1
|
Hu X, Wang Z, Zhu Y, Li Z, Yan H, Zhao X, Wang Q. Advancements in molecular imaging for the diagnosis and treatment of pancreatic ductal adenocarcinoma. NANOSCALE ADVANCES 2025; 7:2887-2903. [PMID: 40270837 PMCID: PMC12012634 DOI: 10.1039/d4na01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor characterized by poor overall patient survival and prognosis, largely due to challenges in early diagnosis, limited surgical options, and a high propensity for therapy resistance. The integration of various imaging modalities through molecular imaging techniques, particularly multimodal molecular imaging, offers the potential to provide more precise and comprehensive information about the lesion. With advances in nanomedicine, new imaging and drug delivery approaches that allow the development of multifunctional theranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. Herein, we review the diagnostic and therapeutic applications of molecular imaging for PDAC and discuss the adoption of multimodal imaging approaches that combine the strengths of different imaging techniques to enhance diagnostic accuracy and therapeutic efficacy. We emphasize the significant role of nanomedicine technology in advancing multimodal molecular imaging and theranostics, and their potential impact on PDAC management. This comprehensive review aims to serve as a valuable reference for researchers and clinicians, offering insights into the current state of molecular imaging in PDAC and outlining future directions for improving early diagnosis, combination therapies, and prognostic evaluations.
Collapse
Affiliation(s)
- Xun Hu
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021 China
| | - Zihua Wang
- School of Basic Medical Sciences, Fujian Medical University Fuzhou 350122 Fujian Province China
| | - Yuting Zhu
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021 China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital Shenzhen Guangdong 518036 China
| | - Hao Yan
- Tsinghua Shenzhen International Graduate School/Tsinghua University Shenzhen 518055 China
| | - Xinming Zhao
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021 China
| | - Qian Wang
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021 China
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Srivastava N, Chudasama B, Baranwal M. Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases 2023; 18:060801. [PMID: 38078795 DOI: 10.1116/6.0003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Magnetic hyperthermia utilizing magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF) represents a promising approach in the field of cancer treatment. Active targeting has emerged as a valuable strategy to enhance the effectiveness and specificity of drug delivery. Active targeting utilizes specific biomarkers that are predominantly found in abundance on cancer cells while being minimally expressed on healthy cells. Current comprehensive review provides an overview of several cancer-specific biomarkers, including human epidermal growth factor, transferrin, folate, luteinizing hormone-releasing hormone, integrin, cluster of differentiation (CD) receptors such as CD90, CD95, CD133, CD20, and CD44 also CXCR4 and vascular endothelial growth factor, these biomarkers bind to ligands present on the surface of MNPs, enabling precise targeting. Additionally, this review touches various combination therapies employed to combat cancer. Magnetic hyperthermia synergistically enhances the efficacy of conventional cancer treatments such as targeted chemotherapy, radiation therapy, gene therapy, and immunotherapy.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
6
|
Phalake SS, Somvanshi SB, Tofail SAM, Thorat ND, Khot VM. Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model. NANOSCALE 2023; 15:15686-15699. [PMID: 37724853 DOI: 10.1039/d3nr02816j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Localized heat generation from manganese iron oxide nanoparticles (MIONPs) conjugated with chemotherapeutics under the exposure of an alternating magnetic field (magneto-chemotherapy) can revolutionize targeted breast cancer therapy. On the other hand, the lack of precise control of local temperature and adequate MIONP distribution in laboratory settings using the conventional two-dimensional (2D) cellular models has limited its further translation in tumor sites. Our current study explored advanced 3D in vitro tumor models as a promising alternative to replicate the complete range of tumor characteristics. Specifically, we have focused on investigating the effectiveness of MIONP-based magneto-chemotherapy (MCT) as an anticancer treatment in a 3D breast cancer model. To achieve this, chitosan-coated MIONPs (CS-MIONPs) are synthesized and functionalized with an anticancer drug (doxorubicin) and a tumor-targeting aptamer (AS1411). CS-MIONPs with a crystallite size of 16.88 nm and a specific absorption rate (SAR) of 181.48 W g-1 are reported. In vitro assessment of MCF-7 breast cancer cell lines in 2D and 3D cell cultures demonstrated anticancer activity. In the 2D and 3D cancer models, the MIONP-mediated MCT reduced cancer cell viability to about 71.48% and 92.2%, respectively. On the other hand, MIONP-mediated MCT under an AC magnetic field diminished spheroids' viability to 83.76 ± 2%, being the most promising therapeutic modality against breast cancer.
