1
|
Cai G, Zhao W, Zhu T, Oliveira AL, Yao X, Zhang Y. Effects of protein conformational transition accompanied with crosslinking density cues in silk fibroin hydrogels on the proliferation and chondrogenesis of encapsulated stem cells. Regen Biomater 2025; 12:rbaf019. [PMID: 40290449 PMCID: PMC12033033 DOI: 10.1093/rb/rbaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/01/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
Silk fibroin (SF) hydrogels possess excellent biocompatibility and biomimetic properties of the extracellular matrix. Among them, the mild chemical crosslinked SF hydrogels show great application potential in the fields of 3D cell culture and tissue repairing and thus have attracted widespread attention. However, the mobility of hydrophobic chain segments of SF molecules in these chemical crosslinked hydrogels can easily cause the molecules to undergo a self-assembly process from random coil to β-sheet conformation due to its lower energy state, thus inducing an inevitable conformational transition process. This process further leads to dynamic changes of important material features, such as the hydrogel pore size and mechanical properties, which can probably bring some non-negligible and unknown impacts on cell behaviors and their biomedical applications. In this study, a typical mild crosslinking system composed of horseradish peroxidase and hydrogen peroxide was chosen to prepare SF hydrogels. A feasible protein conformational transition rate controlling strategy based on hydrogel crosslinking density regulation was also proposed. Our results demonstrate that the lower the hydrogel crosslinking density, the faster the conformational transition rate. Subsequently, SF hydrogels with different conformational transition rates were successfully constructed to investigate the impact of the protein conformational transition rate accompanied with initial crosslinking density on the proliferation and chondrogenic differentiation of encapsulated stem cells. Results comprehensively illustrated that the conformational transition process could effectively regulate cell behavior. The hydrogel with an appropriate conformational transition rate obviously promoted the proliferation and chondrogenesis of encapsulated stem cells, while too fast or too slow transition processes slowed down these cell activities. These findings are hopefully to provide valuable guidance for the development and efficient usage of SF hydrogels in the fields of 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Guolong Cai
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Weikun Zhao
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Tianhao Zhu
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Xiang Yao
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
2
|
Lu D, Cai K, Zeng Z, Huang J, Ma N, Gao B, Yu S. VEGF loading heparinized hyaluronic acid macroporous hydrogels for enhanced 3D endothelial cell migration and vascularization. BIOMATERIALS ADVANCES 2025; 167:214094. [PMID: 39504586 DOI: 10.1016/j.bioadv.2024.214094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The formation of robust vascular systems within voluminous scaffolds remains a formidable barrier in the realm of tissue engineering. There is a growing interest in the integration of biomaterial scaffolds with multiple physical and chemical stimuli to augment the process of vascularization. This study aims to investigate the combined impact of macroporous structures and vascular endothelial growth factor (VEGF) on cell migration and vascularization. Heparinized hyaluronic acid (HepHA) macroporous hydrogels with differing pore sizes, composed by methacrylated hyaluronic acid (HAMA) and methacrylated heparin (HepMA), were fabricated by a gelatin microspheres (GMS) template leaching method. After characterization of their physical properties, VEGF was immobilized on the HepHA hydrogels. The in vitro release study indicated that the HepHA hydrogels can provide sustained release of VEGF. Subsequently, cells migration of human umbilical vein endothelial (HUVECs) assessment indicated that HUVECs cultured on VEGF-loaded HepHA hydrogels with larger pores (VEGF@HepHA250) migrated the furthest. Finally, the hydrogels were implanted and evaluated using a dorsal subcutaneous model. The histological analyses conducted in vivo were consistent with the in vitro results, VEGF@HepHA250 hydrogels exhibited the most pronounced vascularization four weeks post-implantation, indicating that hydrogels with expanded pores and an enriched VEGF promoted angiogenesis within the hydrogels. This study sheds light on the synergistic effects of VEGF release on 3D cell migration and vascularization within hydrogels of differing pore sizes, thus providing novel insights into the strategic design and fabrication of tissue-engineered scaffolds that are amenable to vascularization.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Kehan Cai
- Biomedical Engineering Faculty, The University of Sydney, Sydney, NSW 2008, Australia
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Nianfang Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| |
Collapse
|
3
|
Li H, Li D, Wang X, Zeng Z, Pahlavan S, Zhang W, Wang X, Wang K. Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties. ACS Biomater Sci Eng 2025; 11:33-54. [PMID: 39615049 DOI: 10.1021/acsbiomaterials.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Sufficient vascular system and adequate blood perfusion is crucial for ensuring nutrient and oxygen supply within biomaterials. Actively exploring the optimal physical properties of biomaterials in various application scenarios has provided clues for enhancing vascularization within materials, leading to improved outcomes in tissue engineering and clinical translation. Here we focus on reviewing the physical properties of biomaterials, including pore structure, surface topography, and stiffness, and their effects on promoting vascularization. This angiogenic capability has the potential to provide better standardized research models and personalized treatment strategies for bone regeneration, wound healing, islet transplantation and cardiac repair.
