1
|
Yan N, Zhou H, Jin P, Li T, Liu Q, Ning H, Ma Z, Feng L, Jin T, Deng Y, Wu Z. A Multifunctional Cobalt-Containing Implant for Treating Biofilm Infections and Promoting Osteointegration in Infected Bone Defects Through Macrophage-Mediated Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409200. [PMID: 39587976 PMCID: PMC11744729 DOI: 10.1002/advs.202409200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/27/2024]
Abstract
Treating bone infections and ensuring bone recovery is one of the major global problems facing modern orthopedics. Prolonged antibiotic use may increase the risk of antimicrobial resistance, and inflammation caused by biofilms can obstruct tissue healing, making bone infection treatment even more challenging. The optimal treatment strategy combines immune response modification to promote osteogenesis with effective bacterial infection removal that does not require long-term antibiotic use. A one-step plasma immersion ion implantation approach is used to create titanium alloy implants incorporating cobalt. According to experimental findings, cobalt-containing titanium implants exhibit improved antibacterial activity by efficiently disrupting biofilm formations and reducing Methicillin-resistant Staphylococcus aureus adherence by over 80%. Additionally, the implants exhibit superior anti-inflammatory and osseointegration properties. RNA sequencing analysis reveals the potential mechanism of Co2+ in regulating the polarization of macrophages toward the anti-inflammatory M2 phenotype, which is crucial for creating an immune environment conducive to bone healing. Concurrently, these implants promote osteogenic differentiation while suppressing osteoclast activity, further supporting bone repair. Overall, without exogenous recombinant proteins or antibiotics, the implants effectively eradicate infections and expedite bone repair, offering a novel therapeutic strategy for complex skeletal diseases with clinical promise.
Collapse
Affiliation(s)
- Nongyang Yan
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
| | - Hao Zhou
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Penghe Jin
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Tengfei Li
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
| | - Qi Liu
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| | - Hao Ning
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Zhixin Ma
- Comprehensive supervision officeAnhui provincial Health Commission435 Tunbrook RoadHefei230032China
| | - Linfei Feng
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Anhui Medical UniversityNo. 218 Jixi AvenueHeifeiAnhui230032China
| | - Tao Jin
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| | - Youwen Deng
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityNo. 138 Tongzi RoadChangshaHunan410013China
| | - Zhengwei Wu
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaNo. 5089 Wangjiang West RoadHefeiAnhui230031China
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Jinzhai RoadHefeiAnhui230026China
| |
Collapse
|
2
|
Boanini E, Pagani S, Gazzano M, Rubini K, Raimondi L, De Luca A, Romanelli A, Giavaresi G, Bigi A. Mn 2+ vs Co 2+ substitution into β-TCP: Structural details and bone cells response. Colloids Surf B Biointerfaces 2024; 243:114154. [PMID: 39137528 DOI: 10.1016/j.colsurfb.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of β-tricalcium phosphate, as well as their influence on bone cells response. To this aim, β-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the β-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on β-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy.
| | - Stefania Pagani
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | | | - Katia Rubini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Alessia Romanelli
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Adriana Bigi
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| |
Collapse
|
3
|
Silingardi F, Salamanna F, Español M, Maglio M, Sartori M, Giavaresi G, Bigi A, Ginebra MP, Boanini E. Regulation of osteogenesis and angiogenesis by cobalt, manganese and strontium doped apatitic materials for functional bone tissue regeneration. BIOMATERIALS ADVANCES 2024; 163:213968. [PMID: 39059113 DOI: 10.1016/j.bioadv.2024.213968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Montserrat Español
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
4
|
Roy AP, Jana S, Das H, Das P, Chakraborty B, Mukherjee P, Datta P, Mondal S, Kundu B, Nandi SK. Stimulated Full-Thickness Cutaneous Wound Healing with Bioactive Dressings of Zinc and Cobalt Ion-Doped Bioactive Glass-Coated Eggshell Membranes in a Diabetic Rabbit Model. ACS Biomater Sci Eng 2024; 10:4510-4524. [PMID: 38826128 DOI: 10.1021/acsbiomaterials.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.
Collapse
Affiliation(s)
- Arka Pravo Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Himanka Das
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Bijayashree Chakraborty
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradyot Datta
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
5
|
Yin X, Wei Y, Qin H, Zhao J, Chen Y, Yao S, Li N, Xiong A, Wang D, Zhang P, Liu P, Zeng H, Chen Y. Oxygen tension regulating hydrogels for vascularization and osteogenesis via sequential activation of HIF-1α and ERK1/2 signaling pathways in bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213893. [PMID: 38796955 DOI: 10.1016/j.bioadv.2024.213893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sen Yao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (Second Clinical Medical School of Jinan University, First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
6
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zhao Q, Ni Y, Wei H, Duan Y, Chen J, Xiao Q, Gao J, Yu Y, Cui Y, Ouyang S, Miron RJ, Zhang Y, Wu C. Ion incorporation into bone grafting materials. Periodontol 2000 2024; 94:213-230. [PMID: 37823468 DOI: 10.1111/prd.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
The use of biomaterials in regenerative medicine has expanded to treat various disorders caused by trauma or disease in orthopedics and dentistry. However, the treatment of large and complex bone defects presents a challenge, leading to a pressing need for optimized biomaterials for bone repair. Recent advances in chemical sciences have enabled the incorporation of therapeutic ions into bone grafts to enhance their performance. These ions, such as strontium (for bone regeneration/osteoporosis), copper (for angiogenesis), boron (for bone growth), iron (for chemotaxis), cobalt (for B12 synthesis), lithium (for osteogenesis/cementogenesis), silver (for antibacterial resistance), and magnesium (for bone and cartilage regeneration), among others (e.g., zinc, sodium, and silica), have been studied extensively. This review aims to provide a comprehensive overview of current knowledge and recent developments in ion incorporation into biomaterials for bone and periodontal tissue repair. It also discusses recently developed biomaterials from a basic design and clinical application perspective. Additionally, the review highlights the importance of precise ion introduction into biomaterials to address existing limitations and challenges in combination therapies. Future prospects and opportunities for the development and optimization of biomaterials for bone tissue engineering are emphasized.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
10
|
Zhao Q, Wu J, Zhang S, Ni X, Wang B, Lu K, Zhang P, Xu R. Preparation and properties of composite manganese/fluorine coatings on metallic titanium. RSC Adv 2023; 13:14863-14877. [PMID: 37197179 PMCID: PMC10184752 DOI: 10.1039/d3ra01632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Titanium is widely used in implants because of its good mechanical properties and biocompatibility. However, titanium has no biological activity and is prone to causing implant failure after implantation. In this study, we prepared a manganese- and fluorine-doped titanium dioxide coating on a titanium surface by microarc oxidation technology. The surface characteristics of the coating were evaluated by field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy and profiler, and the corrosion resistance and wear resistance of the coating were also evaluated. The bioactivity of the coating on bone marrow mesenchymal stem cells was evaluated by in vitro cell experiments, and the antibacterial properties of the coating were evaluated by in vitro bacterial experiments. The results confirmed that the manganese- and fluorine-doped titanium dioxide coating was successfully prepared on the titanium surface, and manganese and fluorine were successfully introduced into the coating. The doping of manganese and fluorine did not change the surface morphology of the coating, and the coating had good corrosion resistance and wear resistance. The results of the in vitro cell experiment showed that the titanium dioxide coating with manganese and fluoride could promote the proliferation, differentiation and mineralization of bone marrow mesenchymal stem cells. The results of the bacterial experiment in vitro showed that the coating material could inhibit the propagation of Staphylococcus aureus and had a good antibacterial effect. Conclusion: it is feasible to prepare a manganese- and fluorine-doped titanium dioxide coating on titanium surfaces by microarc oxidation. The coating not only has good surface characteristics but also has good bone-promoting and antibacterial properties and has potential for clinical application.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Jieshi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| | - Sujiajun Zhang