Collapse
Affiliation(s)
- Satish S Phalake
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| | - Sandeep B Somvanshi
- School of Materials Engineering, Purdue University, West Lafayette, USA
- Department of Physics, Dr. B. A. M. University, Aurangabad-431004, Maharashtra, India
| | - Syed A M Tofail
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
| | - Nanasaheb D Thorat
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Vishwajeet M Khot
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| |
Collapse
|
7
|
Khonina TG, Demin AM, Tishin DS, Germov AY, Uimin MA, Mekhaev AV, Minin AS, Karabanalov MS, Mysik AA, Bogdanova EA, Krasnov VP. Magnetic Nanocomposite Materials Based on Fe 3O 4 Nanoparticles with Iron and Silica Glycerolates Shell: Synthesis and Characterization. Int J Mol Sci 2023; 24:12178. [PMID: 37569552 PMCID: PMC10419229 DOI: 10.3390/ijms241512178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Novel magnetic nanocomposite materials based on Fe3O4 nanoparticles coated with iron and silica glycerolates (MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc) were obtained. The synthesized nanocomposites were characterized using TEM, XRD, TGA, VMS, Mössbauer and IR spectroscopy. The amount of iron and silica glycerolates in the nanocomposites was calculated from the Mössbauer spectroscopy, ICP AES and C,H-elemental analysis. Thus, it has been shown that the distribution of Fe in the shell and core for MNP@Fe(III)Glyc and MNP@Fe(III)/SiGlyc is 27:73 and 32:68, respectively. The synthesized nanocomposites had high specific magnetization values and a high magnetic response to the alternating magnetic field. The hydrolysis of shells based on Fe(III)Glyc and Fe(III)/SiGlyc in aqueous media has been studied. It has been demonstrated that, while the iron glycerolates shell of MNP@Fe(III)Glyc is resistant to hydrolysis, the silica glycerolates shell of MNP@Fe(III)/SiGlyc is rather labile and hydrolyzed by 76.4% in 24 h at 25 °C. The synthesized materials did not show cytotoxicity in in vitro experiments (MTT-assay). The data obtained can be used in the design of materials for controlled-release drug delivery.
Collapse
Affiliation(s)
- Tat’yana G. Khonina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Denis S. Tishin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Alexander Yu. Germov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Alexander V. Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Maxim S. Karabanalov
- Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Alexey A. Mysik
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (A.Y.G.); (M.A.U.); (A.S.M.); (A.A.M.)
| | - Ekaterina A. Bogdanova
- Institute of Solid State Chemistry, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia;
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia; (T.G.K.); (A.V.M.); (V.P.K.)
| |
Collapse
|
8
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
9
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
11
|
Hong JY, Lim YG, Song YJ, Park K. Tumor microenvironment-responsive histidine modified-hyaluronic acid-based MnO 2 as in vivo MRI contrast agent. Int J Biol Macromol 2023; 226:121-131. [PMID: 36493921 DOI: 10.1016/j.ijbiomac.2022.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME)-responsive manganese dioxide (MnO2) nanoparticles as a good T1 contrast agent could reduce unwanted toxicity and improve the accuracy of cancer detection. Despite these distinct advantages of MnO2-based nanoparticles, their synthesis involves multi-step processes with relatively long synthesis times. In this study, we synthesized histidine-modified hyaluronic acid (HA-His), and the prepared HA-His conjugates quickly reduce permanganate to MnO2, leading to facile production of HA-His/MnO2 nanoparticles with good water-dispersibility and stability under biological conditions. The synthesized HA-His/MnO2 nanoparticles readily responded to the TME (low pH, high H2O2, and high glutathione), and they were internalized into SCC7 cells with high CD44 expression. Moreover, the systemically administered HA-His/MnO2 nanoparticles with biocompatibility were specifically accumulated in tumor tissues, thereby efficiently enhancing T1 contrast in MRI. Therefore, the HA-His/MnO2 nanoparticles synthesized herein can be used as a promising T1 contrast agent for tumor MR imaging.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Yong Geun Lim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Yeong Jun Song
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
12
|
Kumar M, Jha A, Mishra B. Polymeric nanosystems for cancer theranostics. POLYMERIC NANOSYSTEMS 2023:657-697. [DOI: 10.1016/b978-0-323-85656-0.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1793. [PMID: 35396932 PMCID: PMC9373845 DOI: 10.1002/wnan.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite current advances in new approaches for cancer detection and treatment, pancreatic cancer remains one of the most lethal cancer types. Difficult to detect early, aggressive tumor biology, and resistance to chemotherapy, radiotherapy, and immunotherapy result in a poor prognosis of pancreatic cancer patients with a 5-year survival of 10%. With advances in cancer nanotechnology, new imaging and drug delivery approaches that allow the development of multifunctional nanotheranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. In this review, we will introduce potential applications of innovative theranostic strategies to address major challenges in the treatment of pancreatic cancer at different disease stages. Several important issues concerning targeted delivery of theranostic nanoparticles and tumor stromal barriers are discussed. We then focus on the development of a magnetic iron oxide nanoparticle platform for multimodal therapy of pancreatic cancer, including MRI monitoring targeted nanoparticle/drug delivery, therapeutic response, and tumor re-staging, activation of tumor immune response by immunoactivating nanoparticle and magnetic hyperthermia therapy, and intraoperative interventions for improving the outcome of targeted therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Ovejero-Paredes K, Díaz-García D, Mena-Palomo I, Marciello M, Lozano-Chamizo L, Morato YL, Prashar S, Gómez-Ruiz S, Filice M. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. BIOMATERIALS ADVANCES 2022; 137:212823. [PMID: 35929238 DOI: 10.1016/j.bioadv.2022.212823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
17
|
Lin W, Yan J, Pan G, Zhang J, Wen L, Huang Q, Li T, Zhao Q, Lin X, Yi G. Diselenide‐bearing
crosslinked
micelles‐reduced
and stabilized gold nanoparticles
in‐situ. J Appl Polym Sci 2022. [DOI: 10.1002/app.51775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjing Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jingye Yan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Liyang Wen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Quanfeng Huang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Tang Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Qianyi Zhao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
18
|
Tian H, Lin L, Ba Z, Xue F, Li Y, Zeng W. Nanotechnology combining photoacoustic kinetics and chemical kinetics for thrombosis diagnosis and treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. NANOMATERIALS 2021; 11:nano11113013. [PMID: 34835777 PMCID: PMC8622891 DOI: 10.3390/nano11113013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
Iron oxide nanoparticle-based hyperthermia is an emerging field in cancer treatment. The hyperthermia is primarily achieved by two differing methods: magnetic fluid hyperthermia and photothermal therapy. In magnetic fluid hyperthermia, the iron oxide nanoparticles are heated by an alternating magnetic field through Brownian and Néel relaxation. In photothermal therapy, the hyperthermia is mainly generated by absorption of light, thereby converting electromagnetic waves into thermal energy. By use of iron oxide nanoparticles, this effect can be enhanced. Both methods are promising tools in cancer treatment and are, therefore, also explored for gastrointestinal malignancies. Here, we provide an extensive literature research on both therapy options for the most common gastrointestinal malignancies (esophageal, gastric and colorectal cancer, colorectal liver metastases, hepatocellular carcinoma, cholangiocellular carcinoma and pancreatic cancer). As many of these rank in the top ten of cancer-related deaths, novel treatment strategies are urgently needed. This review describes the efforts undertaken in vitro and in vivo.