Collapse
Affiliation(s)
- Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ziyuan Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Zhao Y, Gong J, Liu H, Huang H, Tan WS, Cai H. A chemically defined, mechanically tunable, and bioactive hyaluronic acid/alginate double-network hydrogel for liver cancer organoid construction. Int J Biol Macromol 2024; 282:136707. [PMID: 39442832 DOI: 10.1016/j.ijbiomac.2024.136707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer organoids replicate the pathophysiology of primary tumors, making them ideal for drug screening and efficacy evaluation. However, their growth in complex, variable, animal-derived matrices hinders practical application. Here, we designed an easily accessible, chemically defined, biocompatible double-network hydrogel (HADR) using methacrylated hyaluronic acid (HAMA), sodium alginate (SA), methacrylamide dopamine (DMA), and c(RGDFC) for liver cancer organoid culture. By optimizing critical extracellular matrix (ECM) parameters, the HADR hydrogel achieves compatibility with the physiological mechanics of the human liver and fosters the adhesion and proliferation of multiple cell types. In vitro drug efficacy tests showed that HepG2 cell line-derived liver cancer organoids exhibited higher IC50 values than 2D cultures, indicating greater drug resistance. Subcutaneous tumor models in nude mice revealed that HADR hydrogels created a microenvironment for HepG2 cells mirroring the natural tumor ECM, leading to increased tumor volume, denser cell arrangement, and concurrent microvascular development. In vivo drug efficacy evaluations indicated that DOX treatment downregulated Ki-67 and MMP-9 expression, inhibiting HepG2 cell proliferation, invasion, and metastasis. These findings demonstrate the potential of HADR hydrogels for liver cancer organoid culture, offering new strategies for personalized drug screening and efficacy evaluation.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Junjie Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hanwen Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Toftdal MS, Christensen NP, Kadumudi FB, Dolatshahi-Pirouz A, Grunnet LG, Chen M. Mechanically reinforced hydrogel vehicle delivering angiogenic factor for beta cell therapy. J Colloid Interface Sci 2024; 667:54-63. [PMID: 38615623 DOI: 10.1016/j.jcis.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.
Collapse
Affiliation(s)
- Mette Steen Toftdal
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark; Department of Cell Formulation and Delivery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Lars Groth Grunnet
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
8
|
Zhu X, Wu S, Yang K, Wei W, Aziz Y, Yuan W, Miyatake H, Ito Y, Wei Z, Li J, Chen Y. Polydopamine-modified konjac glucomannan scaffold with sustained release of vascular endothelial growth factor to promote angiogenesis. Int J Biol Macromol 2024; 271:132333. [PMID: 38754686 DOI: 10.1016/j.ijbiomac.2024.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The fabrication of scaffolds capable of the sustained release of the vascular endothelial growth factor (VEGF) to promote angiogenesis for a long time remains a challenge in tissue engineering. Here, we report a facile approach for effectively fabricating a bioactive scaffold that gradually releases VEGF to promote angiogenesis. The scaffold was fabricated by coating polydopamine (PDA) on a konjac glucomannan (KGM) scaffold, followed by the surface immobilization of VEGF with PDA. The resulting VEGF-PDA/KGM scaffold, with a porous and interconnected microstructure (392 μm pore size with 84.80 porosity), combined the features of long-term biodegradability (10 weeks with 51 % degradation rate), excellent biocompatibility, and sustained VEGF release for up to 21 days. The bioactive VEGF-PDA/KGM scaffold exhibited multiple angiogenic activities over time, as confirmed by in vivo and in vitro experiments. For example, the scaffold significantly promoted the attachment and proliferation of human umbilical vein endothelial cells and the formation of vascular tubes in vitro. Moreover, the in vivo results demonstrated the formation and maturation of blood vessels after subcutaneous implantation in rats for four weeks. This promising strategy is a feasible approach for producing bioactive materials that can induce angiogenesis in vivo. These findings provide a new avenue for designing and fabricating biocompatible and long-term biodegradable scaffolds for sustained VEGF release to facilitate angiogenesis.