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| | - Xiaohui Ni
- Department of Orthopedics, Dafeng People's Hospital Yancheng Jiangsu 224100 China
| | - Bo Wang
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Kaihang Lu
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Pengpeng Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Ruisheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| |
Collapse
|
11
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
12
|
Zhao Q, Wu J, Li Y, Xu R, Zhu X, Jiao Y, Luo R, Ni X. Promotion of bone formation and antibacterial properties of titanium coated with porous Si/Ag-doped titanium dioxide. Front Bioeng Biotechnol 2022; 10:1001514. [PMID: 36338114 PMCID: PMC9633953 DOI: 10.3389/fbioe.2022.1001514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Implant materials are mainly used to repair and replace defects in human hard tissue (bones and teeth). Titanium (Ti) and Ti alloys are widely used as implant materials because of their good mechanical properties and biocompatibilities, but they do not have the ability to induce new bone formation and have no antibacterial properties. Through surface modification, Ti and its alloys have certain osteogenic and antibacterial properties such that Ti implants can meet clinical needs and ensure integration between Ti implants and bone tissue, and this is currently an active research area. In this study, bioactive Si and Ag were introduced onto a Ti surface by plasma oxidation. The surface morphology, structure, elemental composition and valence, surface roughness, hydrophilicity and other physical and chemical properties of the coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), a profiler and a contact angle meter (CA). Adhesion and extensions of osteoblasts on the surface of the material were observed by scanning electron microscopy, and mineralization of osteoblasts on the surface of the material were observed by alizarin red staining. The antibacterial properties of the material were tested by culturing Staphylococcus aureus on the surface of the material. The osteogenic properties of Ti implants with porous Si/Ag TiO2 (TCP-SA) coatings were evaluated with in vivo experiments in rats. The results showed that Si and Ag were successfully introduced onto the Ti surface by plasma oxidation, and doping with Si and Ag did not change the surface morphology of the coating. The osteoblasts showed good adhesion and extension on the surfaces of Si/Ag coated samples, and the porous Si/Ag TiO2 coating promoted cell proliferation and mineralization. The bacterial experiments showed that the porous TiO2 coatings containing Si/Ag had certain antibacterial properties. The animal experiments showed that Si/Ag-coated Ti implants promoted integration between the implants and the surrounding bone. It was concluded that the porous Si/Ag TiO2 coating on the Ti surface had good osteogenic and antibacterial properties and provides an optimal strategy for improving the osteogenic and antibacterial properties of Ti implants.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jieshi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yankun Li
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Ruisheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xingyuan Zhu
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui Luo
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaohui Ni
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
13
|
Xu H, Chai Q, Xu X, Li Z, Bao W, Man Z, Li W. Exosome-Functionalized Ti6Al4V Scaffolds Promoting Osseointegration by Modulating Endogenous Osteogenesis and Osteoimmunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46161-46175. [PMID: 36203406 DOI: 10.1021/acsami.2c11102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Periprosthetic bone defects are the most serious problem of revision total hip arthroplasty, which can easily lead to insufficient osteointegration between the prosthesis and host bone. Bone marrow mesenchymal stem cells (BMSCs) and a moderate inflammatory response at the prosthesis-bone interface play an important role in osteointegration. Here, we developed microarc oxide titanium implant loaded engineered exosomes (S-Exos) to promote osseointegration at the prosthesis-bone interface. First, Smurf1-shRNA was transferred into the BMSCs using a viral vector to prepare S-Exos, which were subsequently immobilized to the microarc oxide titanium implant surface with positively charged polyethyleneimine. The immobilized S-Exos could be slowly and uniformly released and subsequently phagocytosed by BMSCs and macrophages. Once the S-Exos were phagocytosed, they could simultaneously activate the BMP/Smad signaling pathway in the BMSCs and promote macrophage M2 polarization, both of which enhance osseointegration. Specifically, this S-Exos coating exhibits a dual effect of promoting osseointegration, including the osseointegration of BMSCs by activating the BMP/Smad signaling pathway and the macrophage M2 polarization promoting osseointegration. In summary, the construction of S-Exos modified microarc oxide titanium implants could provide a new method for promoting osteointegration between the prosthesis and host bone in revision total hip arthroplasty.
Collapse
Affiliation(s)
- Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
| | - Qihao Chai
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P. R. China
| | - Xianxing Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
| | - Ziyang Li
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P. R. China
| | - Wenfei Bao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P. R. China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P. R. China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P. R. China
| |
Collapse
|
14
|
Bai H, Wang Y, Zhao Y, Chen X, Xiao Y, Bao C. HIF signaling: A new propellant in bone regeneration. BIOMATERIALS ADVANCES 2022; 138:212874. [PMID: 35913258 DOI: 10.1016/j.bioadv.2022.212874] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bone tissue destruction leads to severe pain, physical flaws, and loss of motility. Bone repair using biocompatible and osteo-inductive scaffolds is regarded as a viable and potential therapeutic approach. However, for large-scale bone regeneration, oxygen and nutrient supply have become limiting factors. Further, a considerable need exists for recruited cell activities and blood vessel growth. Hypoxia-inducible factor (HIF) signaling pathways induced by hypoxia are involved in angiogenesis and osteogenesis. As an important transcription factor, HIF-1 functions by modulating vital genes, such as VEGF, PDK1, and EPO, and is a crucial regulator that influences the final fate of bone regeneration. Collectively, to achieve better osteogenesis results, the in-depth molecular mechanisms that underpin the links between materials, cells, and HIF signaling pathways must be determined. This review aimed to provide an in-depth insight into recent progress in HIF-regulated bone regeneration. Hypoxia and cellular oxygen-sensing mechanisms and their correlations with osteogenesis were determined, and recent studies on hypoxia-inducing and hypoxia-mimicking strategies were briefly described. Finally, the potential applications of HIF signaling in bone regeneration were highlighted. This review provides theoretical support for establishing a novel and viable bone repair strategy in the clinic by harnessing HIF signaling.
Collapse
Affiliation(s)
- Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Huang T, Yu Z, Yu Q, Chen Y, Jiang Z, Wang Y, Yang G. Electrochemical deposition of lithium coating on titanium implant with enhanced early stage osseointegration. J Biomed Mater Res B Appl Biomater 2022; 110:2399-2410. [PMID: 35604032 DOI: 10.1002/jbm.b.35085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/10/2022]
Abstract
Recently, a large number of studies have reported that lithium (Li) displayed a positive effect on osteogenesis. However, only a few studies have investigated the Li-incorporated surfaces through electrochemical deposition. In this study, electrochemical deposition was conducted on a CHI600E electrochemical workstation. The characterization of electrochemical deposition (ECD) and ECD-Li surfaces were detected by field-emission scanning electron microscopy with energy-dispersive spectrometer. rBMSCs were cultured on two surfaces for subsequent adhesion, proliferation and live/dead assay. To evaluate the effects of Li-incorporated implants by electrochemical deposition on osseointegration in vivo, teeth extraction of two premolars and one first molar in bilateral mandible were performed on six male beagle dogs. After 3 months, ZDI and ZDI-Li implants were inserted into the bilateral mandible of each beagle dog. Micro Computed Tomography (Micro-CT) and hard tissue sectioning analysis were carried out to evaluate the osseointegration at 4- and 8-weeks post-implantation. Results showed that ECD-Li surface promoted adhesion and proliferation of BMSCs in the early stage. More importantly, through micro-CT analysis, the values of bone volume/total volume (BV/TV) (0.374 ± 0.015), bone-implant contact (BIC) (0.831 ± 0.025), and Tb.Th (0.412 ± 0.007) in ZDI-Li group was significantly higher than those of ZDI group (0.302 ± 0.009, 0.700 ± 0.023, 0.353 ± 0.001, p < .01) at 4 weeks. Similarly, ZDI-Li group manifested more bone contact with the implant surfaces at 4 weeks based on hard tissue sectioning analysis, whereas no significant difference was detected between two groups at 8 weeks. Therefore, incorporating Li into implant surface through ECD could enhance early osseointegration in vivo.