Collapse
|
20
|
David KI, Ravikumar TS, Sethuraman S, Krishnan UM. Development and evaluation of a multi-functional organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy. Biomed Mater 2021; 16. [PMID: 34298521 DOI: 10.1088/1748-605x/ac177c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
Pancreatic cancer is a highly invasive disease with low survival rates. The high death rates associated with pancreatic cancer are due to multiple factors including late stage diagnosis, multi-drug resistance, invasive nature and restricted access of the therapeutic moiety to the cancer cells due to the stroma. Smart multifunctional nanocarriers that deliver the therapeutic agent in to the cancer tissue as well as enable imaging of the tissue represent an emerging paradigm in cancer therapy. Accurate and reliable detection of cancerous lesions in pancreas is essential for designing appropriate therapeutic strategy to annihilate the highly aggressive pancreatic cancer. A combination of imaging modalities can enhance the reliability of cancer detection. In this context, we report here a hybrid iron oxide-gold nanoparticle with dual contrast enhancing ability for both magnetic resonance imaging (MRI) and micro-computed tomography (micro-CT) that is co-encapsulated with the nucleotide analogue gemcitabine in a chitosan matrix. The theranostic system displayed enhanced cytotoxicity against PanC-1 pancreatic cancer cells when compared to normal cells over 48 h due to differences in cell internalization. The iron oxide-gold hybrid enabled visualization of the theranostic nanoparticle by MRI as well as micro-CT. Further, the magnetocaloric effect of the iron oxide enabled faster release of the chemotherapeutic agent as well as augmented the cytotoxicity by inducing hyperthermia. This system holds promise for further exploration as an integrated diagnostic and therapeutic platform for pancreatic cancer.
Collapse
Affiliation(s)
- Karolyn Infanta David
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - T S Ravikumar
- Sri Venkateswara Institute of Medical Sciences (SVIMS), Tirupati 517507, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
21
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
22
|
Dar MS, Akram KB, Sohail A, Arif F, Zabihi F, Yang S, Munir S, Zhu M, Abid M, Nauman M. Heat induction in two-dimensional graphene-Fe 3O 4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Adv 2021; 11:21702-21715. [PMID: 35478795 PMCID: PMC9034160 DOI: 10.1039/d1ra03428f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0-100% for making two-dimensional graphene-Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values.
Collapse
Affiliation(s)
- M S Dar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
- Centre for Advanced Electronics and Photovoltaic Engineering (CAEPE), International Islamic University Islamabad Pakistan
| | - Khush Bakhat Akram
- School of Applied Sciences & Humanities, National University of Technology (NUTECH) Main IJP Road, Sector I-12 Islamabad Pakistan
| | - Ayesha Sohail
- Department of Mathematics, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Fatima Arif
- Department of Mathematics, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Fatemeh Zabihi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Shamsa Munir
- School of Applied Sciences & Humanities, National University of Technology (NUTECH) Main IJP Road, Sector I-12 Islamabad Pakistan
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - M Abid
- Department of Mechanical Engineering, COMSATS University Islamabad (Wah Campus) G.T. Road Wah Cantt Pakistan
| | - Muhammad Nauman
- Thermodynamics of Quantum Materials at the Microscale Laboratory, Institute of Science and Technology (IST) Austria
| |
Collapse
|
23
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
24
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
25
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
26
|
Jaidev LR, Chede LS, Kandikattu HK. Theranostic Nanoparticles for Pancreatic Cancer Treatment. Endocr Metab Immune Disord Drug Targets 2021; 21:203-214. [PMID: 32416712 DOI: 10.2174/1871530320666200516164911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
Pancreatic cancer is one of the low vascular permeable tumors with a high mortality rate. The five-year survival period is ~5%. The field of drug delivery is at its pace in developing unique drug delivery carriers to treat high mortality rate cancers such as pancreatic cancer. Theranostic nanoparticles are the new novel delivery carriers where the carrier is loaded with both diagnostic and therapeutic agents. The present review discusses various therapeutic and theranostic nanocarriers for pancreatic cancer.
