1
|
Al-Samaray ME, Fatalla AA. Biological, Biomechanical, and Histopathological Evaluation of Polyetherketoneketone Bioactive Composite as Implant Material. J Biomed Mater Res B Appl Biomater 2025; 113:e35535. [PMID: 39853931 DOI: 10.1002/jbm.b.35535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO3/TeO2 nanocomposite, comparing it to PEKK/15 wt.% CaSiO3 and PEKK groups. The in vitro study, involving 90 discs (n = 30), assessed the cytotoxicity of all groups after 24, 72, and 168 h. The in vivo animal study, using cylinder-type implants (n = 30), evaluated osseointegration through biomechanical push-out tests, descriptive histopathological examinations of decalcified sections stained with hematoxylin and eosin, and histomorphometric analysis of new bone formation area after 2- and 6-week healing intervals. The cytocompatibility of PEKK/15 wt.% CaSiO3/1 wt.% TeO2 composite confirmed its acceptance as a biomedical material. Additionally, in vivo study results showed that the PEKK/15 wt.% CaSiO3/1 wt.% TeO2 had the highest shear strength value and the highest new bone formation area compared to other experimental groups. The multimodal concept of adding CaSiO3 micro fillers and TeO2 nanofillers to PEKK produces a cytocompatible composite that enhances osseointegration and new bone formation in a rabbit's femur after 2- and 6-week healing intervals.
Collapse
Affiliation(s)
- Manar E Al-Samaray
- Department of Prosthodontics, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Abdalbseet A Fatalla
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Ma H, Xie B, Chen H, Hao L, Jia H, Yu D, Zhou Y, Song P, Li Y, Liu J, Yu K, Zhao Y, Zhang Y. Structurally sophisticated 3D-printed PCL-fibrin hydrogel meniscal scaffold promotes in situ regeneration in the rabbit knee meniscus. Mater Today Bio 2025; 30:101391. [PMID: 39790487 PMCID: PMC11715118 DOI: 10.1016/j.mtbio.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option. In this study, we established the size of a standardized meniscal scaffold using knee Magnetic Resonance Imaging (MRI) data and created a precise Polycaprolactone (PCL) scaffold utilizing 3-Dimensional (3D) printing technology, which was then combined with Fibrin (Fib) hydrogel to form a PCL-Fib scaffold. The PCL scaffold offers superior biomechanical properties, while the Fib hydrogel creates a conducive microenvironment for cell growth, supporting chondrocyte proliferation and extracellular matrix (ECM) production. Physical and chemical characterization, biocompatibility testing, and in vivo animal experiments revealed the excellent biomechanical properties and biocompatibility of the scaffold, which enhanced in situ meniscal regeneration and reduced osteoarthritis progression. In conclusion, the integration of 3D printing technology and the Fib hydrogel provided a supportive microenvironment for chondrocyte proliferation and ECM secretion, facilitating the in situ regeneration and repair of the meniscal defect. This innovative approach presents a promising avenue for meniscal injury treatment and advances the clinical utilization of artificial meniscal grafts.
Collapse
Affiliation(s)
- Hebin Ma
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Bowen Xie
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Hongguang Chen
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Lifang Hao
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Haigang Jia
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Dengjie Yu
- Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Yuanbo Zhou
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Puzhen Song
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Yajing Li
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, PR China
| | - Jing Liu
- Department of Radiological, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Kaitao Yu
- Department of Stomatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| | - Yantao Zhao
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Yadong Zhang
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Department of Orthopedics, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| |
Collapse
|
3
|
Min KH, Kim DH, Kim KH, Seo JH, Pack SP. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics (Basel) 2024; 9:511. [PMID: 39329533 PMCID: PMC11430767 DOI: 10.3390/biomimetics9090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Joo-Hyung Seo
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| |
Collapse
|
4
|
Yu H, Liu Z, Chen L, He X, Weng Y, Li W, Zheng X, Pan Q, Zhang R, Zhang X, Wu W. Transforming Natural Eggshell and Diatomite into Bioactive Calcium Silicate Material for Bone Regeneration. ACS OMEGA 2024; 9:19440-19450. [PMID: 38708237 PMCID: PMC11064024 DOI: 10.1021/acsomega.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Calcium silicate (CS), a new and important bioceramic bone graft material, is prepared by using eggshells, which have a porous structure and are rich in calcium ions. Furthermore, the preparation of new CS materials using eggshells and diatomaceous earth minimizes their negative impact on the environment. In this study, we prepared CS materials using a high-temperature calcination method. The composition of the material was demonstrated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. Scanning electron microscopy (SEM) analysis confirmed the porous structure of the CS material. We also introduced ZnO to prepare ZnO-CS with antibacterial properties and showed that ZnO-CS exhibits excellent antibacterial effects through in vitro antibacterial experiments. Subsequent in vitro mineralization experiments demonstrated that ZnO-CS promoted the formation of a hydroxyapatite layer. Furthermore, in vitro cytotoxicity experiments demonstrated that ZnO-CS had very good biosafety and promoted cell proliferation. These findings were confirmed through subsequent cell proliferation experiments. Our results indicate that the novel ZnO-CS is a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Haiming Yu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhihua Liu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lingying Chen