Collapse
Affiliation(s)
- Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuhan Wu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wenjin Yuan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Zhao Wei
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Yongmei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
9
|
Li Y, Song W, Kong L, He Y, Li H. Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309599. [PMID: 38054634 DOI: 10.1002/smll.202309599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Injectable hydrogels find extensive application in the treatment of diabetic wound healing. However, traditional bulk hydrogels are significantly limited due to their nano-porous structure, which obstructs cell migration and tissue infiltration. Moreover, regulating inflammation and matrix metalloproteinase -9 (MMP-9) expression in diabetic wounds is crucial for enhancing wound healing. This study marks the first instance of introducing an efficient, scalable, and simple method for producing microfiber-gel granules encapsulating bioceramics powders. Utilizing this method, an injectable microporous granular microgel-fiber hydrogel (MFgel) is successfully developed by assembling microgel-fibers made from hyaluronic acid (HA) and sodium alginate (SA) loaded with small interfering RNA (siRNA) and bioglass (BG) particles. Compared to traditional hydrogels (Tgel), MFgel possesses a highly interconnected network with micron-sized pores, demonstrating favorable properties for cell adhesion and penetration in in vitro experiments. Additionally, MFgel exhibits a higher compressive modulus and superior mechanical stability. When implanted subcutaneously in mice, MFgel promotes cellular and tissue infiltration, facilitating cell proliferation. Furthermore, when applied to skin defects in diabetic rats, MFgel not only effectively regulates inflammation and suppresses MMP-9 expression but also enhances angiogenesis and collagen deposition, thereby significantly accelerating diabetic wound healing. Taken together, this hydrogel possesses great potential in diabetic wound healing applications.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| |
Collapse
|
10
|
Shi J, Yao H, Wang B, Yang J, Liu D, Shang X, Chong H, Fei W, Wang DA. Construction of a Decellularized Multicomponent Extracellular Matrix Interpenetrating Network Scaffold by Gelatin Microporous Hydrogel 3D Cell Culture System. Macromol Rapid Commun 2024; 45:e2300508. [PMID: 38049086 DOI: 10.1002/marc.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Interface tissue repair requires the construction of biomaterials with integrated structures of multiple protein types. Hydrogels that modulate internal porous structures provide a 3D microenvironment for encapsulated cells, making them promise for interface tissue repair. Currently, reduction of intrinsic immunogenicity and increase of bioactive extracellular matrix (ECM) secretion are issues to be considered in these materials. In this study, gelatin methacrylate (GelMA) hydrogel is used to encapsulate chondrocytes and construct a phase transition 3D cell culture system (PTCC) by utilizing the thermosensitivity of gelatin microspheres to create micropores within the hydrogel. The types of bioactive extracellular matrix protein formation by chondrocytes encapsulated in hydrogels are investigated in vitro. After 28 days of culture, GelMA PTCC forms an extracellular matrix predominantly composed of collagen type II, collagen type I, and fibronectin. After decellularization, the protein types and mechanical properties are well preserved, fabricating a decellularized tissue-engineered extracellular matrix and GelMA hydrogel interpenetrating network hydrogel (dECM-GelMA IPN) consisting of GelMA hydrogel as the first-level network and the ECM secreted by chondrocytes as the second-level network. This material has the potential to mediate the repair and regeneration of tendon-bone interface tissues with multiple protein types.