Collapse
Affiliation(s)
- Leela R Jaidev
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Laxmi S Chede
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
27
|
Dhandapani R, Sathya A, Sethuraman S, Subramanian A. Surface modified NIR magnetic nanoprobes for theranostic applications. Expert Opin Drug Deliv 2020; 18:399-408. [PMID: 33217251 DOI: 10.1080/17425247.2021.1853700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: Near-Infrared based imaging modalities integrated with thermotherapy can facilitate detection of cancer at early stages and mediate high-resolution image-guided hyperthermia. In this work, fluorescent iron oxide nanoparticles (FIO) have been developed possessing deep tissue penetrable NIR imaging and site-specific magnetic hyperthermia characteristics for the elimination of cancer cells.Methods: One-pot synthesis of amine-functionalized superparamagnetic iron oxide nanoparticles (HIO) were achieved using ethylenediamine (EDA) facilitated conjugation of indocyanine green (ICG) mediated by electrostatic interactions.Results: EDA acts as a capping and reducing agent to direct the structural growth of hydrophilic Fe3O4 nanocrystals with high saturation magnetization, specific absorption rate, and T2 value of 118 emu/g, 329.8 ± 5.96 W/g, and 40.17 mM-1s-1, respectively. Here, Fe2+/Fe3+ of two was maintained to achieve magnetite nanocrystals contradictory to the gold standard ratio of 0.5 without additives for nucleation and growth. Developed FIO showed excellent cytocompatibility even at higher concentrations and on subjecting to magnetic hyperthermia reduced its survival percentage. FIO biodistribution in mice showed enhanced half-life than free ICG with preferential localization in the brain and liver.Conclusion: Developed FIO using a facile technique is a potential clinical alternative for cellular tracking, imaging, and hyperthermia.
Collapse
Affiliation(s)
- Ramya Dhandapani
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ayyappan Sathya
- Department of Physics, School of Electrical & Electronic Engineering, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
28
|
Zhu Y, Xin N, Qiao Z, Chen S, Zeng L, Zhang Y, Wei D, Sun J, Fan H. Bioactive MOFs Based Theranostic Agent for Highly Effective Combination of Multimodal Imaging and Chemo-Phototherapy. Adv Healthc Mater 2020; 9:e2000205. [PMID: 32548979 DOI: 10.1002/adhm.202000205] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Bioactive metal-organic frameworks (bio-MOFs) built from biofunctional metal ions and linkers show a new strategy to construct multifunctional theranostic platforms. Herein, a bio-MOF is synthetized via the self-assembling of Fe3+ ions and doxorubicin hydrochloride (DOX) molecules. Then, through a stepwise assembly strategy, another bio-MOFs structure consisting of Gd3+ ions and 1,3,5-benzenetricarboxylic acid (H3 BTC) is wrapped on the surfaces of Fe-DOX nanoparticles, followed by adsorbing photosensitizer indocyanine green (ICG). Specifically, the Gd-MOF shell structure can not only act as a contrast agent for magnetic resonance imaging (MRI), but also provides protection for Fe-DOX cores, controlling the release of DOX. The photoacoustic and photothermal imaging (PAI and PTI) methods are successfully introduced to the platform by loading ICG, providing potential applications for multimodal biological imaging. The in vitro and in vivo outcomes indicate that the Fe-DOX@Gd-MOF-ICG nanoplatform exhibits outstanding synergistic antitumor performance via MR/PA/PT imaging guided chemotherapy, photothermal and photodynamic combination therapy. The work may encourage further exploration of bio-MOFs based multifunctional theranostic platforms for multimodal imaging guided compound antitumor therapy, which will open an avenue of MOFs toward biological applications.
Collapse
Affiliation(s)
- Yuda Zhu
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Nini Xin
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Zi Qiao
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Suping Chen
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Lingwan Zeng
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Yusheng Zhang
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Dan Wei
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Jing Sun
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| | - Hongsong Fan
- National Engineering Research Center for BiomaterialsSichuan University Chengdu Sichuan 610064 P. R. China
| |
Collapse
|
29
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
30
|
R S P, Mal A, Valvi SK, Srivastava R, De A, Bandyopadhyaya R. Noninvasive Preclinical Evaluation of Targeted Nanoparticles for the Delivery of Curcumin in Treating Pancreatic Cancer. ACS APPLIED BIO MATERIALS 2020; 3:4643-4654. [DOI: 10.1021/acsabm.0c00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Prabhuraj R S
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arijit Mal
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, and Life Science Department, Homi Bhaba National Institute, Mumbai, India
| | - Snehal K. Valvi
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, and Life Science Department, Homi Bhaba National Institute, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, and Life Science Department, Homi Bhaba National Institute, Mumbai, India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
31
|
Application of BMP-2/FGF-2 gene-activated scaffolds for dental pulp capping. Clin Oral Investig 2020; 24:4427-4437. [PMID: 32415397 DOI: 10.1007/s00784-020-03308-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To evaluate the effect of non-viral gene therapy on human dental pulp stem cells (DPSCs) in an in vitro and an ex vivo model. MATERIALS AND METHODS Nanoplexes comprising polyethyleneimine (PEI) and plasmid DNA (pDNA) encoding for fibroblast growth factor-2 (pFGF-2) and bone morphogenic protein-2 (pBMP-2) were cultured with DPSCs to evaluate cytotoxicity, protein expression, and mineralization activity. Collagen scaffolds loaded with these nanoplexes or mineral trioxide aggregate (MTA) were utilized in an ex vivo tooth culture model to assess pulp response, over a period of 14 days. All nanoplex formulations were characterized for size and zeta potential by measuring dynamic light scattering and electrophoretic mobility, respectively. RESULTS DPSCs treated with the nanoplexes showed increased cell proliferation and enhanced expression of BMP-2 and FGF-2 proteins. Collagen scaffolds containing PEI-pBMP-2 and/or pFGF-2 nanoplexes significantly increased cell proliferation, BMP-2 and FGF-2 expression, and mineralization when compared to MTA. Ex vivo histology showed a well-preserved pulp and healthy tissue in both the MTA and scaffold groups. Connective tissue in contact with the scaffold was dense and homogeneous, with some cells present in contact and within the scaffold. CONCLUSION Transfection of DPSCs with pBMP-2/pFGF-2 nanoplexes resulted in increased expression of BMP-2 and FGF-2, enhanced proliferation, and mineralization properties compared to MTA. These findings were supported by the ex vivo observations. CLINICAL RELEVANCE This biological approach in pulp capping brings new insights into the effective management of engineered pulp tissues, mainly those generated by the transplantation of DPSCs in empty root canals.