Collapse
Affiliation(s)
- Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yitong Chen
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Yang S, Ji Y, Deng F, Sun X, Ning C. Co-exchanged montmorillonite: a potential antibacterial agent with good antibacterial activity and cytocompatibility. J Mater Chem B 2022; 10:3705-3715. [PMID: 35445236 DOI: 10.1039/d2tb00032f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a biocompatible material with rich resources and economic benefits, montmorillonite (MMT) has been widely used in the antibacterial field as a drug carrier and toxin adsorbent. In addition, the distinctive structure of MMT provides a possibility to tune its property in a wide range through ion-exchange. In this study, Co-montmorillonite (CoMMT) was prepared by the ion-exchanging method in a Co(NO3)2 solution and its antibacterial activity and cytocompatibility were investigated. The results showed that Co was introduced into MMT successfully and led to an increase in the interlayer spacing of MMT. Also, CoMMT showed a morphology of irregular aggregates consisting of stacked and intertwined lamellae with a uniform cobalt distribution. Besides, CoMMT had better dispersity and higher specific surface area than unmodified MMT. The antibacterial test results showed that CoMMT had good antibacterial activity against S. aureus and E. coli when the CoMMT concentration was higher than 0.2 mg mL-1 and 0.4 mg mL-1, respectively. The possible antibacterial mechanism of CoMMT was speculated and verified by a combination of SEM and EDS results. In addition, CoMMT showed no obvious cytotoxicity to MC3TC-E1 at the observed antibacterial concentration. These findings demonstrated that CoMMT with good biocompatibility and antibacterial activity could be used as a novel antibacterial agent for tissue engineering.
Collapse
Affiliation(s)
- Shun Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Ji
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanyan Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaojiang Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Congqin Ning
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200050, China.
| |
Collapse
|
17
|
Yu D, Guo S, Yu M, Liu W, Li X, Chen D, Li B, Guo Z, Han Y. Immunomodulation and osseointegration activities of Na 2TiO 3 nanorods-arrayed coatings doped with different Sr content. Bioact Mater 2022; 10:323-334. [PMID: 34901549 PMCID: PMC8636710 DOI: 10.1016/j.bioactmat.2021.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
To endow Ti-based orthopedic implants immunomodulatory capability and thus enhanced osseointegration, different amounts of Sr are doped in Na2TiO3 nanorods in the arrays with identical nanotopographic parameters (rod diameter, length and inter-rod spacing) by substitution of Na+ using hydrothermal treatment. The obtained arrays are denoted as STSr2, STSr4, and STSr7, where the arabic numbers indicate the incorporating amounts of Sr in Na2TiO3. The modulation effects of the Sr-doped nanorods arrays on macrophage polarization and osteogenetic functions of osteoblasts are investigated, together with the array without Sr (ST). Moreover, osseointegration of these arrays are also assayed in rat femoral condyles. Sr-doped nanorods arrays accelerate M1 (pro-inflammatory phenotype)-to-M2 (anti-inflammatory phenotype) transformation of the adhered macrophages, enhancing secretion of pro-osteogenetic cytokines and growth factors (TGF-β1 and BMP2), moreover, the Sr doped arrays directly enhance osteogenetic functions of osteoblasts. The enhancement of paracrine of M2 macrophages and osteogenetic function of osteoblasts is promoted with the increase of Sr incorporating amounts. Consequently, Sr doped arrays show significantly enhanced osseointegration in vivo compared to ST, and STSr7 exhibits the best performance. Our work sheds a new light on the design of surface chemical components and structures for orthopedic implants to enhance their osseointegration.
Collapse
Affiliation(s)
- Dongmei Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shuo Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenwen Liu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
18
|
Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. CHEM REC 2022; 22:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in reconstructive orthopedics; fracture union is a challenge to bone regeneration. Concurrent angiogenesis is a complex process governed by events, delicately entwined with osteogenesis. However, poorly perfused scaffolds have lower success rates; necessitating the need for a better vascular component, which is important for the delivery of nutrients, oxygen, waste elimination, recruitment of cells for optimal bone repair. This review highlights the latest strategies to promote biomaterial-based scaffold vascularization by incorporation of cells, growth factors, inorganic ions, etc. into natural or synthetic polymers, ceramic materials, or composites of organic and inorganic compounds. Furthermore, it emphasizes structural modifications, biophysical stimuli, and natural molecules to fabricate scaffolds aiding the genesis of dense vascularization following their implantation to manifest a compatible regenerative microenvironment without graft rejection.
Collapse
Affiliation(s)
- Jasna Nambiar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, India
| |
Collapse
|
19
|
Huang H, Yang A, Li J, Sun T, Yu S, Lu X, Guo T, Duan K, Zheng P, Weng J. Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regen Biomater 2022; 9:rbac001. [PMID: 35529045 PMCID: PMC9071058 DOI: 10.1093/rb/rbac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Porous hydroxyapatite (HA) scaffolds are often used as bone repair materials, owing to their good biocompatibility, osteoconductivity and low cost. Vascularization and osteoinductivity of porous HA scaffolds were limited in clinical application, and these disadvantages were need to be improved urgently. We used water-in-oil gelation and pore former methods to prepare HA spheres and a porous cylindrical HA container, respectively. The prepared HA spheres were filled in container to assemble into composite scaffold. By adjusting the solid content of the slurry (solid mixture of chitin sol and HA powder) and the sintering temperature, the porosity and crystallinity of the HA spheres could be significantly improved; and mineralization of the HA spheres significantly improved the biological activity of the composite scaffold. The multigradient (porosity, crystallinity and mineralization) scaffold (HA-700) filled with the mineralized HA spheres exhibited a lower compressive strength; however, in vivo results showed that their vascularization ability were higher than those of other groups, and their osteogenic Gini index (Go: an index of bone mass, and inversely proportional to bone mass) showed a continuous decrease with the implantation time. This study provides a new method to improve porous HA scaffolds and meet the demands of bone tissue engineering applications.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Shangke Yu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Ke Duan
- Southwest Medical University, Luzhou, 646000 P.R. China
| | - Pengfei Zheng
- Department of Orthopaedic surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008 P.R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| |
Collapse
|
20
|
Zhang Y, Sun N, Zhu M, Qiu Q, Zhao P, Zheng C, Bai Q, Zeng Q, Lu T. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112651. [PMID: 35034817 DOI: 10.1016/j.msec.2022.112651] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Porous titanium implants were popularly fabricated to promote bone formation. A desirable porous scaffold was recommended to be with porosity of >60% or/and pore size of >300 μm for better osteointegration. However, whether the pore size and porosity could be randomly selected within the recommended values? And what is the correlation between pore size and porosity for accelerating osteointegration? In this study, porous titanium with cubic cell structure was produced by selective laser melting. The designed porosities of scaffolds with 700-μm pore size were 40%, 70% and 90%; and the pore sizes of scaffolds with 70% porosity were 400, 700 and 900 μm. The in vitro osteogenic potential and in vivo bone formation were investigated. Results showed that porosity and pore size could be tuned by altering strut size, which was further directly responsible for mechanical properties. Besides, pore size and porosity synergistically contributed to osteogenic activity in vitro and new bone formation in vivo. In regard to pore sizes herein, the optimized one for better osteogenic response and bone forming ability was ~600-700 μm (p70). Too smaller or too larger pore size might more or less hinder cellular behaviors and bone regeneration, even if both pore size (300-900 μm) and porosity (70%) were within the recommended value range. At a constant pore size (~600-700 μm), p70 and p90 with higher porosity was more conductive to biological effects, compared with p40. As a result, pore-size variation revealed more significant influence on osteogenesis, compared with variation of porosity within recommended values. However, the applicable porosity within recommended values should be designed with the consideration of specific load-bearing conditions. This study helps to provide guidance for designing porous scaffolds with appropriate mechanical strengths and effective bone-forming ability, so as to develop better custom-made bone substitutes.
Collapse
Affiliation(s)
- Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Na Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengran Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Quanrun Qiu
- Research Centre for Nano Energy Materials, Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengju Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Zheng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Que Bai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingyan Zeng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
21
|
Yang X, Zhang C, Zhang T, Xiao J. Cobalt-doped Ti surface promotes immunomodulation. Biomed Mater 2021; 17. [PMID: 34942605 DOI: 10.1088/1748-605x/ac4612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Here, cobalt-doped plasma electrolytic oxidation (PEO) coatings with different cobalt contents were prepared on Ti implants. The cobalt ions in the PEO coating exhibited a slow and sustainable release and thus showed excellent biocompatibility and enhanced cell adhesion. In vitro ELISA and RT-PCR assays demonstrated that the cobalt-loaded Ti showed immunomodulatory functions to macrophages and upregulated the expression of anti-inflammatory (M1 type) genes and downregulated expression levels of pro-inflammatory (M2 type) genes compared with that of pure Ti sample. High cobalt content induced increased macrophage polarization into the M2 type. Furthermore, the findings from the in vivo air pouch model suggested that cobalt-loaded Ti could mitigate inflammatory reactions. The present work provides a novel strategy to exploit the immunomodulatory functions of implant materials.