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoyu He
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yiyong Weng
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Weizhe Li
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaozhi Zheng
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Qunlong Pan
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Rongmou Zhang
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoyan Zhang
- Key
Laboratory of Chemical Materials and Green Nanotechnology, College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Wenhua Wu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| |
Collapse
|
5
|
Liu B, Hu C, Huang X, Qin K, Wang L, Wang Z, Liang J, Xie F, Fan Z. 3D printing nacre powder/sodium alginate scaffold loaded with PRF promotes bone tissue repair and regeneration. Biomater Sci 2024; 12:2418-2433. [PMID: 38511973 DOI: 10.1039/d3bm01936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bone defects are a common complication of bone diseases, which often affect the quality of life and mental health of patients. The use of biomimetic bone scaffolds loaded with bioactive substances has become a focal point in the research on bone defect repair. In this study, composite scaffolds resembling bone tissue were created using nacre powder (NP) and sodium alginate (SA) through 3D printing. These scaffolds exhibit several physiological structural and mechanical characteristics of bone tissue, such as suitable porosity, an appropriate pore size, applicable degradation performance and satisfying the mechanical requirements of cancellous bone, etc. Then, platelet-rich fibrin (PRF), containing a mass of growth factors, was loaded on the NP/SA scaffolds. This was aimed to fully maximize the synergistic effect with NP, thereby accelerating bone tissue regeneration. Overall, this study marks the first instance of preparing a bionic bone structure scaffold containing NP by 3D printing technology, which is combined with PRF to further accelerate bone regeneration. These findings offer a new treatment strategy for bone tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Lei Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fuqiang Xie
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
- Department of Oral and Maxillofacial Surgery, 2nd Hospital of Lanzhou University, Lanzhou 730030, P. R. China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
Wei Y, Wang Z, Lei L, Han J, Zhong S, Yang X, Gou Z, Chen L. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation. J Orthop Translat 2024; 45:88-99. [PMID: 38516038 PMCID: PMC10955556 DOI: 10.1016/j.jot.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alveolar bone destruction due to periodontal disease often requires a bone graft substitute to reconstruct the anatomical structures and biological functions of the bone tissue. Despite significant advances in the development of foreign ion-doped nonstoichiometric wollastonite bioceramics (CaSiO3, nCSi) for alveolar bone regeneration over the past decade, the in vivo biosafety and osteogenesis of nCSi scaffolds remain uncertain. In this study, we developed a customized porous nCSi scaffold to investigate the in vivo biocompatibility and osteogenic properties of nCSi bioceramics. Methods Six percent Mg-doped nCSi bioceramic scaffolds were fabricated by digital light processing (DLP), and the scaffold morphology, pore architecture, compressive strength, in vitro biodegradation, and apatite-forming ability of the bioceramic scaffolds were investigated systematically. Subsequently, an alveolar bone defect rabbit model was used to evaluate the biocompatibility and osteogenic efficacy of the nCSi bioceramics. Animal weight, hematological test, blood biochemical test, wet weight of the main organs, and pathological examination of the main organs were conducted. Micro-CT and histological staining were performed to analyze the osteogenic potential of the personalized bioceramic scaffolds. Results The nCSi scaffolds exhibited appreciable initial compressive strength (>30 MPa) and mild mechanical decay over time during in vitro biodissolution. In addition, the scaffolds induced apatite remineralization in SBF. Bioceramic scaffolds have been proven to have good biocompatibility in vivo after implantation into the alveolar bone defect of rabbits. No significant effects on the hematological indices, blood biochemical parameters, organ wet weight, or organ histopathology were detected from 3 to 180 days postoperatively. The porous scaffolds exhibited strong bone regeneration capability in the alveolar bone defect model of rabbits. Micro-CT and histological examination showed effective maintenance of bone morphology in the bioceramic scaffold group; however, depressed bone tissue was observed in the control group. Conclusions Our results suggest that personalized nCSi bioceramic scaffolds can be fabricated using the DLP technique. These newly developed strong bioceramic scaffolds exhibit good biocompatibility and osteogenic capability in vivo and have excellent potential as next-generation oral implants. The translational potential of this article Tissue-engineered strategies for alveolar bone repair require a bone graft substitute with appreciable biocompatibility and osteogenic capability. This article provides a systematic investigation of the in vivo biosafety and osteogenic property of nCSi to further development of a silicate-based bioceramics materials for clinical applications.