Collapse
|
32
|
Ovejero Paredes K, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, Prashar S, Gómez-Ruiz S, Filice M. Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer. Cancers (Basel) 2020; 12:E187. [PMID: 31940937 PMCID: PMC7017138 DOI: 10.3390/cancers12010187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.
Collapse
Affiliation(s)
- Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Victoria García-Almodóvar
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Sanjiv Prashar
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
33
|
Brachi G, Bussolino F, Ciardelli G, Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front Bioeng Biotechnol 2019; 7:307. [PMID: 31824928 PMCID: PMC6880757 DOI: 10.3389/fbioe.2019.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma has the worst outcome among all cancer types, with a 5-year survival rate as low as 10%. The lethal nature of this cancer is a result of its silent onset, resistance to therapies, and rapid spreading. As a result, most patients remain asymptomatic and present at diagnosis with an already infiltrating and incurable disease. The tumor microenvironment, composed of a dense stroma and of disorganized blood vessels, coupled with the dysfunctional signal pathways in tumor cells, creates a set of physical and biological barriers that make this tumor extremely hard-to-treat with traditional chemotherapy. Nanomedicine has great potential in pancreatic adenocarcinoma, because of the ability of nano-formulated drugs to overcome biological barriers and to enhance drug accumulation at the target site. Moreover, monitoring of disease progression can be achieved by combining drug delivery with imaging probes, resulting in early detection of metastatic patterns. This review describes the latest development of theranostic formulations designed to concomitantly treat and image pancreatic cancer, with a specific focus on their interaction with physical and biological barriers.
Collapse
Affiliation(s)
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute -IRCCS-FPO, Candiolo, Italy
| | | | | |
Collapse
|
34
|
Liang P, Wang M, Zhang S, Wang J, Dai C, Quan C. pH-Triggered Conformational Change of Antp-Based Drug Delivery Platform for Tumor Treatment with Combined Photothermal Therapy and Chemotherapy. Adv Healthc Mater 2019; 8:e1900306. [PMID: 31211520 DOI: 10.1002/adhm.201900306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/28/2019] [Indexed: 11/07/2022]
Abstract
Poor cellular uptake and low therapeutic efficacy of small-molecule antitumor drugs limit the application of drug delivery systems (DDSs) in cancer therapy. A conformational change of the Antp mimetic peptide (AMP) in tumor microenvironments can greatly increase the cellular uptake as well as control drug release from a DDS. In this study, AMP-based nanoparticles (AMP-NPs) conjugated with tyroserleutide (YSL), an immunologically therapeutic tripeptide, are designed to encapsulate doxorubicin (Dox) and indocyanine green (ICG) to improve cellular uptake and cancer therapeutic efficacy by combining chemotherapy with photothermal therapy. In vitro studies verify that AMP-NPs can control the release of Dox and YSL at different pH values. Cell experiments show that AMP-NPs can promote the cellular uptake of Dox, and YSL can promote hepatocarcinoma cell (H22) apoptosis through downregulating Bcl-2 and cyclin D1 expression. In a mouse xenograft model using H22 cells, tumors are ablated when Dox- and ICG-loaded AMP-NPs are injected with the combination of hyperthermia effect induced by near-infrared (NIR) laser irradiation and chemotherapy from Dox and YSL. The pH-, photothermal-, and glutathione-responsive AMP-NPs with a conformational transition strategy can be utilized to synergistically enhance the cancer therapeutic efficacy with few side effects upon NIR laser irradiation.
