1
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
2
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gong JY, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol 2022; 96:1141-1212. [DOI: 10.1007/s00204-022-03233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
|
4
|
Hu B, Cheng Z, Liang S. Advantages and prospects of stem cells in nanotoxicology. CHEMOSPHERE 2022; 291:132861. [PMID: 34774913 DOI: 10.1016/j.chemosphere.2021.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have been widely used in many fields, especially in biomedical and stem cell therapy. However, the potential risks associated with nanomaterials applications are also gradually increasing. Therefore, effective and robust toxicology models are critical to evaluate the developmental toxicity of nanomaterials. The development of stem cell research provides a new idea of developmental toxicology. Recently, many researchers actively investigated the effects of nanomaterials with different sizes and surface modifications on various stem cells (such as embryonic stem cells (ESCs), adult stem cells, etc.) to study the toxic effects and toxic mechanisms. In this review, we summarized the effects of nanomaterials on the proliferation and differentiation of ESCs, mesenchymal stem cells and neural stem cells. Moreover, we discussed the advantages of stem cells in nanotoxicology compared with other cell lines. Finally, combined with the latest research methods and new molecular mechanisms, we analyzed the application of stem cells in nanotoxicology.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding, 071000, China
| |
Collapse
|
5
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
6
|
Ahmadpoor F, Masood A, Feliu N, Parak WJ, Shojaosadati SA. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) with acceptable biocompatibility and size-dependent magnetic properties can be used as efficient contrast agents in magnetic resonance imaging (MRI). Herein, we have investigated the impact of particle size and surface coating on the proton relaxivity of IONPs, as well as engineering of small IONPs' surface coating as a strategy for achieving gadolinium-free contrast agents. Accordingly, polymer coating using poly(isobutylene-alt-maleic anhydride) (PMA) with overcoating of the original ligands was applied for providing colloidal stability to originally oleic acid–capped IONPs in aqueous solution. In case of replacement of the original ligand shell, the polymer had been modified with dopamine. Furthermore, the colloidal stability of the polymer-coated IONPs was evaluated in NaCl and bovine serum albumin (BSA) solutions. The results indicate that the polymer-coated IONPs which involved replacement of the original ligands exhibited considerably better colloidal stability and higher proton relaxivity in comparison to polymer-coated IONPs with maintained ligand shell. The highest r2/r1 we obtained was around 300.
Collapse
|
7
|
Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS NANO 2021; 15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most tissues of the human body are characterized by highly anisotropic physical properties and biological organization. Hydrogels have been proposed as scaffolding materials to construct artificial tissues due to their water-rich composition, biocompatibility, and tunable properties. However, unmodified hydrogels are typically composed of randomly oriented polymer networks, resulting in homogeneous structures with isotropic properties different from those observed in biological systems. Magnetic materials have been proposed as potential agents to provide hydrogels with the anisotropy required for their use on tissue engineering. Moreover, the intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote actuators to control the behavior of the cells encapsulated within the hydrogels under the application of external magnetic fields. In this review, we combine a detailed summary of the main strategies to prepare magnetic nanoparticles showing controlled properties with an analysis of the different approaches available to their incorporation into hydrogels. The application of magnetically responsive nanocomposite hydrogels in the engineering of different tissues is also reviewed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology 2019; 137:75-81. [PMID: 31204016 DOI: 10.1016/j.theriogenology.2019.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in various in vitro and in vivo studies, their careful design for biocompatibility and effective interactions with single-celled and multi-cellular organisms has permitted their use in several fields of research and biomedicine. The various nanoparticles synthesized and applied in the veterinary sciences, including reproductive biology, have shown potential to influence routine practices in animal production systems. These include post-collection manipulation of semen and the protection of high-quality spermatozoa to extend their preservation, and to improve sperm-related biotechnologies such as sperm-mediated gene transfer, sperm sorting, sex-sorting, and cryopreservation. Therefore, the application of nanotechnology-based tools to semen may enhance assisted reproductive technologies for biomedical applications and improve economic productivity for farmers. Here, we review the efficacy of available techniques and emerging tools of nanotechnology that might be useful for further selection of high quality boar spermatozoa and productivity improvement.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA.
| | - Carley E Rhoads
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA
| | | | | | - John J Parrish
- Department of Animal Sciences, University of Wisconsin, WI, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Population and Pathology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
10
|
Pongrac IM, Radmilović MD, Ahmed LB, Mlinarić H, Regul J, Škokić S, Babič M, Horák D, Hoehn M, Gajović S. D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by ex vivo MRI after Transplantation in the Mouse Brain. Cell Transplant 2019; 28:553-567. [PMID: 31293167 PMCID: PMC7103599 DOI: 10.1177/0963689719834304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-labeled cells can be used as a non-invasive technique to track stem cells after transplantation. The aim of this study was to (1) evaluate labeling efficiency of D-mannose-coated maghemite nanoparticles (D-mannose(γ-Fe2O3)) in neural stem cells (NSCs) in comparison to the uncoated nanoparticles, (2) assess nanoparticle utilization as MRI contrast agent to visualize NSCs transplanted into the mouse brain, and (3) test nanoparticle biocompatibility. D-mannose(γ-Fe2O3) labeled the NSCs better than the uncoated nanoparticles. The labeled cells were visualized by ex vivo MRI and their localization subsequently confirmed on histological sections. Although the progenitor properties and differentiation of the NSCs were not affected by labeling, subtle effects on stem cells could be detected depending on dose increase, including changes in cell proliferation, viability, and neurosphere diameter. D-mannose coating of maghemite nanoparticles improved NSC labeling and allowed for NSC tracking by ex vivo MRI in the mouse brain, but further analysis of the eventual side effects might be necessary before translation to the clinic.
Collapse
Affiliation(s)
- Igor M. Pongrac
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | | | - Lada Brkić Ahmed
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Hrvoje Mlinarić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Jan Regul
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Siniša Škokić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Michal Babič
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory,
Cologne, Germany
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| |
Collapse
|
11
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
12
|
Pirbhai M, Chandrasekar S, Zheng M, Ignatova T, Rotkin SV, Jedlicka SS. Augmentation of C17.2 Neural Stem Cell Differentiation via Uptake of Low Concentrations of ssDNA‐Wrapped Single‐Walled Carbon Nanotubes. ACTA ACUST UNITED AC 2019; 3:e1800321. [DOI: 10.1002/adbi.201800321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Massooma Pirbhai
- Department of Physics Susquehanna University 514 University Ave. Selinsgrove PA 17870 USA
| | - Swetha Chandrasekar
- Department of Bioengineering Lehigh University 111 Research Drive Bethlehem PA 18015 USA
| | - Ming Zheng
- National Institute of Standards and Technology 1000 Bureau Drive, M/S 8542 Gaithersburg MD 20899 USA
| | - Tetyana Ignatova
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro 2907 East Gate City Blvd. Greensboro NC 27401 USA
| | - Slava V. Rotkin
- Department of Engineering Science and Mechanics Materials Research Institute The Pennsylvania State University N‐332 Millennium Science Complex University Park PA 16802 USA
| | - Sabrina S. Jedlicka
- Department of Materials Science and Engineering Department of Bioengineering Lehigh University 5 E. Packer Ave. Bethlehem PA 18015 USA
| |
Collapse
|