Collapse
Affiliation(s)
- Yingming Wei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Zhongxiu Wang
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Lihong Lei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Jiayin Han
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Shuaiqi Zhong
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lili Chen
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| |
Collapse
|
7
|
Xu X, Wang Q, Xu X, Han Q, Nie X, Ding X, Liu X, Li J, Shi Q, Dong H. Unconventional luminescent CS-PEC-based composite hemostasis sponge with antibacterial activity and visual monitoring for wound healing. Int J Biol Macromol 2024; 261:129735. [PMID: 38281531 DOI: 10.1016/j.ijbiomac.2024.129735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Multifunctional wound dressings are promising medical materials for various applications. Among them, dressings with antimicrobial activity, high biosafety, and real-time monitoring have attracted considerable research interest. Herein, a biodegradable hemostatic sponge comprising a chitosan skeleton and polyelectrolyte-surfactant complex (CS-PEC) was developed as a versatile wound dressing for wound pH monitoring and inhibition of bacterial infection. CS-PEC sponge with high porosity exhibited satisfactory fluid absorption capacity and biocompatibility, along with antibacterial properties against E. coli and S. aureus. In vivo experiments in rat liver trauma model revealed that wounds treated with the CS-PEC sponge recorded less blood loss (97.1 mg) and shorter hemostasis time (27.2 s) than those treated with commercial gelatin sponge (309.1 mg and 163.5 s, respectively). Furthermore, PECs based on unconventional luminescent molecules (L-C16-Hyp) were used as pH fluorescent indicators, which endowed the sponge with fluorescence-responsive behavior to wound pH changes in the range of 5.0-8.5. Visual images can be captured using a smartphone and converted to RGB color mode values for on-site assessment of wound status. This study sheds light on the design and application of unconventional luminescent materials in wound dressing and provides a smart and effective solution for wound management.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qingwu Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaodong Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaojuan Nie
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xu Ding
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xia Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Junqing Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
8
|
Yang H, Zhang F, Sun S, Li H, Li L, Xu H, Wang J, Shao M, Li C, Wang H, Pei J, Niu J, Yuan G, Lyu F. Brushite-coated Mg-Nd-Zn-Zr alloy promotes the osteogenesis of vertebral laminae through IGF2/PI3K/AKT signaling pathway. BIOMATERIALS ADVANCES 2023; 152:213505. [PMID: 37327764 DOI: 10.1016/j.bioadv.2023.213505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable magnesium (Mg) alloys have been extensively investigated in orthopedic implants due to their suitable mechanical strength and high biocompatibility. However, no studies have reported whether Mg alloys can be used to repair lamina defects, and the biological mechanisms regulating osteogenesis are not fully understood. The present study developed a lamina reconstruction device using our patented biodegradable Mg-Nd-Zn-Zr alloy (JDBM), and brushite (CaHPO4·2H2O, Dicalcium phosphate dihydrate, DCPD) coating was developed on the implant. Through in vitro and in vivo experiments, we evaluated the degradation behavior and biocompatibility of DCPD-JDBM. In addition, we explored the potential molecular mechanisms by which it regulates osteogenesis. In vitro, ion release and cytotoxicity tests revealed that DCPD-JDBM had better corrosion resistance and biocompatibility. We found that DCPD-JDBM extracts could promote MC3T3-E1 osteogenic differentiation via the IGF2/PI3K/AKT pathway. The lamina reconstruction device was implanted on a rat lumbar lamina defect model. Radiographic and histological analysis showed that DCPD-JDBM accelerated the repair of rat lamina defects and exhibited lower degradation rate compared to uncoated JDBM. Immunohistochemical and qRT-PCR results showed that DCPD-JDBM promoted osteogenesis in rat laminae via IGF2/PI3K/AKT pathway. This study shows that DCPD-JDBM is a promising biodegradable Mg-based material with great potential for clinical applications.
Collapse
Affiliation(s)
- Haiyuan Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linli Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China; Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zamuner A, Zeni E, Elsayed H, Di Foggia M, Taddei P, Pasquato A, Di Silvio L, Bernardo E, Brun P, Dettin M. Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies. Biomimetics (Basel) 2023; 8:biomimetics8020185. [PMID: 37218771 DOI: 10.3390/biomimetics8020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Hardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, a complex solid solution (Ca1.4Sr0.6Zn0.85Mg0.15Si2O7) that has superior biocompatibility and bioactivity properties compared to pure hardystonite (Ca2ZnSi2O7) can be obtained. Proteolytic-resistant adhesive peptide mapped on vitronectin (D2HVP), was selectively grafted to Sr/Mg-doped HT foams using two different strategies. Unfortunately, the first method (via protected peptide) was unsuitable for acid-sensitive materials such as Sr/Mg-doped HT, resulting in the release of cytotoxic levels of Zinc over time, with consequent negative cellular response. To overcome this unexpected result, a novel functionalization strategy requiring aqueous solution and mild conditions was designed. Sr/Mg-doped HT functionalized with this second strategy (via aldehyde peptide) showed a dramatic increase in human osteoblast proliferation at 6 days compared to only silanized or non-functionalized samples. Furthermore, we demonstrated that the functionalization treatment does not induce any cytotoxicity. Functionalized foams enhanced mRNA-specific transcript levels coding IBSP, VTN, RUNX2, and SPP1 at 2 days post-seeding. In conclusion, the second functionalization strategy proved to be appropriate for this specific biomaterial and was effective at enhancing the material's bioactivity.