Collapse
Affiliation(s)
- Xiaoming Yang
- Fujian Medical University Affiliated First Quanzhou Hospital, 248~252, East Street, Licheng District, Quanzhou, Fujian, 362000, CHINA
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, Guangdong, 510080, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, 1838 North, Guangzhou Avenue, Guangzhou, 510010, CHINA
| | - Jin Xiao
- Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, 510080, CHINA
| |
Collapse
|
22
|
Assessing the potential role of copper and cobalt in stimulating angiogenesis for tissue regeneration. PLoS One 2021; 16:e0259125. [PMID: 34705886 PMCID: PMC8550415 DOI: 10.1371/journal.pone.0259125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
The use of copper (Cu2+) and cobalt (Co2+) has been described to stimulate blood vessel formation, a key process for the success of tissue regeneration. However, understanding how different concentrations of these ions affect cellular response is important to design scaffolds for their delivery to better fine tune the angiogenic response. On the one hand, gene expression analysis and the assessment of tubular formation structures with human umbilical vein endothelial cells (HUVEC) revealed that high concentrations (10μM) of Cu2+ in early times and lower concentrations (0.1 and 1μM) at later times (day 7) enhanced angiogenic response. On the other hand, higher concentrations (25μM) of Co2+ during all time course increased the angiogenic gene expression and 0.5, 5 and 25μM enhanced the ability to form tubular structures. To further explore synergistic effects combining both ions, the non-toxic concentrations were used simultaneously, although results showed an increased cell toxicity and no improvement of angiogenic response. These results provide useful information for the design of Cu2+ or Co2+ delivery scaffolds in order to release the appropriate concentration during time course for blood vessel stimulation.
Collapse
|
23
|
Zhao QM, Li B, Yu FX, Li YK, Wu JS, Peng Z, He J, Han QS, Zhang LB, Yi L, Xu RS, Jiao Y. Cu-Co Co-Doped Microporous Coating on Titanium with Osteogenic and Antibacterial Properties. J Biomed Nanotechnol 2021; 17:1435-1447. [PMID: 34446146 DOI: 10.1166/jbn.2021.3120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium (Ti) and its alloys are widely used in bone surgery by virtue of their excellent mechanical properties and good biocompatibility; however, complications such as loosening and sinking have been reported post-implantation. Herein we deposited a copper-cobalt (Cu-Co) co-doped titanium dioxide (TUO) coating on the surface of Ti implants by microarc oxidation. The osteogenic and antimicrobial properties of the coating were evaluated by in vitro experiments, and we also assessed β-catenin expression levels on different sample surfaces. Our results revealed that the coating promoted the adhesion, proliferation, and differentiation of MG63 osteoblasts, and TUO coating promoted β-catenin expression; moreover, the proliferation of Staphylococcus aureus was inhibited. To summarize, we report that Cu-Co co-doping can enhance the osteogenic and antibacterial activities of orthopedic Ti implants, leading to potentially improved clinical performance.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Bo Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Fu-Xun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Yan-Kun Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie-Shi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University (Wuxi Translational Medicine Center), Wuxi 214000, Jangsu, China
| | - Zhi Peng
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie He
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Quan-Sheng Han
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lei-Bing Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui-Sheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University (Wuxi Translational Medicine Center), Wuxi 214000, Jangsu, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
24
|
Arab‐Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B. Immobilization of cobalt‐loaded laponite/carboxymethyl chitosan on polycaprolactone nanofiber for improving osteogenesis and angiogenesis activities. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samira Arab‐Ahmadi
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hadi Bakhshi
- Department of Functional Polymer Systems Fraunhofer Institute for Applied Polymer Research IAP Potsdam Germany
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Behafarid Ghalandari
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
25
|
Exosomes derived from macrophages upon cobalt ion stimulation promote angiogenesis. Colloids Surf B Biointerfaces 2021; 203:111742. [PMID: 33838581 DOI: 10.1016/j.colsurfb.2021.111742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Angiogenesis is critical for tissue repair and regeneration, including implant osseointegration. It is well known that macrophages exert immunomodulatory functions in angiogenesis. However, whether macrophage-derived exosomes participate in the process is still unclear. Cobalt (Co) ions are frequently used as implant additives to mimic hypoxic microenvironment, which can induce angiogenesis through stabilizing hypoxia inducible factor-1α (HIF-1α) of macrophages and endothelial cells (ECs). The present work attempts to investigate whether exosomes derived from macrophages upon Co ion stimulation can mediate angiogenesis and the possible mechanism. The results show that the exosomes promote endothelial migration and angiogenesis in vitro and in vivo, particularly when Co ion concentration is 200 μM. Further studies reveal that the exosomes upregulating nitric oxide (NO), vascular endothelial growth factor (VEGF), and integrin β1 expression may be the underlying mechanism of the observations. Our findings provide new insights for Co ion mediated macrophage-EC communication and surface design of biomaterials from the perspective of pro-angiogenesis.
Collapse
|
26
|
Costa AI, Gemini-Piperni S, Alves AC, Costa NA, Checca NR, Leite PE, Rocha LA, Pinto AMP, Toptan F, Rossi AL, Ribeiro AR. TiO 2 bioactive implant surfaces doped with specific amount of Sr modulate mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111735. [PMID: 33545878 DOI: 10.1016/j.msec.2020.111735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
One of the main problems that remain in the implant industry is poor osseointegration due to bioinertness of implants. In order to promote bioactivity, calcium (Ca), phosphorus (P) and strontium (Sr) were incorporated into a TiO2 porous layer produced by micro-arc oxidation. Ca and P as bioactive elements are already well reported in the literature, however, the knowledge of the effect of Sr is still limited. In the present work, the effect of various amounts of Sr was evaluated and the morphology, chemical composition and crystal structure of the oxide layer were investigated. Furthermore, in vitro studies were carried out using human osteoblast-like cells. The oxide layer formed showed a triplex structure, where higher incorporation of Sr increased Ca/P ratio, amount of rutile and promoted the formation of SrTiO3 compound. Biological tests revealed that lower concentrations of Sr did not compromise initial cell adhesion neither viability and interestingly improved mineralization. However, higher concentration of Sr (and consequent higher amount of rutile) showed to induce collagen secretion but with compromised mineralization, possibly due to a delayed mineralization process or induced precipitation of deficient hydroxyapatite. Ca-P-TiO2 porous layer with less concentration of Sr seems to be an ideal candidate for bone implants.
Collapse
Affiliation(s)
- A I Costa
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEMM - Department of Metallurgical and Materials Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal.
| | - S Gemini-Piperni
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - N A Costa
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Materials Science and Technology, São Paulo State University, Bauru, São Paulo, Brazil
| | - N R Checca
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| | - L A Rocha
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Faculty of Science, Department of Physics, São Paulo State University, Bauru, São Paulo, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEM - Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A L Rossi
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Liu J, Zou T, Yao Q, Zhang Y, Zhao Y, Zhang C. Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111797. [PMID: 33545919 DOI: 10.1016/j.msec.2020.111797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Adequate and timely vascularization is crucial for the success of dental pulp tissue engineering. Hypoxia, an important driving force of angiogenesis, plays an important role in this process. However, few studies have investigated the fabrication of hypoxia-simulating biomaterials for dental applications. In this study, a novel hypoxia-mimicking, multi-walled carbon nanotubes/cobalt (MWCNTs/Co) nanocomposite was prepared using the metal-organic framework (MOF) route for the in situ insertion of MWCNTs into Co3O4 polyhedra. The obtained nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Cobalt ion release of MWCNTs/Co was analyzed in vitro. Cell viability and proliferation were assessed by culturing stem cells from apical papilla (SCAP) with MWCNTs/Co nanocomposites. The angiogenic capacity of SCAP after exposure to nanocomposites was evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and the Matrigel angiogenesis assay. Our results proved that the synthesized MWCNTs/Co nanocomposites possessed a well-designed connecting structure and could release cobalt ions in a sustained way. The MWCNTs/Co nanocomposites at 50 μg/mL significantly upregulated hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein expression in SCAP, with no apparent cellular cytotoxicity. The conditioned medium collected from SCAP treated with MWCNTs/Co markedly promoted endothelial cells vessel formation. In conclusion, hypoxia-mimicking MWCNTs/Co nanocomposites exhibit promising angiogenic potential for dental tissue engineering and might provide an alternative solution for translational applications.