Collapse
Affiliation(s)
- Peiqing Liang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Mohong Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shixiong Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jiayu Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Chunlei Dai
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Changyun Quan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat‐sen University)School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
35
|
Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids – cancer theranostics for tiny tumor clusters. J Control Release 2019; 299:21-30. [DOI: 10.1016/j.jconrel.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
36
|
Vilas-Boas V, Espiña B, Kolen’ko YV, Bañobre-López M, Brito M, Martins V, Duarte JA, Petrovykh DY, Freitas P, Carvalho F. Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. ACS OMEGA 2019; 4:1931-1940. [DOI: 10.1021/acsomega.8b02199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Yury V. Kolen’ko
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Marina Brito
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Verónica Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, Rua Dr. Plácido da Costa 91, 4200-450 Porto, Portugal
| | - Dmitri Y. Petrovykh
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
37
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
38
|
Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y, Wang Z. Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. Int J Nanomedicine 2018; 13:6809-6827. [PMID: 30425490 PMCID: PMC6205542 DOI: 10.2147/ijn.s177993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Early diagnosis and therapy are critical to improve the prognosis of patients with pancreatic cancer. However, conventional imaging does not significantly increase the capability to detect early stage disease. In this study, we developed a multifunctional theranostic nanoplatform for accurate diagnosis and effective treatment of pancreatic cancer. Methods We developed a theranostic nanoparticle (NP) based on gold nanocages (AuNCs) modified with hyaluronic acid (HA) and conjugated with anti-Glypican-1 (anti-GPC1) antibody, oridonin (ORI), gadolinium (Gd), and Cy7 dye. We assessed the characteristics of GPC1-Gd-ORI@HAuNCs-Cy7 NPs (ORI-GPC1-NPs) including morphology, hydrodynamic size, stability, and surface chemicals. We measured the drug loading and release efficiency in vitro. Near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) and therapeutic capabilities were tested in vitro and in vivo. Results ORI-GPC1-NPs demonstrated long-time stability and fluorescent/MRI properties. Bio-transmission electron microscopy (bio-TEM) imaging showed that ORI-GPC1-NPs were endocytosed into PANC-1 and BXPC-3 (overexpression GPC1) but not in 293 T cells (GPC1- negative). Compared with ORI and ORI-NPs, ORI-GPC1-NPs significantly inhibited the viability and enhanced the apoptosis of pancreatic cancer cells in vitro. Moreover, blood tests suggested that ORI-GPC1-NPs showed negligible toxicity. In vivo studies showed that ORI-GPC1-NPs enabled multimodal imaging and targeted therapy in pancreatic tumor xenografted mice. Conclusion ORI-GPC1-NP is a promising theranostic platform for the simultaneous diagnosis and effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenli Qiu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Huifeng Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Jingjing Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dandan Ye
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| |
Collapse
|
39
|
Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. Int J Pharm 2018; 550:79-88. [PMID: 30138704 DOI: 10.1016/j.ijpharm.2018.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/28/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
Abstract
Gemcitabine is widely used for anticancer therapy. However, its short blood circulation time and poor stability greatly impair its application. To solve this problem, we prepared a poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate (l-Gem) with a 14.3 wt% drug-loading content. l-Gem showed concentration- and time-dependent cytotoxicity towards 4T1, LLC, MIA PaCa-2 and A2780 in vitro. Pharmacokinetic and biodistribution studies indicated that l-Gem had remarkably enhanced blood stability, prolonged blood circulation time and greatly improved selective tumor distribution compared with free gemcitabine. The area under the concentration-time curve from zero to infinity [AUC(0-∞)] of l-Gem in plasma was 43-fold higher than that of free gemcitabine. The AUC(0-∞) of the inactive metabolite, 2'-deoxy-2',2'-difluorouridine in the l-Gem group was ∼20% of that observed in the free gemcitabine group. The drug tumor accumulation ratio in the l-Gem group relative to the free gemcitabine group was 9.9 at 36 h, while the tumor AUC ratio was 15.8. Testing on Balb/C mice bearing the 4T1 tumor further demonstrated that l-Gem had significantly higher anticancer efficacy than free gemcitabine in vivo. These findings indicated that l-Gem has great potential for cancer treatment.
Collapse
|
40
|
Newman MR, Russell SG, Benoit DSW. Controlled organocatalyzed d,l-lactide ring-opening polymerizations: synthesis of low molecular weight oligomers. RSC Adv 2018; 8:28891-28894. [PMID: 35539697 PMCID: PMC9084349 DOI: 10.1039/c8ra05306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
A systematic approach to the synthesis of organocatalyzed oligo(d,l-lactide) demonstrates that choice of initiator, catalytic ratio, and reaction time yields well-controlled oligomers. Ring-opening polymerization of d,l-lactide with the initiator α-methyl propargyl alcohol, a secondary alcohol, used in excess of 4-dimethylaminopyridine catalyst mitigates cyclicization, transesterification, and catalyst-initiated side reactions. This approach enables the design of uniform lactide oligomers for controlled release applications, such as delivery systems for drugs, prodrugs, and molecular sensors.