Collapse
Affiliation(s)
- Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bowen Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jian Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dianwei Liu
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Xianfeng Shang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Wenyong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
11
|
Ataie Z, Horchler S, Jaberi A, Koduru SV, El-Mallah JC, Sun M, Kheirabadi S, Kedzierski A, Risbud A, Silva ARAE, Ravnic DJ, Sheikhi A. Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307928. [PMID: 37824280 PMCID: PMC11699544 DOI: 10.1002/smll.202307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 10/14/2023]
Abstract
Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Collapse
Affiliation(s)
- Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Summer Horchler
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Srinivas V Koduru
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Jessica C El-Mallah
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Mingjie Sun
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aneesh Risbud
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Longoni A, Major GS, Jiang S, Farrugia BL, Kieser DC, Woodfield TBF, Rnjak-Kovacina J, Lim KS. Pristine gelatin incorporation as a strategy to enhance the biofunctionality of poly(vinyl alcohol)-based hydrogels for tissue engineering applications. Biomater Sci 2023; 12:134-150. [PMID: 37933486 DOI: 10.1039/d3bm01172k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Synthetic polymers, such as poly(vinyl alcohol) (PVA), are popular biomaterials for the fabrication of hydrogels for tissue engineering and regenerative medicine (TERM) applications, as they provide excellent control over the physico-chemical properties of the hydrogel. However, their bioinert nature is known to limit cell-biomaterial interactions by hindering cell infiltration, blood vessel recruitment and potentially limiting their integration with the host tissue. Efforts in the field have therefore focused on increasing the biofunctionality of synthetic hydrogels, without limiting the advantages associated with their tailorability and controlled release capacity. The aim of this study was to investigate the suitability of pristine gelatin to enhance the biofunctionality of tyraminated PVA (PVA-Tyr) hydrogels, by promoting cell infiltration and host blood vessel recruitment for TERM applications. Pure PVA-Tyr hydrogels and PVA-Tyr hydrogels incorporated with vascular endothelial growth factor (VEGF), a well-known pro-angiogenic stimulus, were used for comparison. Incorporating increasing concentrations of VEGF (0.01-10 μg mL-1) or gelatin (0.01-5 wt%) did not influence the physical properties of PVA-Tyr hydrogels. However, their presence within the polymer network (>0.1 μg mL-1 VEGF and >0.1 wt% gelatin) promoted endothelial cell interactions with the hydrogels. The covalent binding of unmodified gelatin or VEGF to the PVA-Tyr network did not hamper their inherent bioactivity, as they both promoted angiogenesis in a chick chorioallantoic membrane (CAM) assay, performing comparably with the unbound VEGF control. When the PVA-Tyr hydrogels were implanted subcutaneously in mice, it was observed that cell infiltration into the hydrogels was possible in the absence of gelatin or VEGF at 1- or 3-weeks post-implantation, highlighting a clear difference between in vitro an in vivo cell-biomaterial interaction. Nevertheless, the presence of gelatin or VEGF was necessary to enhance blood vessel recruitment and infiltration, although no significant difference was observed between these two biological molecules. Overall, this study highlights the potential of gelatin as a standalone pro-angiogenic cue to enhance biofunctionality of synthetic hydrogels and provides promise for their use in a variety of TERM applications.
Collapse
Affiliation(s)
- Alessia Longoni
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Gretel S Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Shaoyuan Jiang
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Brooke L Farrugia
- School of Biomedical Engineering, University of Melbourne, Australia
| | - David C Kieser
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | | | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
- Light-Activated Biomaterials Group, School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
13
|
Wang S, Bai L, Hu X, Yao S, Hao Z, Zhou J, Li X, Lu H, He J, Wang L, Li D. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Adv Healthc Mater 2023; 12:e2300004. [PMID: 37264745 PMCID: PMC11469067 DOI: 10.1002/adhm.202300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/27/2023] [Indexed: 06/03/2023]
Abstract
In vitro neurovascular unit (NVU) models are valuable for investigating brain functions and developing drugs. However, it remains challenging to recapitulate the native architectural features and ultra-soft extracellular matrix (ECM) properties of the natural NVU. Cell-laden bioprinting is promising to prepare complex living tissues, but hard to balance the fidelity and cell growth. This study proposes a novel two-stage methodology for biomanufacturing functional 3D neurovascular constructs in vitro with low modulus of ECM. At the shaping stage, a low-viscosity alginate/collagen is printed through an embedded approach; at the culturing stage, the alginate is removed through targeted lysing. The low-viscosity and rapid crosslinking properties provide a printing resolution of ≈10 µm, and the lysis processing can decrease the hydrogels' modulus to ≈1 kPa and adjust the porosity of the microstructure, providing cells with an environment closing to the brain ECM. A 3D hollow coaxial neurovascular model is fabricated, in which the endothelial cells has expressed tight junction proteins and shown selective permeability, and the astrocytes outside of the endothelial layer are found to spread out with branches and directly interact with endothelial cells. The present study offers a promising modeling method for better understanding the NVU function and screening neuro-drugs.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Luge Bai