Collapse
Affiliation(s)
- Junqing Liu
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qianqian Yao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
29
|
Lin WC, Tang CM. Evaluation of Polyvinyl Alcohol/Cobalt Substituted Hydroxyapatite Nanocomposite as a Potential Wound Dressing for Diabetic Foot Ulcers. Int J Mol Sci 2020; 21:ijms21228831. [PMID: 33266398 PMCID: PMC7700235 DOI: 10.3390/ijms21228831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcers (DFUs) caused by diabetes are prone to serious and persistent infections. If not treated properly, it will cause tissue necrosis or septicemia due to peripheral blood vessel embolism. Therefore, it is an urgent challenge to accelerate wound healing and reduce the risk of bacterial infection in patients. In clinical practice, DFUs mostly use hydrogel dressing to cover the surface of the affected area as an auxiliary treatment. Polyvinyl alcohol (PVA) is a hydrophilic hydrogel polymer widely used in dressings, drug delivery, and medical applications. However, due to its weak bioactivity and antibacterial ability, leads to limited application. Filler adding is a useful way to enhance the biocompatibility of PVA. In our study, cobalt-substituted hydroxyapatite (CoHA) powder was prepared by the electrochemically-deposited method. PVA and PVA-CoHA nanocomposite were prepared by the solvent casting method. The bioactivity of the PVA and composite was evaluated by immersed in simulated body fluid for 7 days. In addition, L929 cells and E. coli were used to evaluate the cytotoxicity and antibacterial tests of PVA and PVA-CoHA nanocomposite. The results show that the addition of CoHA increases the mechanical properties and biological activity of PVA. Biocompatibility evaluation showed no significant cytotoxicity of PVA-CoHA composite. In addition, a small amount of cobalt ion was released to the culture medium from the nanocomposite in the cell culture period and enhanced cell growth. The addition of CoHA also confirmed that it could inhibit the growth of E. coli. PVA-CoHA composite may have potential applications in diabetic trauma healing and wound dressing.
Collapse
Affiliation(s)
- Wei-Chun Lin
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; or
| | - Cheng-Ming Tang
- Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-4-2471-8668 (ext. 55528); Fax: +886-4-2475-9065
| |
Collapse
|
30
|
Kyrylenko S, Warchoł F, Oleshko O, Husak Y, Kazek-Kęsik A, Korniienko V, Deineka V, Sowa M, Maciej A, Michalska J, Jakóbik-Kolon A, Matuła I, Basiaga M, Hulubnycha V, Stolarczyk A, Pisarek M, Mishchenko O, Pogorielov M, Simka W. Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111607. [PMID: 33321651 DOI: 10.1016/j.msec.2020.111607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.
Collapse
Affiliation(s)
| | - Fiona Warchoł
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | | | - Yevheniia Husak
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | | | | | - Maciej Sowa
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Artur Maciej
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Joanna Michalska
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Agata Jakóbik-Kolon
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland
| | - Izabela Matuła
- University of Silesia, Institute of Materials Engineering, 41-500 Chorzów, Poland
| | - Marcin Basiaga
- Silesian University of Technology, Faculty of Biomedical Engineering, 41-800 Zabrze, Poland
| | | | | | - Marcin Pisarek
- Institute of Physical Chemistry PAS, 01-224 Warsaw, Poland
| | | | - Maksym Pogorielov
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; Nano Prime, 39-200 Dębica, Poland
| | - Wojciech Simka
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland; Nano Prime, 39-200 Dębica, Poland.
| |
Collapse
|
31
|
Jing Z, Zhang T, Xiu P, Cai H, Wei Q, Fan D, Lin X, Song C, Liu Z. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. ACTA ACUST UNITED AC 2020; 15:052003. [PMID: 32369792 DOI: 10.1088/1748-605x/ab9078] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium alloy orthopedic implants produced by 3D printing combine the dual advantages of having a complex structure that cannot be manufactured by traditional techniques and the excellent physical and chemical properties of titanium and its alloys; they have been widely used in the field of orthopedics in recent years. The inherent porous structure of 3D-printed implants and the original modification processes for titanium alloys provide conditions for the functionalization of implants. To meet the needs of orthopedic surgeons and patients, functionalized implants with long-term stability and anti-infection or anti-tumor properties have been developed. The various methods of functionalization deserve to be summarized, compared and analyzed. Therefore, in this review, we will collect and discuss existing knowledge on the functionalization of 3D-printed titanium alloy orthopedic implants.
Collapse
Affiliation(s)
- Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomater 2020; 107:313-324. [PMID: 32126308 DOI: 10.1016/j.actbio.2020.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Titanium-based endosseous implants with high antibacterial and osseointegration activities are extremely required in clinics. To achieve this line, herein the doped coatings with three kinds of Zn doses were micro-arc oxidized (MAOed) on Ti. They were examined to reveal a bilayered structure, in which the outer layer consisted completely of the amorphism comprising elements of Ti, O and Zn with Zn doped in the form of weaken Zn-O bonds, and the underlying layer was partially crystallized with nanocrystalline TiO2 and Zn2TiO4 to embed an amorphous matrix. While the Zn doped doses of the surface amorphous layers increased with elevating the MAOed voltages, the weaken Zn-O bonds in the amorphism were identified to act as both the contributor of Zn2+ controllable release and the generator of reactive oxide species (ROS) on the coatings. The enhanced HO• and O2-• formation on the elevated voltage MAOed coatings caused serious break of the cell walls and plasma membranes of S. aureus. In parallel, the enhanced Zn2+ release and extracellular H2O2 formation led to the enhanced intracellular ROS level of S. aureus, further aggravating the damage of plasma membrane, resulting in bacteria death. On contrary to the overdose of Zn doped coating, the moderate doses of Zn doped coatings did not induce additional intracellular ROS and attenuate viability and proliferation of osteoblasts in vitro, and promoted osseointegration in both S. aureus-uninfected and infected rat tibias, which ascribed to the strong antibacterial activity and un-attenuated cell function of the coatings in the infected case. STATEMENT OF SIGNIFICANCE: (1) The Zn-doped coatings revealed a bilayered structure of the surface layer comprising the Ti, O and Zn constructed amorphism with Zn in the form of weaken Zn-O bonds, and the underlying layer comprising nanocrystalline TiO2 and Zn2TiO4 to embed amorphous matrix. (2) The weaken Zn-O bonds in the amorphism were identified to act as both the contributor of Zn2+ controllable release and the generator of ROS on the coatings. (3) The enhanced Zn2+ release and ROS formation on the coatings killed S. aureus by inducing serious break of their cell walls and plasma membranes. This effect in combination of un-attenuated osteoblast proliferation endowed the moderate Zn doped coatings with enhanced osseointegration in S. aureus-infected rat tibias.
Collapse
|
33
|
He Y, Yang X, Yuan Z, Shen X, Xu K, Lin C, Tao B, Li K, Chen M, Hu Y, Luo Z, Xia Z, Cai K. Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface. Biomater Sci 2020; 7:5492-5505. [PMID: 31663543 DOI: 10.1039/c9bm01158g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Titanium-based materials have been long regarded as effective bone implants for clinical use, yet the corresponding osteointegration ability needs to be optimized. This challenge can be overcome by fabricating titanium (Ti) materials with physiological functions. In this study, peptide LL-37-loaded silk fibroin nanoparticles (SFNPs) were immobilized on a titanium surface to facilitate osteointegration by regulating the physiological functions of mesenchymal stem cells (MSCs) and macrophages. According to our results, the cell viability, recruitment and paracrine responses of MSCs and macrophages were improved by the modified Ti samples. MSC differentiation was promoted by the macrophages incubated on the modified Ti samples, and the phenotype switch of macrophages was also modulated by the MSCs incubated on the modified Ti samples. In vivo studies proved that the modified Ti implant induced MSC and macrophage recruitments to injury sites and the inflammatory response was positively regulated. Moreover, better bone formation was achieved around the modified Ti implant 28 days after surgery. This suggested that the immobilization of peptide LL-37-loaded SFNPs on a titanium surface improves osteointegration via the regulation of physiological functions of MSCs and macrophages.