Collapse
Affiliation(s)
- Annj Zamuner
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - Elena Zeni
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences King's College London, London SE1 9RT, UK
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
10
|
Xue Y, Chen C, Tan R, Zhang J, Fang Q, Jin R, Mi X, Sun D, Xue Y, Wang Y, Xiong R, Lu H, Tan W. Artificial Intelligence-Assisted Bioinformatics, Microneedle, and Diabetic Wound Healing: A "New Deal" of an Old Drug. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37396-37409. [PMID: 35913266 DOI: 10.1021/acsami.2c08994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic wounds severely influence life, facing grand challenges in clinical treatments. The demand for better treatment is growing dramatically. Diabetic wound healing is challenging because of inflammation, angiogenesis disruptions, and tissue remodeling. Based on sequencing results of diabetic patients' skins and artificial intelligence (AI)-assisted bioinformatics, we excavate a potential therapeutic agent Trichostatin A (TSA) and a potential target histone deacetylase 4 (HDAC4) for diabetic wound healing. The molecular docking simulation reveals the favorable interaction between TSA and HDAC4. Taking advantage of the microneedle (MN) minimally invasive way to pierce the skin barrier for drug administration, we develop a swelling modified MN-mediated patch loaded with TSA to reduce the probability of injection-caused iatrogenic secondary damage. The MN-mediated TSA patch has been demonstrated to reduce inflammation, promote tissue regeneration, and inhibit HDAC4, which provides superior results in diabetic wound healing. We envisage that our explored specific drug TSA and the related MN-mediated drug delivery system can provide an innovative approach for diabetic wound treatment with simple, effective, and safe features and find a broad spectrum of applications in related biomedical fields.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| | - Cheng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Rong Tan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingyu Zhang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qin Fang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Jin
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangyu Mi
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Danying Sun
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinan Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Wang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rong Xiong
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| |
Collapse
|
11
|
Dasan A, Kraxner J, Grigolato L, Savio G, Elsayed H, Galusek D, Bernardo E. 3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder. J Funct Biomater 2022; 13:8. [PMID: 35076529 PMCID: PMC8788511 DOI: 10.3390/jfb13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of 'spongy' struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68-84%.
Collapse
Affiliation(s)
- Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Jozef Kraxner
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
| | - Luca Grigolato
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Hamada Elsayed
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Refractories, Ceramics and Building Materials Department, National Research Centre, El Buhouth Str., Cairo 12622, Egypt
| | - Dušan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Enrico Bernardo
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
| |
Collapse
|
12
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
13
|
Zamuner A, Brun P, Ciccimarra R, Ravanetti F, Veschini L, Elsayed H, Sivolella S, Iucci G, Porzionato A, Silvio LD, Cacchioli A, Bernardo E, Dettin M. Biofunctionalization of bioactive ceramic scaffolds to increase the cell response for bone regeneration. Biomed Mater 2021; 16. [PMID: 34271554 DOI: 10.1088/1748-605x/ac1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Biofunctionalization was investigated for polymers and metals considering their scarce integration ability. On the contrary few studies dealt with ceramic biofunctionalization because the bioactive and bioresorbable surfaces of ceramics are able to positively interact with biological environment. In this study the cell-response improvement on biofunctionalized wollastonite and diopside-based scaffolds was demonstrated. The ceramics were first obtained by heat treatment of a silicone embedding reactive oxide fillers and then biofunctionalized with adhesive peptides mapped on vitronectin. The most promisingin vitroresults, in terms of h-osteoblast proliferation and bone-related gene expression, were reached anchoring selectively a peptide stable toward proteolytic degradation induced by serum-enriched medium. Inin vivoassays the anchoring of this protease-stable adhesive peptide was combined with self-assembling peptides, for increasing cell viability and angiogenesis. The results demonstrated external and internal cell colonization of biofunctionalized scaffolds with formation of new blood vessels (neoangiogenesis) and stimulation of ectopic mineralization.
Collapse
Affiliation(s)
- Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, Padova 35127, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Sciences, King's College, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy.,Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt
| | - Stefano Sivolella
- Department of Neurosciences, University of Padova, Via Nicolò Giustiniani, 5, Padova 35128, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Andrea Porzionato
- Department of Neurosciences, University of Padova, Via Nicolò Giustiniani, 5, Padova 35128, Italy
| | - Lucy Di Silvio
- Centre for Oral Clinical and Translational Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Antonio Cacchioli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova 35131, Italy
| |
Collapse
|
14
|
Sugie C, Navrotsky A, Lauterbach S, Kleebe HJ, Mera G. Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding. MATERIALS 2021; 14:ma14154075. [PMID: 34361269 PMCID: PMC8347565 DOI: 10.3390/ma14154075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.
Collapse
Affiliation(s)
- Casey Sugie
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA;
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616, USA;
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, CA 95616, USA;
- Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, AZ 851281, USA
| | - Stefan Lauterbach
- Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Schnittspahnstraße 9, D-64287 Darmstadt, Germany; (S.L.); (H.-J.K.)
| | - Hans-Joachim Kleebe
- Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Schnittspahnstraße 9, D-64287 Darmstadt, Germany; (S.L.); (H.-J.K.)