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiaoxuan Hu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - JiaJia Zhou
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiao Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Haixia Lu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
- Department of Human Anatomy & HistoembryologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Jiankang He
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Ling Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Dichen Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| |
Collapse
|
14
|
Liu Y, Guo Q, Zhang X, Wang Y, Mo X, Wu T. Progress in Electrospun Fibers for Manipulating Cell Behaviors. ADVANCED FIBER MATERIALS 2023; 5:1241-1272. [DOI: 10.1007/s42765-023-00281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/08/2023] [Indexed: 01/06/2025]
|
15
|
Wang F, Guo K, Nan L, Wang S, Lu J, Wang Q, Ba Z, Huang Y, Wu D. Kartogenin-loaded hydrogel promotes intervertebral disc repair via protecting MSCs against reactive oxygen species microenvironment by Nrf2/TXNIP/NLRP3 axis. Free Radic Biol Med 2023; 204:128-150. [PMID: 37149010 DOI: 10.1016/j.freeradbiomed.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) and the consequent low back pain present a major medical challenge. Stem cell-based tissue engineering is promising for the treatment of IDD. However, stem cell-based treatment is severely impaired by the increased generation of reactive oxygen species (ROS) in degenerative disc, which can lead to a high level of cell dysfunction and even death. In this study, a kartogenin (KGN)@PLGA-GelMA/PRP composite hydrogel was designed and used as a carrier of ADSCs-based therapies in disc repair. Injectable composite hydrogel act as a carrier for controlled release of KGN and deliver ADSCs to the degenerative disc. The released KGN can stimulate the differentiation of ADSCs into a nucleus pulposus (NP) -like phenotype and boost antioxidant capacity of ADSCs via activating Nrf2/TXNIP/NLRP3 axis. Furthermore, the composite hydrogel combined with ADSCs attenuated the in vivo degeneration of rat IVDs, maintained IVD tissue integrity and accelerated the synthesis of NP-like extracellular matrix. Therefore, the KGN@PLGA-GelMA/PRP composite hydrogel is a promising strategy for stem cell-based therapies of IDD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shuguang Wang
- Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
16
|
Wang Z, Huang C, Liu H, Shi Z, Han X, Li S, Huang J, Wang Z, Yan Y, Chen Z. Two-step method fabricating a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures via coaxial printing. Colloids Surf B Biointerfaces 2023; 224:113202. [PMID: 36801526 DOI: 10.1016/j.colsurfb.2023.113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Three-dimensional (3D) nerve cell models have been widely developed to understand the mechanisms and discover treatment methods of ischemic stroke and neurodegenerative disease. However, there is a contradiction in the production of 3D models that they should possess high modulus to ensure mechanical stability while low modulus to provide mechanical stimuli for nerve cells. In addition, it is challenging to maintain the long-term viability of 3D models when lacking vascular structures. Here, a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures has been fabricated. The matrix materials with brain-like low mechanical properties were favorable for promoting HT22 proliferation. The nerve cells could exchange nutrients and waste with the cultural environment through vascular structures. The vascular structures also played a supporting role, and model stability was enhanced by combining matrix materials with vascular structures. Furthermore, the porosity of vascular structure walls was adjusted by adding sacrificial materials to the tube walls during 3D coaxial printing and removing them after preparation, resulting in tunable porosity vascular structures. Finally, HT22 cells showed better cell viability and proliferation performance after culturing 7 days in the 3D models with vascular structures than in the 3D models with solid structures. All these results suggest that this 3D nerve cell model possesses good mechanical stability and long-term viability, which is expected to be used in pathological studies and drug screening for ischemic stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhenyu Shi
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yonggan Yan
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
17
|
Genç H, Cianciosi A, Lohse R, Stahlhut P, Groll J, Alexiou C, Cicha I, Jüngst T. Adjusting Degree of Modification and Composition of gelAGE-Based Hydrogels Improves Long-Term Survival and Function of Primary Human Fibroblasts and Endothelial Cells in 3D Cultures. Biomacromolecules 2023; 24:1497-1510. [PMID: 36786807 DOI: 10.1021/acs.biomac.2c01536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This study aimed to develop a suitable hydrogel-based 3D platform to support long-term culture of primary endothelial cells (ECs) and fibroblasts. Two hydrogel systems based on allyl-modified gelatin (gelAGE), G1MM and G2LH, were cross-linked via thiol-ene click reaction with a four-arm thiolated polyethylene glycol (PEG-4-SH). Compared to G1MM, the G2LH hydrogel was characterized by the lower polymer content and cross-linking density with a softer matrix and homogeneous and open porosity. Cell viability in both hydrogels was comparable, although the G2LH-based platform supported better F-actin organization, cell-cell interactions, and collagen and fibronectin production. In co-cultures, early morphogenesis leading to tubular-like structures was observed within 2 weeks. Migration of fibroblasts out of spheroids embedded in the G2LH hydrogels started after 5 days of incubation. Taken together, the results demonstrated that the G2LH hydrogel fulfilled the demands of both ECs and fibroblasts to enable long-term culture and matrix remodeling.