Collapse
Affiliation(s)
- M R Newman
- Department of Biomedical Engineering, University of Rochester Rochester NY 14627 USA
- Center for Musculoskeletal Research, University of Rochester Medical Center Rochester NY 14642 USA
| | - S G Russell
- Department of Chemical Engineering, University of Rochester Rochester NY 14627 USA
| | - D S W Benoit
- Department of Biomedical Engineering, University of Rochester Rochester NY 14627 USA
- Center for Musculoskeletal Research, University of Rochester Medical Center Rochester NY 14642 USA
- Department of Chemical Engineering, University of Rochester Rochester NY 14627 USA
| |
Collapse
|
41
|
Kumar R, Chauhan A, Jha SK, Kuanr BK. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. J Mater Chem B 2018; 6:5385-5399. [PMID: 32254502 DOI: 10.1039/c8tb01365a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have produced an innovative, theranostic hybrid nanocomposite of graphene oxide and iron oxide (GO-Fe3O4) for radio-frequency hyperthermia therapy. A new electrochemical synthesis route for the GO-Fe3O4 nanocomposite is employed. Superparamagnetic nanoparticles used for magnetic hyperthermia for biomedical application face longstanding obstacles, including the large number of nanoparticles required to achieve the desired therapeutic temperature, poor colloidal stability in aqueous suspension or physiological media, poor biocompatibility and, most importantly, low specific absorption rate (SAR). To limit the dosage of nanoparticles for therapeutic use, efforts are being made to increase the heating efficiency of nanoparticles. We have introduced an alternative way to increase the SAR value by improving the colloidal stability of magnetic nanoparticles. It is necessary to immobilize these nanoparticles on a support to prevent their agglomeration and precipitation in aqueous suspension. To address these issues, we report a reproducible electrochemical synthesis route for the GO-Fe3O4 nanocomposite. Our nanocomposite demonstrated good colloidal stability and low cytotoxicity in vitro. Due to its good colloidal stability, the nanocomposite had a high SAR of 543 W g-1 and corresponding intrinsic loss power of 5.98 nH m2 kg-1, which is 46% better than the best commercial equivalents. In vitro cytotoxicity studies demonstrated almost 70% cell viability at 200 μg mL-1 GO-Fe3O4 nanocomposite, a comparable concentration for clinical use according to FDA standards. We also showed the therapeutic potential of the nanocomposite using magnetic hyperthermia. We observed cancer cell (A549 human lung epithelial adenocarcinoma) ablation at 41, 42 and 43 °C for 30, 45, and 60 min. A maximum cancer cell death rate of 80.5% was observed at 43 °C for 60 min under alternating magnetic field exposure. Thus, the nanocomposites could be used in the efficient treatment of cancer.
Collapse
Affiliation(s)
- Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | |
Collapse
|
42
|
Gan S, Lin Y, Feng Y, Shui L, Li H, Zhou G. Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics. Int J Nanomedicine 2018; 13:4263-4281. [PMID: 30087559 PMCID: PMC6061201 DOI: 10.2147/ijn.s164817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer has become one of the primary causes of death worldwide. Current cancer-therapy schemes are progressing relatively slowly in terms of reducing mortality, prolonging survival, time and enhancing cure rate, owing to the enormous obstacles of cancer pathophysiology. Therefore, specific diagnosis and therapy for malignant tumors are becoming more and more crucial and urgent, especially for early cancer diagnosis and cancer-targeted therapy. Derived theranostics that combine several functions into one "package" could further overcome undesirable differences in biodistribution and selectivity between distinct imaging and therapeutic agents. In this article, we discuss a chief clinical diagnosis tool - MRI - focusing on recent progress in magnetic agents or systems in multifunctional polymer nanoassemblies for combing cancer theranostics. We describe abundant polymeric MRI-contrast agents integrated with chemotherapy, gene therapy, thermotherapy, and radiotherapy, as well as other developing directions.
Collapse
Affiliation(s)
- Shenglong Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Yisheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yancong Feng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, ;
| |
Collapse
|
43
|
Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018; 7:antibiotics7020046. [PMID: 29890753 PMCID: PMC6023022 DOI: 10.3390/antibiotics7020046] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Ana Paula Miranda Vieira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Taynara Maria Toito de Lima
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
44
|
Azcona P, López-Corral I, Lassalle V. Fabrication of folic acid magnetic nanotheranostics: An insight on the formation mechanism, physicochemical properties and stability in simulated physiological media. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Liu X, Xie Y, Liu R, Zhang R, Yan H, Yang X, Huang Q, He W, Yu B, Feng Q, Mi S, Cai Q. A cyclo-trimer of acetonitrile combining fluorescent property with ability to induce osteogenesis and its potential as multifunctional biomaterial. Acta Biomater 2018; 65:163-173. [PMID: 29061377 DOI: 10.1016/j.actbio.2017.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022]
Abstract
A biomaterial combining fluorescent property with ability to induce osteogenesis can serve as an ideal multifunctional scaffold in bone tissue engineering. However, the frequently used fluorescent agents can only serve as imaging probes. The polymer or oligomer with a conjugated system containing nitrogen atoms will fulfill these criteria. In this study, a cyclo-trimer of acetonitrile is synthesized using a facile method, which is proved to be 4-amino-2,6-dimethylpyrimidine. The cyclo-trimer of acetonitrile demonstrates strong intrinsic photoluminescence and has the potential for in vivo imaging. The cyclo-trimer of acetonitrile shows no toxicity both in vitro and in vivo. Moreover, the cyclo-trimer of acetonitrile significantly promotes the osteogenesis of SaOS-2 cells by improving alkaline phosphatase activity, collagen type I and osteocalcin expression, as well as expressions of osteoblastic genes, and enhances the matrix mineralization of rBMSCs. Thus, the cyclo-trimer of acetonitrile synthesized in present study illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and may offer great potential in biomedical applications where bioimaging and osteogenesis are both required. STATEMENT OF SIGNIFICANCE A conjugated cyclo-trimer of acetonitrile combining intrinsic fluorescent property with ability to induce osteogenesis was reported. Different from the traditional fluorescent dye or quantum dots, which are just "imaging agents", the cyclo-trimer of acetonitrile can serve as a multifunctional biomaterial and offer great potential in biomedical applications where bioimaging and osteogenesis are both required. To our best knowledge, the fluorescent property, especially fluorescent property in vivo and the ability of this molecule to induce osteogenesis have not been reported before. Our work illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and will highlight the importance of multifunctional biomaterial in biomedical applications.