| | - Gabriela Mera
- Institut für Materialwissenschaft, Technische Universität Darmstadt, Otto-Berndt-Straße 3, D-64287 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
15
|
Antimicrobial Polymeric Composites with Embedded Nanotextured Magnesium Oxide. Polymers (Basel) 2021; 13:polym13132183. [PMID: 34209326 PMCID: PMC8271688 DOI: 10.3390/polym13132183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotextured magnesium oxide (MgO) can exhibit both antibacterial and tissue regeneration activity, which makes it very useful for implant protection. To successfully combine these two properties, MgO needs to be processed within an appropriate carrier system that can keep MgO surface available for interactions with cells, slow down the conversion of MgO to the less active hydroxide and control MgO solubility. Here we present new composites with nanotextured MgO microrods embedded in different biodegradable polymer matrixes: poly-lactide-co-glycolide (PLGA), poly-lactide (PLA) and polycaprolactone (PCL). Relative to their hydrophilicity, polarity and degradability, the matrices were able to affect and control the structural and functional properties of the resulting composites in different manners. We found PLGA matrix the most effective in performing this task. The application of the nanotextured 1D morphology and the appropriate balancing of MgO/PLGA interphase interactions with optimal polymer degradation kinetics resulted in superior bactericidal activity of the composites against either planktonic E. coli or sessile S. epidermidis, S. aureus (multidrug resistant-MRSA) and three clinical strains isolated from implant-associated infections (S. aureus, E. coli and P. aeruginosa), while ensuring controllable release of magnesium ions and showing no harmful effects on red blood cells.
Collapse
|
16
|
Zhang Z, Jia B, Yang H, Han Y, Wu Q, Dai K, Zheng Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact Mater 2021; 6:3999-4013. [PMID: 33997489 PMCID: PMC8085902 DOI: 10.1016/j.bioactmat.2021.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
A novel biodegradable metal system, ZnLiCa ternary alloys, were systematically investigated both in vitro and in vivo. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. The elongation of Zn0.8Li0.1Ca is 27.82 ± 18.35%, which is the highest among the ZnLiCa alloys. The in vitro degradation rate of Zn0.8Li0.1Ca alloy in simulated body fluid (SBF) showed significant acceleration than that of pure Zn. CCK-8 tests and hemocompatibility tests manifested that ZnLiCa alloys exhibit good biocompatibility. Real-time PCR showed that Zn0.8Li0.1Ca alloy successfully stimulated the expressions of osteogenesis-related genes (ALP, COL-1, OCN and Runx-2), especially the OCN. An in vivo implantation was conducted in the radius of New Zealand rabbits for 24 weeks, aiming to treat the bone defects. The Micro-CT and histological evaluations proved that the regeneration of bone defect was faster within the Zn0.8Li0.1Ca alloy scaffold than the pure Ti scaffold. Zn0.8Li0.1Ca alloy showed great potential to be applied in orthopedics, especially in the load-bearing sites. The first research work of ZnLiCa alloys to be used as biodegradable metals. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. Porous scaffolds made of Zn0.8Li0.1Ca showed superior bone-defect-treating effects to pure Ti scaffolds in New Zealand rabbits.
Collapse
Affiliation(s)
- Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bo Jia
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Corresponding author. Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding author. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. BIOLOGY 2021; 10:biology10040269. [PMID: 33810528 PMCID: PMC8066588 DOI: 10.3390/biology10040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) is important for maintaining cell phenotype and promoting cell proliferation and differentiation. In order to better solve the problem of skin appendage regeneration, a combination of mechanical/enzymatic digestion methods was used to self-extract dermal papilla cells (DPCs), which were seeded on silk fibroin/sodium alginate scaffolds as seed cells to evaluate the possibility of skin regeneration/regeneration of accessory organs. Scanning electron microscopy (SEM) graphs showed that the interconnected pores inside the scaffold had a pore diameter in the range of 153-311 μm and a porosity of 41-82%. Immunofluorescence (IF) staining and cell morphological staining proved that the extracted cells were DPCs. The results of a Cell Counting Kit-8 (CCK-8) and Calcein-AM/PI live-dead cell staining showed that the DPCs grew well in the composite scaffold extract. Normal cell morphology and characteristics of aggregation growth were maintained during the 3-day culture, which showed that the silk fibroin/sodium alginate (SF/SA) composite scaffold had good cell-compatibility. Hematoxylin-eosin (H&E) staining of tissue sections further proved that the cells adhered closely and aggregated to the pore wall of the scaffold, and retained the ability to induce differentiation of hair follicles. All these results indicate that, compared with a pure scaffold, the composite scaffold promotes the adhesion and growth of DPCs. We transplanted the SF/SA scaffolds into the back wounds of SD rats, and evaluated the damage model constructed in vivo. The results showed that the scaffold inoculated with DPCs could accelerate the repair of the skin and promote the regeneration of the hair follicle structure.