Collapse
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Milan PB, Khamseh S, Zarrintaj P, Ramezanzadeh B, Badawi M, Morisset S, Vahabi H, Saeb MR, Mozafari M. Copper-enriched diamond-like carbon coatings promote regeneration at the bone-implant interface. Heliyon 2020; 6:e03798. [PMID: 32368647 PMCID: PMC7184533 DOI: 10.1016/j.heliyon.2020.e03798] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/17/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
There have been several attempts to design innovative biomaterials as surface coatings to enhance the biological performance of biomedical implants. The objective of this study was to design multifunctional Cu/a-C:H thin coating depositing on the Ti-6Al-4V alloy (TC4) via magnetron sputtering in the presence of Ar and CH4 for applications in bone implants. Moreover, the impact of Cu amount and sp2/sp3 ratio on the interior stress, corrosion behavior, mechanical properties, and tribological performance and biocompatibility of the resulting biomaterial was discussed. X-ray photoelectron spectroscopy (XPS) revealed that the sp2/sp3 portion of the coating was enhanced for samples having higher Cu contents. The intensity of the interior stress of the Cu/a-C:H thin bio-films decreased by increase of Cu content as well as the sp2/sp3 ratio. By contrast, the values of Young's modulus, the H3/E2 ratio, and hardness exhibited no significant difference with enhancing Cu content and sp2/sp3 ratio. However, there was an optimum Cu content (36.8 wt.%) and sp2/sp3 ratio (4.7) that it is feasible to get Cu/a-C:H coating with higher hardness and tribological properties. Electrochemical impedance spectroscopy test results depicted significant improvement of Ti-6Al-4V alloy corrosion resistance by deposition of Cu/a-C:H thin coating at an optimum Ar/CH4 ratio. Furthermore, Cu/a-C:H thin coating with higher Cu contents showed better antibacterial properties and higher angiogenesis and osteogenesis activities. The coated samples inhibited the growth of bacteria as compared to the uncoated sample (p < 0.05). In addition, such coating composition can stimulate angiogenesis, osteogenesis and control host response, thereby increasing the success rate of implants. Moreover, Cu/a-C:H thin films encouraged development of blood vessels on the surface of titanium alloy when the density of grown blood vessels was increased with enhancing the Cu amount of the films. It is speculated that such coating can be a promising candidate for enhancing the osseointegration features.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khamseh
- Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT, UMR 7019, 54506, Vandoeuvre-lès-Nancy, France
| | - Sophie Morisset
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 Rue Michel Brunet, Poitiers 86022, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Resins and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhao QM, Li XK, Guo S, Wang N, Liu WW, Shi L, Guo Z. Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110682. [PMID: 32204111 DOI: 10.1016/j.msec.2020.110682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/30/2019] [Accepted: 01/19/2020] [Indexed: 01/17/2023]
Abstract
Titanium and its alloys are the most widely used implants in clinical practice. However, their bioactivity is unsatisfactory, and the effect of osteogenesis on the bonding interface between the implant and bone needs to be further improved. In this study, a coating consisting of microporous titanium doped with silicon (Si-TiO2) was successfully created by microarc oxidation (MAO), and Si was evenly distributed on the surface of the coating. The surface morphology, roughness, and phase composition of the Si-TiO2 microporous coating were similar to those of the Si-free doped MAO coatings. The Si-TiO2 microporous coating can promote osteoblast adhesion, spreading, proliferation and differentiation. More importantly, the integrin β1-FAK signaling pathway may be involved in the regulatory effect of the coating on osteoblasts. Further studies in vivo indicated that the Si-TiO2 microporous coating could improve early stage osseointegration. In conclusion, the Si-TiO2 microporous coating is a feasible way to improve the osteogenic abilities of Ti implants to potentially promote clinical performance.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Kang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuo Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Wen Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
36
|
Enhanced osteogenic differentiation of osteoblasts on CaTiO 3 nanotube film. Colloids Surf B Biointerfaces 2020; 187:110773. [PMID: 31926789 DOI: 10.1016/j.colsurfb.2020.110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Improved implant-bone interface interaction for rapid formation of strong and long-lasting bond is significantly important in orthopedic clinics. Herein, Ca-doped TiO2 nanotube film (M-CaNTs) with enhanced adhesion strength was fabricated on titanium (Ti) surface by an anodization-hydrothermal treatment. Results showed that TiO2 nanotube film (M-NTs) fabricated by modified anodization was amorphous, exhibiting 100-nm diameter and 12-nm tube wall thickness. After hydrothermal treatment, the nanotubular structure of M-CaNTs kept integrated, but was volume-expanded, exhibiting a decreased diameter (∼ 60 nm) and an increased wall thickness (∼ 30 nm). The formation of M-CaNTs proceeded preferentially at the interior surfaces of the closely aligned nanotubes, involving an in situ dissolution-recrystallization process. Though the adhesion strength of M-CaNTs was weakened by the volume-expansion derived internal stress, it was still higher than that of the traditionally obtained one. In the in vitro investigations, the combination of nanotubular structure and Ca2+ could expectedly enhance the attachment, spreading and proliferation of MC3T3-E1 cells, as well as promote the expressions of bone-specific genes, intracellular proteins and ALP activity, which in turn accelerated collagen secretion and ECM mineralization. This work provides an attractive potential for the surface modification of Ti-based implants in clinical application.
Collapse
|
37
|
Lin WC, Chuang CC, Yao C, Tang CM. Effect of Cobalt Precursors on Cobalt-Hydroxyapatite Used in Bone Regeneration and MRI. J Dent Res 2020; 99:277-284. [PMID: 31905313 DOI: 10.1177/0022034519897006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In clinical dentistry practice, supplemental bone surgery or jawbone defect after tooth extraction must be assisted by a bone-filling material. Cobalt-substituted hydroxyapatite (COHA) effectively promotes bone cell growth, reduces the inflammatory response, and is an antibacterial agent. COHA can therefore be used as an alveolar bone-filling material or guided bone regeneration membrane. Meanwhile, COHA can be used in magnetic resonance imaging (MRI) with negative contrast agents and targeting materials without causing metal interference with the image. Hence, COHA has received increasing amounts of attention in recent years. However, the influence of different cobalt precursors on the synthesized COHA is still unknown. Therefore, COHA synthesized from 3 cobalt precursors (cobalt chloride, cobalt nitrate, and cobalt sulfate) was compared in this study. The results show that COHA synthesized by the precursor with the smallest anion radius, cobalt chloride, has a larger particle size (239 nm) and a higher cobalt ion substitution rate (15.6%). When the cobalt ion substitution rate increases, the MRI has a stronger contrast. Bioactivity data indicate that COHAC is more susceptible to degradation and therefore releases more cobalt ions to contribute to the differentiation of bone cells. Based on these studies, COHAC prepared with the cobalt chloride precursor has a higher cobalt ion substitution rate, faster degradation rate, better image contrast, and better bioactivity. It is therefore the preferred choice of bone-filling material for alveolar bone regeneration.