Collapse
Affiliation(s)
- Hatice Genç
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Alessandro Cianciosi
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Raphael Lohse
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tomasz Jüngst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| |
Collapse
|
18
|
Zhang W, Yu M, Cao Y, Zhuang Z, Zhang K, Chen D, Liu W, Yin J. An anti-bacterial porous shape memory self-adaptive stiffened polymer for alveolar bone regeneration after tooth extraction. Bioact Mater 2023; 21:450-463. [PMID: 36185742 PMCID: PMC9486049 DOI: 10.1016/j.bioactmat.2022.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Weijun Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Meilin Yu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Yongqiang Cao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Zihan Zhuang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Dong Chen
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
- Corresponding author. Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China.
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- Corresponding author.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| |
Collapse
|
19
|
Al Maruf DSA, Ghosh YA, Xin H, Cheng K, Mukherjee P, Crook JM, Wallace GG, Klein TJ, Clark JR. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel) 2022; 14:polym14194186. [PMID: 36236133 PMCID: PMC9571534 DOI: 10.3390/polym14194186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Free flap surgery is currently the only successful method used by surgeons to reconstruct critical-sized defects of the jaw, and is commonly used in patients who have had bony lesions excised due to oral cancer, trauma, infection or necrosis. However, donor site morbidity remains a significant flaw of this strategy. Various biomaterials have been under investigation in search of a suitable alternative for segmental mandibular defect reconstruction. Hydrogels are group of biomaterials that have shown their potential in various tissue engineering applications, including bone regeneration, both through in vitro and in vivo pre-clinical animal trials. This review discusses different types of hydrogels, their fabrication techniques, 3D printing, their potential for bone regeneration, outcomes, and the limitations of various hydrogels in preclinical models for bone tissue engineering. This review also proposes a modified technique utilizing the potential of hydrogels combined with scaffolds and cells for efficient reconstruction of mandibular segmental defects.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Correspondence:
| | - Yohaann Ali Ghosh
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Payal Mukherjee
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Jeremy Micah Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute, The University of Wollongong, Wollongong 2522, Australia
| | - Gordon George Wallace
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
| | - Travis Jacob Klein
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| |
Collapse
|
20
|
Luo Y, Zhou X, Liu C, Lu R, Jia M, Li P, Zhang S. Scavenging ROS and inflammation produced during treatment to enhance the wound repair efficacy of photothermal injectable hydrogel. BIOMATERIALS ADVANCES 2022; 141:213096. [PMID: 36067644 DOI: 10.1016/j.bioadv.2022.213096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Injectable hydrogels with near infrared (NIR) photothermal ability show attractive application prospects in the treatment of wound infection and promoting skin defect repair. Nevertheless, excess reactive oxygen species (ROS) and inflammatory responses caused by bacterial infection and photothermal therapy (PTT) would delay tissue regeneration and wound healing. In this study, a novel NIR photothermal injectable hydrogel with anti-oxidation and anti-inflammation by incorporating α-lipoic acid modified palladium nanoparticles into calcium ions crosslinked sodium alginate hydrogel was developed. The resulting hydrogel facilitated to fill perfectly various irregular wounds, and could convert NIR light into local high-heat to kill >80 % of Escherichia coli and Staphylococcus aureus. Remarkably, the hydrogel exhibited excellent anti-oxidant and anti-inflammatory activity, which could scavenge >60 % of ROS in cells and decrease the relative expression level of tumor necrosis factor-alpha and interleukin-1β genes by 52.9 % and 53.3 % respectively. It was found that the NIR photothermal injectable hydrogel with anti-oxidation and anti-inflammation could effectively reduce ROS and inflammation caused by bacterial infection and PPT. Additionally, it could also enhance wound repair efficiency. The hydrogel is expected to be a potential wound dressing for the treatment of clinical skin defects.