Collapse
|
18
|
Zhao Q, Tang H, Ren L, Wei J. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite. Int J Nanomedicine 2020; 15:7279-7295. [PMID: 33061381 PMCID: PMC7535120 DOI: 10.2147/ijn.s255477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose A bioactive and degradable scaffold of ternary composite with good biocompatibility and osteogenesis was developed for bone tissue repair. Materials and Methods Polybutylene succinate (PS:50 wt%), magnesium phosphate (MP:40 wt%) and wheat protein (WP:10 wt%) composite (PMWC) scaffold was fabricated, and the biological performances of PMWC were evaluated both in vitro and vivo in this study. Results PMWC scaffold possessed not only interconnected macropores (400 μm to 600 μm) but also micropores (10 μm ~20 μm) on the walls of macropores. Incorporation of MP into composite improved the apatite mineralization (bioactivity) of PMWC scaffold in simulated body fluid (SBF), and addition of WP into composite further enhanced the degradability of PMWC in PBS compared with the scaffold of PS (50 wt%)/MP (50 wt%) composite (PMC) and PS alone. In addition, the PMWC scaffold containing MP and WP significantly promoted the proliferation and differentiation of mouse pre-osteoblastic cell line (MC3T3-E1) cells. Moreover, the images from synchrotron radiation microcomputed tomography (SRmCT) and histological sections of the in vivo implantation suggested that the PMWC scaffold containing MP and WP prominently improved the new bone formation and ingrowth compared with PMC and PS. Furthermore, the immunohistochemical analysis further confirmed that the PMWC scaffold obviously promoted osteogenesis and vascularization in vivo compared with PMC and PS. Conclusion This study demonstrated that the biocompatible PMWC scaffold with improved bioactivity and degradability significantly promoted the osteogenesis and vascularization in vivo, which would have a great potential to be applied for bone tissue repair.
Collapse
Affiliation(s)
- Qinghui Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Hongming Tang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Lishu Ren
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
19
|
|
20
|
Comprehensive Assessment of Nile Tilapia Skin ( Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Mar Drugs 2020; 18:md18040178. [PMID: 32218368 PMCID: PMC7230254 DOI: 10.3390/md18040178] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Collagen plays an important role in the formation of extracellular matrix (ECM) and development/migration of cells and tissues. Here we report the preparation of collagen and collagen hydrogel from the skin of tilapia and an evaluation of their potential as a wound dressing for the treatment of refractory wounds. The acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted and characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) analysis. Both ASC and PSC belong to type I collagen and have a complete triple helix structure, but PSC shows lower molecular weight and thermal stability, and has the inherent low antigenicity. Therefore, PSC was selected to prepare biomedical hydrogels using its self-aggregating properties. Rheological characterization showed that the mechanical strength of the hydrogels increased as the PSC content increased. Scanning electron microscope (SEM) analysis indicated that hydrogels could form a regular network structure at a suitable PSC content. Cytotoxicity experiments confirmed that hydrogels with different PSC content showed no significant toxicity to fibroblasts. Skin repair experiments and pathological analysis showed that the collagen hydrogels wound dressing could significantly accelerate the healing of deep second-degree burn wounds and the generation of new skin appendages, which can be used for treatment of various refractory wounds.
Collapse
|
21
|
The Capacity of Periodontal Gel to Occupy the Spaces Inside the Periodontal Pockets Using Computational Fluid Dynamic. Dent J (Basel) 2019; 8:dj8010001. [PMID: 31878278 PMCID: PMC7148525 DOI: 10.3390/dj8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/03/2022] Open
Abstract
The aim of the current work is to demonstrate the capacity of a new periodontal gel to occupy the spaces inside the periodontal pockets through Computational Fluid Dynamic (CFD). The test gel consists of two resorbable medical grade polymers (PEO, Poly Ethylen Oxide and HPMC, Hydroxy Propyl Metyl Cellulose), Type I Collagen, SAP (Vitamin C), and PBS (Saline Solution), while the control gel is 14% doxyclin controlled release gel, which is used for treating periodontal pockets with probing ≥5 mm after scaling and root plaining. The study examined the fluid dynamic analysis (Computational Fluid Dynamic—CFD) of two different gels, used in dentistry to treat periodontitis, in relation to both the geometry of the periodontal pocket and the function of two different types of needles that are used to distribute the preparation. The periodontal pocket was determined by reading DICOM images taken from the patient’s CAT scan. The results show that the H42® gel comes out uniformly compared to the other gel. Moreover, it is possible to observe how the rheological properties of the gel allow the fluid to spread evenly within the periodontal pocket in relation to the geometry of the needle. In particular, H42® gel exits in a constant way both from the first and the second exit. In fact, it was observed that by changing the geometry of the needle or the type of periodontal gel, the distribution of the gel inside the pocket was no longer homogeneous. Thus, having the correct rheological properties and correct needle geometries both speeds up the gel and optimizes the pressure distribution. Currently, the literature is still lacking, therefore further studies will be needed to confirm these results.