Collapse
Affiliation(s)
- W C Lin
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - C C Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Image, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C M Tang
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Zhao QM, Sun YY, Wu CS, Yang J, Bao GF, Cui ZM. Enhanced osteogenic activity and antibacterial ability of manganese–titanium dioxide microporous coating on titanium surfaces. Nanotoxicology 2019; 14:289-309. [PMID: 32193966 DOI: 10.1080/17435390.2019.1690065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Yu-Yu Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Chun-Shuai Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Jian Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Guo-Feng Bao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Zhi-Ming Cui
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| |
Collapse
|
39
|
Yu Y, Ran Q, Shen X, Zheng H, Cai K. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids Surf B Biointerfaces 2019; 185:110592. [PMID: 31639570 DOI: 10.1016/j.colsurfb.2019.110592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
After implantation into a host, titanium (Ti) orthopaedic materials are facing two major clinical challenges: bacterial infection and aseptic loosening, which directly determine the long-term survival of the implant. To endow Ti implant with self-defensive antibacterial properties and desirable osteo/angio-genic differentiation potentials, hyaluronic acid (HA)-gentamicin (Gen) conjugates (HA-Gen) and chitosan (Chi) polyelectrolyte multilayers were constructed on deferoxamine (DFO) loaded titania nanotubes (TNT) substrates via layer-by-layer (LBL) assembly technique, termed as TNT/DFO/HA-Gen. The HA-Gen conjugate was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The physicochemical properties of the substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The on-demand DFO release was associated with the degradation of multilayers triggered by exogenous hyaluronidase, which indicated enzymatic and bacterial responsiveness. The TNT/DFO/HA-Gen substrates displayed effective antifouling and antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), while were favourable for the adhesion, proliferation and osteo/angio-genic differentiation of mesenchymal stem cells (MSCs). The multifaceted drug-device combination (DDC) strategy showed potential applications in orthopaedic fields.
Collapse
Affiliation(s)
- Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Qichun Ran
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xinkun Shen
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
40
|
Antibacterial, angiogenic, and osteogenic activities of Ca, P, Co, F, and Sr compound doped titania coatings with different Sr content. Sci Rep 2019; 9:14203. [PMID: 31578429 PMCID: PMC6775141 DOI: 10.1038/s41598-019-50496-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023] Open
Abstract
Titanium implants are often combined with microporous titania coatings simultaneously doped with various elements to enhance their antibacterial, angiogenic and osteogenic activities. To evaluate how Sr doping levels affect properties of titania coatings simultaneously doped with Ca, P, Co and F (TiCPCF coatings), we prepared coatings with Sr contents equal to 6, 11 and 18 wt% (TiCPCF-S6, TiCPCF-S11 and TiCPCF-S18, respectively) using micro-arc oxidation of titanium. Sr presence in TiCPCF coatings did not affect their phase compositions, microstructure, surface wettability, roughness, and adhesion to titanium. Antibacterial, angio- and osteo-genic activities of all the coatings were evaluated. Sr incorporation improved mesenchymal stem cell proliferation, osteogenic differentiation and implant osseointegration. TiCPCF-S11 showed the most optimum Sr content judging by its enhanced osteogenic activity. While Sr incorporation did not weaken angiogenic and antibacterial abilities of TiCPCF. Thus TiCPCF-S11 coating is a very strong candidate to be used as a next-generation bone implant material.
Collapse
|
41
|
Shen X, Gu H, Ma P, Luo Z, Li M, Hu Y, Cai K. Minocycline-incorporated multilayers on titanium substrates for simultaneous regulation of MSCs and macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:696-707. [DOI: 10.1016/j.msec.2019.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
|
42
|
Li K, Lu X, Razanau I, Wu X, Hu T, Liu S, Xie Y, Huang L, Zheng X. The enhanced angiogenic responses to ionic dissolution products from a boron-incorporated calcium silicate coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:513-520. [DOI: 10.1016/j.msec.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
|
43
|
Huang TB, Li YZ, Yu K, Yu Z, Wang Y, Jiang ZW, Wang HM, Yang GL. Effect of the Wnt signal-RANKL/OPG axis on the enhanced osteogenic integration of a lithium incorporated surface. Biomater Sci 2019; 7:1101-1116. [PMID: 30633253 DOI: 10.1039/c8bm01411f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone remolding involves the formation of new bone by osteoblasts and the absorption of old bones by osteoclasts. Due to the vital role of osteoblasts and osteoclasts during bone regeneration, it might be feasible to promote osseointegration around the titanium implants by stimulating osteoblasts and inhibiting osteoclasts by modifying the surfaces of the implants. Lithium is used in the treatment of psychiatric patients, and it may be associated with osteogenesis. In this study, lithium was incorporated with sandblasted, large-grit and acid-etched titanium implants via a hydrothermal treatment. In vitro, the nano-scale surface enhanced the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). Moreover, the SLA-Li surface displayed a negative effect on the process of osteoclastogenesis. Further mechanism analysis indicated that the canonical Wnt/β-catenin signaling pathway was activated according to the results of RT-PCR and western blotting. More importantly, the RANKL/OPG signaling axis was also involved in these effects on the SLA-Li surface. The experiments in vivo proved that the SLA-Li surface could induce the bone formation and osseointegration during the early osseointegration after the dental implant surgery. These results suggested that bone homeostasis could be manipulated by an SLA-Li surface, which implied that this new surface might serve as a promising material for clinical application in the future.
Collapse
Affiliation(s)
- Ting-Ben Huang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Yan'an Road, Hangzhou, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou W, Huang O, Gan Y, Li Q, Zhou T, Xi W. Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:290-299. [PMID: 30688103 DOI: 10.1080/21691401.2018.1553784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of surface modification methods are applied to modify titanium implants to improve their biological activity. Micro-arc oxidation (MAO) can relatively simply and efficiently produce porous coatings with high bioactivity and bond strength on titanium surfaces. However, there is no conclusion about the effect of coatings with different pore sizes produced by MAO on bone marrow mesenchymal stem cells (BMSCs). To study the effect of different pore sizes on BMSCs, rat BMSCs were applied to detect the effect of different pore sizes prepared by MAO on cell adhesion and osteogenic differentiation. Three groups of coatings with different pore sizes were successfully prepared, and the pore size was within the range of 3-10 µm. Importantly, the expression of adhesion-related protein integrin β1 and osteogenic-related proteins OSX and ALP increased along with the increase in pore size. This study showed that the porous coating prepared by MAO promotes BMSCs adhesion and osteogenic differentiation. It reveals that the pore size is in the range of 3-10 µm and the larger pores are more beneficial for BMSCs adhesion and osteogenic differentiation. This study is instructive for optimizing the design of biomedical implant surfaces.
Collapse
Affiliation(s)
- Wuchao Zhou
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Ou Huang
- b Comprehensive Breast Health Centre, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yanzi Gan
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Qishun Li
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Tian Zhou
- c Department of Oral Maxillofacial-Head and Neck Oncology , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , China
| | - Weihong Xi
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| |
Collapse
|
45
|
Zhao Q, Yi L, Jiang L, Ma Y, Lin H, Dong J. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating. Nanomedicine (Lond) 2019; 14:1109-1133. [PMID: 31050592 DOI: 10.2217/nnm-2018-0413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To improve the bioactivity and antibacterial activity of titanium (Ti) implants. Materials & methods: Magnesium (Mg)-doped titanium dioxide microporous coatings (Mg-TiO2) were prepared on the surface of Ti implants by plasma electrolytic oxidation. Results: Ti surfaces were covered with porous Mg-TiO2, and Mg was evenly distributed throughout the coating. Mg-TiO2 could not only promote osteoblast adhesion, proliferation and differentiation but also inhibit the colonization and growth of Staphylococcus. In addition, Mg-TiO2 may promote osteogenesis through the ERK/c-Fos signaling pathway as well as the early osseointegration of Ti implants. Conclusion: Mg-TiO2 has both osteogenic and antibacterial effects and thus presents important theoretical significance and clinical potential.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Lei Yi
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Hong Lin
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
46
|
Lin WC, Yao C, Huang TY, Cheng SJ, Tang CM. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent Mater 2019; 35:751-762. [PMID: 30857736 DOI: 10.1016/j.dental.2019.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Currently, infections due to foreign-body reactions caused by bacteria or implant materials at the wound site are one of the major reasons for the failure of guided tissue regeneration (GTR) and guided bone regeneration (GBR) in clinical applications. The purpose of this study was to develop regeneration membranes with localized cobalt ion release to reduce infection and inflammation by polycaprolactone (PCL)/cobalt-substituted hydroxyapatite (CoHA). METHODS The PCL composite membrane containing 20 wt% CoHA powders was prepared by solvent casting. The surface morphology, crystal structure, chemical composition and thermal properties of PCL composite membranes were characterized. The biocompatibility, osteogenic differentiation and antibacterial properties of composite membrane were also investigated. Then, in biodegradability was assessed by immersing phosphate buffer solution (PBS) for 6 months. RESULTS Physicochemical analyses revealed that CoHA is evenly mixed in the membranes and assistance reduce the crystallinity of PCL for getting more degradation amounts than PCL membrane. Osteoblast cells culture on the membrane showed that the CoHA significantly increases cell proliferation and found the calcium deposition production increased over 90% compared with PCL after 7 days of culture. A good antibacterial effect was achieved by the addition of CoHA powder. The results were confirmed by 2.4 times reduction of proliferation of Escherichia coli (E. coli) seeded on the composite membrane after 24 h. Immersing in PBS for 6 months indicated that PCL-CoHA composite membrane has improved biodegradation and can continuously remove free radicals to reduce the inflammatory response. SIGNIFICANCE The PCL-CoHA composite membrane with suitable releasing of cobalt ion can be considered as a potential choice for bone tissue regeneration.