Collapse
Affiliation(s)
- Yadong Luo
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaodong Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Caikun Liu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
21
|
Shi F, Fang X, Zhou T, Huang X, Duan K, Wang J, Qu S, Zhi W, Weng J. Macropore Regulation of Hydroxyapatite Osteoinduction via Microfluidic Pathway. Int J Mol Sci 2022; 23:ijms231911459. [PMID: 36232757 PMCID: PMC9570064 DOI: 10.3390/ijms231911459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Macroporous characteristics have been shown to play a key role in the osteoinductivity of hydroxyapatite ceramics, but the physics underlying the new bone formation and distribution in such scaffolds still remain elusive. The work here has emphasized the osteoinductive capacity of porous hydroxyapatite scaffolds containing different macroporous sizes (200–400 μm, 1200–1500 μm) and geometries (star shape, spherical shape). The assumption is that both the size and shape of a macropore structure may affect the microfluidic pathways in the scaffolds, which results in the different bone formations and distribution. Herein, a mathematical model and an animal experiment were proposed to support this hypothesis. The results showed that the porous scaffolds with the spherical macropores and large pore sizes (1200–1500 μm) had higher new bone production and more uniform new bone distribution than others. A finite element analysis suggested that the macropore shape affected the distribution of the medium–high velocity flow field, while the macropore size effected microfluid speed and the value of the shear stress in the scaffolds. Additionally, the result of scaffolds implanted into the dorsal muscle having a higher new bone mass than the abdominal cavity suggested that the mechanical load of the host tissue could play a key role in the microfluidic pathway mechanism. All these findings suggested that the osteoinduction of these scaffolds depends on both the microfluid velocity and shear stress generated by the macropore size and shape. This study, therefore, provides new insights into the inherent osteoinductive mechanisms of bioceramics, and may offer clues toward a rational design of bioceramic scaffolds with improved osteoinductivity.
Collapse
Affiliation(s)
- Feng Shi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, Nanchong 637009, China
| | - Xin Fang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Teng Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xu Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ke Duan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxin Qu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (W.Z.); (J.W.)
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (W.Z.); (J.W.)
| |
Collapse
|
22
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
23
|
Lu D, Zeng Z, Geng Z, Guo C, Pei D, Zhang J, Yu S. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization. Biomed Mater 2022; 17. [PMID: 34996058 DOI: 10.1088/1748-605x/ac494b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Vascularization of thick hydrogel scaffolds is still a big challenge, because the submicron- or nano-sized pores seriously restrict endothelial cells adhesion, proliferation and migration. Therefore, porous hydrogels have been fabricated as a kind of promising hydrous scaffolds for enhancing vascularization during tissue repairing. In order to investigate the effects of pore size on vascularization, macroporous methacrylated hyaluronic acid (HAMA) hydrogels with different pore sizes were fabricated by a gelatin microspheres (GMS) template method. After leaching out GMS templates, uniform and highly interconnected macropores were formed in hydrogels, which provided an ideal physical microenvironment to induce human umbilical vein endothelial cells (HUVECs) migration and tissue vascularization. In vitro results revealed that macroporous hydrogels facilitated cells proliferation and migration compared with non-macroporous hydrogels. Hydrogels with middle pore size of 200-250 μm (HAMA250 hydrogels) supported the best cell proliferation and furthest 3D migration of HUVECs. The influences of pore sizes on vascularization were then evaluated with subcutaneous embedding. In vivo results illustrated that HAMA250 hydrogels exhibited optimum vascularization behavior. Highest number of newly formed blood vessels and expression of CD31 could be found in HAMA250 hydrogels rather than in other hydrogels. In summary, our results concluded that the best pore size for endothelial cells migration and tissue vascularization was 200-250 μm. This research provides a new insight into the engineering vascularized tissues and may find utility in designing regenerative biomaterial scaffolds.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Zhiwen Zeng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, Guangzhou, guangzhou, 51000, CHINA
| | - Zhijie Geng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Cuiping Guo
- Institute of Medicine and Health, Guangdong Academy of Sciences, , guangzhou, 51000, CHINA
| | - Dating Pei
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Jin Zhang
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Shan Yu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| |
Collapse
|
24
|
Goonoo N. Tunable Biomaterials for Myocardial Tissue Regeneration: Promising New Strategies for Advanced Biointerface Control and Improved Therapeutic Outcomes. Biomater Sci 2022; 10:1626-1646. [DOI: 10.1039/d1bm01641e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following myocardial infarction (MI) and the natural healing process, the cardiac mechanostructure changes significantly leading to reduced contractile ability and putting additional pressure on the heart muscle thereby increasing the...