Collapse
|
22
|
Zhang L, Dong Y, Xue Y, Shi J, Zhang X, Liu Y, Midgley AC, Wang S. Multifunctional Triple-Layered Composite Scaffolds Combining Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng 2019; 5:6691-6702. [PMID: 33423487 DOI: 10.1021/acsbiomaterials.9b01022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There has been substantial progress made in the development of bone regeneration materials, driven by the deficiencies that exist in current clinical products, such as finite sources, donor site complications, and potential for disease transmission. To overcome these shortcomings, multifunctional scaffolds should be developed to integrate the relationship among osteoinduction, osteoconduction, and osseointegration. In this study, we fabricated polycaprolactone/gelatin (PG) nanofiber films by electrospinning, to act as barriers against connective tissue migration into bone defect sites; chitosan/poly (γ-glutamic acid)/hydroxyapatite (CPH) hydrogels were formed by electrostatic interaction and lyophilization, to exert osteoconduction; and platelet-rich fibrin (PRF) was extracted from rat abdominal aorta and combined with composite scaffolds, to promote bone induction through the release of growth factors. Hydrogels were immersed in simulated body fluid (SBF) for 1 month to investigate mineralization in vitro. Cytocompatibility, cell barrier effect, and osteogenic differentiation were also explored in vitro. The ability to effectively regenerate bone was analyzed by implantation of triple-layered composite scaffolds into rat calvarial defects in vivo. Size-matched hydrogel filled the defect site, and then, fresh PRF was applied to the hydrogel surface. Finally, P2G3 nanofiber films were applied and attached to the surrounding soft tissue. In short, we fabricated multifunctional triple-layered scaffolds by combining the advantages of osteoinduction, osteoconduction, and osseointegration, which could give full play to the role of PRF in bone regeneration and provide new and pragmatic concepts for bone tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yueming Xue
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Shi
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Inomata K, Honda M. Co-Culture of Osteoblasts and Endothelial Cells on a Microfiber Scaffold to Construct Bone-Like Tissue with Vascular Networks. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2869. [PMID: 31491993 PMCID: PMC6765976 DOI: 10.3390/ma12182869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
Bone is based on an elaborate system of mineralization and vascularization. In hard tissue engineering, diverse biomaterials compatible with osteogenesis and angiogenesis have been developed. In the present study, to examine the processes of osteogenesis and angiogenesis, osteoblast-like MG-63 cells were co-cultured with human umbilical vein endothelial cells (HUVECs) on a microfiber scaffold. The percentage of adherent cells on the scaffold was more than 60% compared to the culture plate, regardless of the cell type and culture conditions. Cell viability under both monoculture and co-culture conditions was constantly sustained. During the culture periods, the cells were spread along the fibers and extended pseudopodium-like structures on the microfibers three-dimensionally. Compared to the monoculture results, the alkaline phosphatase activity of the co-culture increased 3-6 fold, whereas the vascular endothelial cell growth factor secretion significantly decreased. Immunofluorescent staining of CD31 showed that HUVECs were well spread along the fibers and formed microcapillary-structures. These results suggest that the activation of HUVECs by co-culture with MG-63 could enhance osteoblastic differentiation in the microfiber scaffold, which mimics the microenvironment of the extracellular matrix. This approach can be effective for the construction of tissue-engineered bone with vascular networks.
Collapse
Affiliation(s)
- Kouki Inomata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
24
|
Yu X, Zhao T, Qi Y, Luo J, Fang J, Yang X, Liu X, Xu T, Yang Q, Gou Z, Dai X. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration. Sci Rep 2018; 8:17911. [PMID: 30559344 PMCID: PMC6297151 DOI: 10.1038/s41598-018-36200-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The zone of calcified cartilage (ZCC) is the mineralized region between the hyaline cartilage and subchondral bone and is critical in cartilage repair. A new non-stoichiometric calcium silicate (10% Ca substituted by Mg; CSi-Mg10) has been demonstrated to be highly bioactive in an osteogenic environment in vivo. This study is aimed to systematically evaluate the potential to regenerate osteochondral interface with different amount of Ca-Mg silicate in hydrogel-based scaffolds, and to compare with the scaffolds containing conventional Ca-phosphate biomaterials. Hydrogel-based porous scaffolds combined with 0-6% CSi-Mg10, 6% β-tricalcium phosphate (β-TCP) or 6% nanohydroxyapatite (nHAp) were made with three-dimensional (3D) printing. An increase in CSi-Mg10 content is desirable for promoting the hypertrophy and mineralization of chondrocytes, as well as cell proliferation and matrix deposition. Osteogenic and chondrogenic induction were both up-regulated in a dose-dependent manner. In comparison with the scaffolds containing 6% β-TCP or nHAp, human deep zone chondrocytes (hDZCs) seeded on CSi-Mg10 scaffold of equivalent concentration exhibited higher mineralization. It is noteworthy that the hDZCs in the 6% CSi-Mg10 scaffolds maintained a higher expression of the calcified cartilage zone specific extracellular matrix marker and hypertrophic marker, collagen type X. Immunohistochemical and Alizarin Red staining reconfirmed these findings. The study demonstrated that hydrogel-based hybrid scaffolds containing 6% CSi-Mg10 are particularly desirable for inducing the formation of calcified cartilage.
Collapse
Affiliation(s)
- Xinning Yu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Hangzhou, 311215, China
| | - Tengfei Zhao
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Yiying Qi
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Jianyang Luo
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Jinghua Fang
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Hangzhou, 311215, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Tengjing Xu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Quanming Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xuesong Dai
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Synthesis of Wollastonite Powders by Combustion Method: Role of Amount of Fuel. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/6213568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this work has been the synthesis of wollastonite by solution combustion method. The novelty of this work has been obtaining the crystalline phase without the need of thermal treatments after the synthesis. For this purpose, urea was used as fuel. Calcium nitrate was selected as a source of calcium and colloidal silica served as a source of silicon. The effect of the amount of fuel on the combustion process was investigated. Temperature of the combustion reaction was followed by digital pyrometry. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area. The results showed that the combustion synthesis provides nanostructured powders characterized by a high surface area. When excess of urea was used, wollastonite-2M was obtained with a submicronic structure.