Collapse
|
46
|
Gao L, Yu J, Liu Y, Zhou J, Sun L, Wang J, Zhu J, Peng H, Lu W, Yu L, Yan Z, Wang Y. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T 1-T 2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics. Theranostics 2018; 8:92-108. [PMID: 29290795 PMCID: PMC5743462 DOI: 10.7150/thno.21074] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022] Open
Abstract
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor.
Collapse
|
47
|
Li Z, Zhang J, Guo X, Guo X, Zhang Z. Multi-functional magnetic nanoparticles as an effective drug carrier for the controlled anti-tumor treatment. J Biomater Appl 2017; 32:967-976. [PMID: 29249194 DOI: 10.1177/0885328217748023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because of the complications and mutability of cancers, combination of chemotherapy and other therapy with multi-mechanisms would be a bright future for the treatment of cancer. Thus, development of multi-functional tumor-targeted drug delivery systems with two or more than two functions should be of great significance. In the study, the Fe3O4@C nanoparticles linked with thermoresponsive copolymer (MTC-NPs) were synthesized, after that, the magnetic properties and photothermal effects of MTC NPs were evaluated. Compared to the pure water, MTC-NPs absorbed more energy and transform it into heat under the 808 nm laser irradiation, and the temperature could increase over 60℃. In addition, the grafted copolymer with coil-to-globule transition acts as a gatekeeper for the temperature-controlled release of mitoxantrone molecules. The super paramagnetic behavior of MTC-NPs certified by the hysteresis loop gives a negligible coercivity at room temperature. Both in vitro and in vivo studies confirmed that the synergistic combination of magnetic targeting, drug controlled release, and thermochemotherapy improve the anti-tumor efficacy with lower side effects. This nanoparticle is a great potential drug carrier in anti-tumor drugs, which can improve the effect of hyperthermia, increase target distribution in tumor, and enhance curative effect for tumor while reducing normal tissue toxicity.
Collapse
Affiliation(s)
- Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaonan Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinhong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Lin W, Yao N, Qian L, Zhang X, Chen Q, Wang J, Zhang L. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics. Acta Biomater 2017; 58:455-465. [PMID: 28583900 DOI: 10.1016/j.actbio.2017.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
The development of an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging was reported. β-cyclodextrin-{poly(lactide)-poly(2-(dimethylamino) ethyl methacrylate)-poly[oligo(2-ethyl-2-oxazoline)methacrylate]}21 [β-CD-(PLA-PDMAEMA-PEtOxMA)21] unimolecular micelles served as a template for the in situ formation of gold nanoparticles (GNPs) and the subsequent encapsulation of doxorubicin (DOX). The formation of unimolecular micelles, microstructures and the distributions of GNPs and DOX were investigated through the combination of experiments and dissipative particle dynamics (DPD) simulations. β-CD-(PLA-PDMAEMA-PEtOxMA)21 formed spherical unimolecular micelles in aqueous solution within a certain range of polymer concentrations. GNPs preferentially distributed in the PDMAEMA area. The maximum wavelength (λmax) and the size of GNPs increased with increasing concentration of HAuCl4. DOX preferentially distributed in the PDMAEMA mesosphere, but penetrated the inner PLA core with increasing DOX concentration. DOX-loaded micelles with 41-61% entrapment efficiency showed fast release (88% after 102h) under acidic tumor conditions. Both in vitro and in vivo experiments revealed superior anticancer efficacy and effective CT imaging properties for β-CD-(PLA-PDMAEMA-PEtOxMA)21/Au/DOX. We conclude that the reported unimolecular micelles represent a class of versatile smart nanocarriers for theranostic application. STATEMENT OF SIGNIFICANCE Developing polymeric nanoplatforms as integrated theranostic vehicles for improving cancer diagnostics and therapy is an emerging field of much importance. This article aims to develop an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging. Specific emphases is on structure-properties relationship. There is a sea of literature on polymeric drug nanocarriers, and a couple of polymer-stabilized gold nanoparticles (GNPs) systems for cancer diagnosis are also known. However, to our knowledge, there has been no report on polymeric unimolecular micelles capable of dual loading of GNPs without external reducing agents and anticancer drugs for cancer diagnosis and treatment. To this end, the target of the current work was to develop an in situ formed nanocarrier, which actively dual wrapped CT contrast agent GNPs and hydrophobic anticancer drug doxorubicin (DOX), achieving high CT imaging and antitumor efficacy under in vitro and in vivo acid tumor condition. Meanwhile, by taking advantage of dissipative particle dynamics (DPD) simulation, we further obtained the formation process and mechanism of unimolecular micelles, and detailed distributions and microstructures of GNPs and DOX on unimolecular micelles. Taken together, our results here provide insight and guidance for the design of more effective nanocarriers for cancer theranostic application.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Long Qian
- Department of Biology and Center for Genomics and Systems Biology, New York University, NY 10003, USA
| | - Xiaofang Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Quan Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jufang Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
49
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|