Collapse
Affiliation(s)
- Wei-Chun Lin
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Ting-Yun Huang
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shih-Jung Cheng
- Department of Dentistry, Chung Shan Medical University, Taiwan.
| | - Cheng-Ming Tang
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan; Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
47
|
Zheng Y, Yang Y, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:770-782. [PMID: 30889752 DOI: 10.1016/j.msec.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Bone grafting on defects caused by trauma or tumor stimulates bone regeneration, a complex process requiring highly orchestrated cell-signal interactions. Bone vascular growth is coupled with osteogenesis, but less is known about the interplay between angiogenesis and osteogenesis. Understanding this relationship is relevant to improved bone regeneration. Here, tricalcium phosphate (TCP) scaffolds doped with varying concentration of cobalt (Co-TCP) were designed to investigate the dosage effect of vascularization on bone formation. The surface structure, phase composition, mechanical features, and chemical composition were investigated. Co doping improved the mechanical properties of TCP. Co-TCP, particularly 2% and 5% Co-TCP, boosted cell viability of bone marrow stromal cells (BMSCs). The 2% Co-TCP promoted alkaline phosphatase activity, matrix mineralization, and expression of osteogenic genes in BMSCs in vitro. However, excessive Co doping decreased TCP-induced osteogenesis. Meanwhile, Co-TCP dose-dependently favored the growth and migration of human umbilical vein endothelial cells (HUVECs), and the expression of vascular endothelial growth factor (VEGF). The 2% Co-TCP significantly shrank the defect area in rat alveolar bone compared with TCP. Smaller bone volume and more abundant blood vessels were observed for 5% Co-TCP compared with 2% Co-TCP. The CD31 immunostaining in the 5% Co-TCP group was more intense than the other two groups, indicating of the increment of endothelium cells. Besides, 5% Co-TCP led to mild inflammatory response in bone defect area. Overall, TCP doped appropriately with Co has positive effect on osteogenesis, while excessive Co suppressed osteoblast differentiation and bone formation. These data indicate that vascularization within a proper range promotes osteogenesis, which may be a design consideration for bone grafts.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuanyi Yang
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
48
|
The Effect of Electrode Topography on the Magnetic Properties and MRI Application of Electrochemically-Deposited, Synthesized, Cobalt-Substituted Hydroxyapatite. NANOMATERIALS 2019; 9:nano9020200. [PMID: 30717496 PMCID: PMC6409796 DOI: 10.3390/nano9020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/26/2023]
Abstract
Magnetic nanoparticles are used to enhance the image contrast of magnetic resonance imaging (MRI). However, the development of magnetic nanoparticles with a low dose/high image contrast and non-toxicity is currently a major challenge. In this study, cobalt-substituted hydroxyapatite nanoparticles deposited on titanium (Ti-CoHA) and cobalt-substituted hydroxyapatite nanoparticles deposited on titanium dioxide nanotubes (TNT-CoHA) were synthesized by the electrochemical deposition method. The particle sizes of Ti-CoHA and TNT-CoHA were 418.6 nm and 127.5 nm, respectively, as observed using FE-SEM. It was shown that CoHA can be obtained with a smaller particle size using a titanium dioxide nanotube (TNT) electrode plate. However, the particle size of TNT-CoHA is smaller than that of Ti-CoHA. The crystal size of the internal cobalt oxide of CoHA was calculated by using an XRD pattern. The results indicate that the crystal size of cobalt oxide in TNT-CoHA is larger than that of the cobalt oxide in Ti-CoHA. The larger crystal size of the cobalt oxide in TNT-CoHA makes the saturation magnetization (Ms) of TNT-CoHA 12.6 times higher than that of Ti-CoHA. The contrast in MRIs is related to the magnetic properties of the particles. Therefore, TNT-CoHA has good image contrast at low concentrations in T₂ images. The relaxivity coefficient of the CoHA was higher for TNT-CoHA (340.3 mM-1s-1) than Ti-CoHA (211.7 mM-1s-1), and both were higher than the commercial iron nanoparticles (103.0 mM-1s-1). We showed that the TNT substrate caused an increase in the size of the cobalt oxide crystal of TNT-CoHA, thus effectively improving the magnetic field strength and MRI image recognition. It was also shown that the relaxivity coefficient rose with the Ms. Evaluation of biocompatibility of CoHA using human osteosarcoma cells (MG63) indicated no toxic effects. On the other hand, CoHA had an excellent antibacterial effect, as shown by E. coli evaluation, and the effect of TNT-CoHA powder was higher than that of Ti-CoHA powder. In summary, TNT-CoHA deposited electrochemically on the TNT substrates can be considered as a potential candidate for the application as an MRI contrast agent. This paper is a comparative study of how different electrode plates affect the magnetic and MRI image contrast of cobalt-substituted hydroxyapatite (CoHA) nanomaterials.
Collapse
|
49
|
Zhao Q, Yi L, Jiang L, Ma Y, Lin H, Dong J. Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:149-161. [DOI: 10.1016/j.nano.2018.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/01/2018] [Accepted: 12/15/2018] [Indexed: 11/29/2022]
|
50
|
Lin WC, Chuang CC, Wang PT, Tang CM. A Comparative Study on the Direct and Pulsed Current Electrodeposition of Cobalt-Substituted Hydroxyapatite for Magnetic Resonance Imaging Application. MATERIALS 2018; 12:ma12010116. [PMID: 30602692 PMCID: PMC6337257 DOI: 10.3390/ma12010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 01/03/2023]
Abstract
Hydroxyapatite has excellent biocompatibility and osteo-conductivity and, as the main inorganic component of human bones and teeth, is commonly used for bone repair. Its original characteristics can be changed by metal ion substitution. Cobalt ions can act as hypoxia-inducible factors and accelerate bone repair. At the same time, cobalt has paramagnetic properties and is often used in the study of medical imaging and target drugs. Through the introduction of cobalt ions, the unique hydroxyapatite has better biological activity and positioning of medical images. Herein, cobalt-substituted hydroxyapatite (CoHA) was synthesized on the surface of a titanium plate by electrochemical deposition and changes in the power output mode to explore the impact on CoHA. Electrochemical deposition with a pulse current significantly improved the productivity and uniformity of CoHA on the surface of titanium. CoHA show paramagnetic characteristics by a superconducting quantum interference device (SQUID). Resulting smaller particle size and circular morphology improves the magnetic strength of CoHA. Magnetic resonance imaging (MRI) of CoHA showed significant image contrast effect at low concentrations. The calculated particle relaxation rate was higher than other common MRI contrast agents. Biocompatibility of CoHA powder was evaluated using the human osteosarcoma cell line (MG63) which confirmed that CoHA is not cytotoxic and can promote cell growth and extracellular matrix mineralization. With the release of cobalt ions, CoHA was found to be significantly good in repression E. coli indicating about than 95% reduction in bacterial growth. The as-synthesized CoHA has a low degree of crystallinity, highly sensitive image contrast effect, and good bioactivity, and may have potential applications in bone repair and MRI.
Collapse
Affiliation(s)
- Wei-Chun Lin
- Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Pin-Ting Wang
- Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Cheng-Ming Tang
- Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
- Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|