Collapse
|
26
|
Zhang YQ, Li Y, Liu H, Bai J, Bao NR, Zhang Y, He P, Zhao JN, Tao L, Xue F, Zhou GX, Fan GT. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy. Orthop Surg 2018; 10:160-168. [PMID: 29767463 DOI: 10.1111/os.12378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES As promising alternative to current metallic biomaterials, the porous Mg scaffold with a 3-D open-pore framework has drawn much attention in recent years due to its suitable biodegradation, biocompatibility, and mechanical properties for human bones. This experiment's aim is to study the mechanical properties, biosafety, and osteogenesis of porous Mg-Zn alloy. METHODS A porous Mg-2Zn-0.3Ca (wt%) alloy was successfully prepared by infiltration casting, and the size of NaCl particles was detected by a laser particle size analyzer. The microstructure of the Mg-2Zn-0.3Ca alloy was characterized by the stereoscopic microscope and Sirion Field emission scanning electron microscope. X-ray computerized tomography scanning (x-CT) was used to create the 3-D image. The degradation rate was measured using the mass loss method and the pH values were determined together. The engineering stress-strain curve, compressive modulus, and yield strength were tested next. The bone marrow stromal cells (BMSC) were cultured in vitro. The CCK-8 method was used to detect the proliferation of the BMSC. Alkaline phosphatase (ALP) and alizarin red staining were used to reflect the differentiation effects. After co-culturing, cell growth on the material's surface was observed by scanning electron microscope (SEM). The cell adhesion was tested by confocal microscopy. RESULTS The obtained results showed that by using near-spherical NaCl filling particles, the porous Mg alloy formed complete open-cell foam with a very uniform size of pores in the range of 500-600 μm. Benefitting from the small size and uniform distribution of pores, the present porous alloy exhibited a very high porosity, up to 80%, and compressive yield strength up to 6.5 MPa. The degradation test showed that both the pH and the mass loss rate had similar change tendency, with a rapid rise in the early stage for 1-2 day's immersion and subsequently remaining smooth after 3 days. In vitro cytocompatibility trials demonstrated that in comparison with Ti, the porous alloy accelerated proliferation in 1, 3, 5, and 7 days (P < 0.001), and the osteogenic differentiation test showed that the ALP activity in the experimental group was significantly higher (P = 0.017) and has more osteogenesis nodules. Cell adhesion testing showed good osteoconductivity by more BMSC adhesion around the holes. The confocal microscopy results showed that cells in porous Mg-based alloy had better cytoskeletal morphology and were larger in number than in titanium. CONCLUSIONS These results indicated that this porous Mg-based alloy fabricated by infiltration casting shows great mechanical properties and biocompatibilities, and it has potential as an ideal bone tissue engineering scaffold material for bone regeneration.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China
| | - Yang Li
- School of Materials Science and Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, China
| | - Huan Liu
- School of Mechanics and Materials, Hohai University, Nanjing, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, China
| | - Ni-Rong Bao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Yue Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, China
| | - Peng He
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, China
| | - Guang-Xin Zhou
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Gen-Tao Fan
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
27
|
Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater 2018; 5:115-124. [PMID: 29644093 PMCID: PMC5887944 DOI: 10.1093/rb/rby001] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Microporosity has a critical role in improving the osteogenesis of scaffolds for bone tissue engineering. Although the exact mechanism, by which it promotes new bone formation, is not well recognized yet, the related hypothesis can be found in many previous studies. This review presents those possible mechanisms about how the microporosity enhances the osteogenic-related functions of cells in vitro and the osteogenic activity of scaffolds in vivo. In summary, the increased specific surface areas by microporosity can offer more protein adsorption sites and accelerate the release of degradation products, which facilitate the interactions between scaffolds and cells. Meanwhile, the unique surface properties of microporous scaffolds have a considerable effect on the protein adsorption. Moreover, capillary force generated by the microporosity can improve the attachment of bone-related cells on the scaffolds surface, and even make the cells achieve penetration into the micropores smaller than them. This review also pays attention to the relationship between the biological and mechanical properties of microporous scaffolds. Although lots of achievements have been obtained, there is still a lot of work to do, some of which has been proposed in the conclusions and perspectives part.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Juraski ADC, Rodas ACD, Elsayed H, Bernardo E, Soares VO, Daguano J. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics. MATERIALS 2017; 10:ma10040425. [PMID: 28772783 PMCID: PMC5506970 DOI: 10.3390/ma10040425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900-1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70-100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO₃) and diopside (CaMgSi₂O₆), but combeite (Na₂Ca₂Si₃O₉) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies.
Collapse
Affiliation(s)
- Amanda De Castro Juraski
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Federal University of ABC, Santo André 09210-580, Brazil.
| | - Andrea Cecilia Dorion Rodas
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Federal University of ABC, Santo André 09210-580, Brazil.
| | - Hamada Elsayed
- Dipartimento di Ingegneria Industriale, University of Padova, Padova 35131, Italy.
- Ceramics Department, National Research Centre, El-Bohous Street, 12622 Cairo, Egypt.
| | - Enrico Bernardo
- Dipartimento di Ingegneria Industriale, University of Padova, Padova 35131, Italy.
| | | | - Juliana Daguano
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Federal University of ABC, Santo André 09210-580, Brazil.
| |
Collapse
|