal grafting method can successfully substitute the UV grafting method. The thermally grafted polymer showed uniform graft layer thickness on the curved CLPE surface, whereas the UV-grafted polymer showed a geometry-dependent heterogeneous graft layer thickness. Thus, we confirmed that the thermal grafting method is advantageous for the preparation of uniform grafting layers on artificial joint surfaces with complicated shapes. STATEMENT OF SIGNIFICANCE: Formation of uniform grafting thickness of the zwitterionic polymers on the implant materials is a very important issue in the field of biomaterials. In this study, a thermal grafting process was developed for the formation of the uniform grafting thickness of the zwitterionic polymers on the curved cross-linked polyethylene (CLPE) surface used in artificial hip-joint. This method yielded zwitterionized CLPE surfaces with similar hydrophilicities and friction coefficient to those prepared via the UV grafting method which has been widely used process to modify the implant surfaces. Furthermore, the thermally grafted CLPE surface showed geometry-independent uniform grafting thickness on the curved CLPE surface while UV-grafted one showed uneven grafting thickness. This grafting method could help the development of complex, personalized, and biocompatible artificial liner surfaces.
Collapse
|
45
|
|
46
|
Al-Dulaijan YA, Weir MD, Melo MAS, Sun J, Oates TW, Zhang K, Xu HHK. Protein-repellent nanocomposite with rechargeable calcium and phosphate for long-term ion release. Dent Mater 2018; 34:1735-1747. [PMID: 30269864 DOI: 10.1016/j.dental.2018.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE There has been no report on the effect of incorporating protein repellent 2-methacryloyloxyethyl phosphorylcholine (MPC) into a composite containing nanoparticles of amorphous calcium phosphate (NACP) on calcium (Ca) and phosphate (P) ion rechargeability. The objectives of this study were to develop a Ca and P ion-rechargeable and protein-repellent composite for the first time, and investigate the effects of MPC and NACP on mechanical properties, protein-repellency, anti-biofilm effects, and Ca and P ion recharge and re-release. METHODS NACP were synthesized using a spray-drying technique. The resin contained ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). Three NACP composites were made with 0 (control), 1.5%, and 3% of MPC. NACP (20%) and glass particles (50%) were also added into the resin. Protein adsorption was measured using a micro-bicinchoninic acid (BCA) method. A human saliva microcosm biofilm model was used to determine biofilm metabolic activity, lactic acid, and colony-forming units (CFU). Ca and P ion recharge and re-release were measured using a spectrophotometric method. RESULTS Flexural strengths and moduli of CaP-rechargeable composites matched those of a commercial composite without CaP rechargeability (p>0.1). Adding 1.5% and 3% MPC reduced protein adsorption to 1/3 and 1/5, respectively, that of commercial composite (p<0.05). Adding 3% MPC suppressed biofilm metabolic activity and lactic acid production, and reduced biofilm CFU by nearly 2 logs. All three NACP composites had excellent ion rechargeability and higher levels of ion re-releases. One recharge yielded continuous ion release for 21 days. The release was maintained at the same level with increasing number of recharge cycles, indicating long-term ion release. Incorporation of MPC did not compromise the CaP ion rechargeability. SIGNIFICANCE Incorporating 3% MPC into NACP nanocomposite greatly reduced protein adsorption, biofilm growth and lactic acid, decreasing biofilm CFU by nearly 2 logs, without compromising Ca and P recharge. This protein-repellent NACP-MPC rechargeable composite with long-term remineralization is promising for tooth restorations to inhibit secondary caries.
Collapse
Affiliation(s)
- Yousif A Al-Dulaijan
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Poly(l-lactide)/cyclodextrin/citrate networks modified hydroxyapatite and its role as filler in the promotion to the properties of poly(l-lactide) biomaterials. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res 2018; 14:25-34. [PMID: 30364755 PMCID: PMC6198729 DOI: 10.1016/j.jare.2018.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
The use of polymeric materials (PMs) and polymeric films (PMFs) has increased in medicine and dentistry. This increasing interest is attributed to not only the excellent surfaces of PMs and PMFs but also their desired mechanical and biological properties, low production cost, and ease in processing, allowing them to be tailored for a wide range of applications. Specifically, PMs and PMFs are used in dentistry for their antimicrobial, drug delivery properties; in preventive, restorative and regenerative therapies; and for corrosion and friction reduction. PMFs such as acrylic acid copolymers are used as a dental adhesive; polylactic acids are used for dental pulp and dentin regeneration, and bioactive polymers are used as advanced drug delivery systems. The objective of this article was to review the literatures on the latest advancements in the use of PMs and PMFs in medicine and dentistry. Published literature (1990–2017) on PMs and PMFs for use in medicine and dentistry was reviewed using MEDLINE/PubMed and ScienceDirect resources. Furthermore, this review also explores the diversity of latest PMs and PMFs that have been utilized in dental applications, and analyzes the benefits and limitations of PMs and PMFs. Most of the PMs and PMFs have shown to improve the biomechanical properties of dental materials, but in future, more clinical studies are needed to create better treatment guidelines for patients.
Collapse
Affiliation(s)
- Dinesh Rokaya
- Biomaterial and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Viritpon Srimaneepong
- Biomaterial and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Janak Sapkota
- Institute of Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto-Glockel Strasse 2, 800 Leoben, Austria
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Krisana Siraleartmukul
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Vilailuck Siriwongrungson
- College of Advanced Manufacturing Innovations, King Mongkut's Institute of Technology, Ladkrabang, Thailand
| |
Collapse
|
49
|
Ishihara K, Fukazawa K, Inoue Y, Koyama J, Mori Y, Kinoshita T, Hiranuma K, Yasuda N. Reliable surface modification of dental plastic substrates to reduce biofouling with a photoreactive phospholipid polymer. J Appl Polym Sci 2018. [DOI: 10.1002/app.46512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering; University of Tokyo; 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering; University of Tokyo; 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan
| | - Yuuki Inoue
- Department of Materials Engineering; University of Tokyo; 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan
| | - Jun Koyama
- Department of Dentistry and Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1 Yakusiji, Simotsuke 329-0498 Japan
| | - Yoshiyuki Mori
- Department of Dentistry and Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1 Yakusiji, Simotsuke 329-0498 Japan
| | - Toru Kinoshita
- Kinoshita Dental Clinic; 3-12-7 Nishiogi-Kita Suginami 167-0042 Tokyo Japan
| | - Katsumi Hiranuma
- Department of Dentistry and Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1 Yakusiji, Simotsuke 329-0498 Japan
- Kinoshita Dental Clinic; 3-12-7 Nishiogi-Kita Suginami 167-0042 Tokyo Japan
| | - Noboru Yasuda
- Kinoshita Dental Clinic; 3-12-7 Nishiogi-Kita Suginami 167-0042 Tokyo Japan
| |
Collapse
|
50
|
Yi WJ, Li LJ, He H, Hao Z, Liu B, Chao ZS, Shen Y. Synthesis of poly(l-lactide)/β-cyclodextrin/citrate network modified hydroxyapatite and its biomedical properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj01194j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLA/β-CD/citrate network modified HA possesses a tailored surface and smaller particle size, thus showing great cell adhesion performance and osteoinductivity to the MSCs of Wistar rats.
Collapse
Affiliation(s)
- Wen-Jun Yi
- College of Materials Science and Engineering
- Changsha University of Science & Technology
- Changsha
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Li-Jun Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Hao He
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Zhen Hao
- College of Materials Science and Engineering
- Changsha University of Science & Technology
- Changsha
- P. R. China
| | - Bo Liu
- College of Materials Science and Engineering
- Changsha University of Science & Technology
- Changsha
- P. R. China
| | - Zi-Sheng Chao
- College of Materials Science and Engineering
- Changsha University of Science & Technology
- Changsha
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Yi Shen
- Department of Orthopaedic
- The Second Xiangya Hospital of Central South University
- Changsha
- P. R. China
| |
Collapse
|