Collapse
|
25
|
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, Rnjak-Kovacina J, Gawlitta D, Woodfield TBF, Lim KS. Development and Characterization of Gelatin-Norbornene Bioink to Understand the Interplay between Physical Architecture and Micro-Capillary Formation in Biofabricated Vascularized Constructs. Adv Healthc Mater 2022; 11:e2101873. [PMID: 34710291 DOI: 10.1002/adhm.202101873] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Gretel S Major
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Pau Atienza-Roca
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Alessia Longoni
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Cesar R Alcala-Orozco
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2006, Australia
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| |
Collapse
|
26
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
27
|
Ou Q, Zhang S, Fu C, Yu L, Xin P, Gu Z, Cao Z, Wu J, Wang Y. More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. J Nanobiotechnology 2021; 19:237. [PMID: 34380475 PMCID: PMC8359571 DOI: 10.1186/s12951-021-00973-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background During wound healing, the overproduction of reactive oxygen species (ROS) can break the cellular oxidant/antioxidant balance, which prolongs healing. The wound dressings targeting the mitigation of ROS will be of great advantages for the wound healing. puerarin (PUE) and ferulic acid (FA) are natural compounds derived from herbs that exhibit multiple pharmacological activities, such as antioxidant and anti-inflammatory effects. Polydopamine (PDA) is made from natural dopamine and shows excellent antioxidant function. Therefore, the combination of natural antioxidants into hydrogel dressing is a promising therapy for wound healing. Results Hydrogel wound dressings have been developed by incorporating PUE or FA via PDA nanoparticles (NPs) into polyethylene glycol diacrylate (PEG-DA) hydrogel. This hydrogel can load natural antioxidant drugs and retain the drug in the gel network for a long period due to the presence of PDA NPs. Under oxidative stress, this hydrogel can improve the activity of superoxide dismutase and glutathione peroxidase and reduce the levels of ROS and malondialdehyde, thus preventing oxidative damage to cells, and then promoting wound healing, tissue regeneration, and collagen accumulation. Conclusion Overall, this triple antioxidant hydrogel accelerates wound healing by alleviating oxidative injury. Our study thus provides a new way about co-delivery of multiple antioxidant natural molecules from herbs via antioxidant nanoparticles for wound healing and skin regeneration. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00973-7.
Collapse
Affiliation(s)
- Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shaohan Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chuanqiang Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Le Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Peikun Xin
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zeyuan Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
28
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
29
|
Zhang Z, Jia B, Yang H, Han Y, Wu Q, Dai K, Zheng Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact Mater 2021; 6:3999-4013. [PMID: 33997489 PMCID: PMC8085902 DOI: 10.1016/j.bioactmat.2021.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
A novel biodegradable metal system, ZnLiCa ternary alloys, were systematically investigated both in vitro and in vivo. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. The elongation of Zn0.8Li0.1Ca is 27.82 ± 18.35%, which is the highest among the ZnLiCa alloys. The in vitro degradation rate of Zn0.8Li0.1Ca alloy in simulated body fluid (SBF) showed significant acceleration than that of pure Zn. CCK-8 tests and hemocompatibility tests manifested that ZnLiCa alloys exhibit good biocompatibility. Real-time PCR showed that Zn0.8Li0.1Ca alloy successfully stimulated the expressions of osteogenesis-related genes (ALP, COL-1, OCN and Runx-2), especially the OCN. An in vivo implantation was conducted in the radius of New Zealand rabbits for 24 weeks, aiming to treat the bone defects. The Micro-CT and histological evaluations proved that the regeneration of bone defect was faster within the Zn0.8Li0.1Ca alloy scaffold than the pure Ti scaffold. Zn0.8Li0.1Ca alloy showed great potential to be applied in orthopedics, especially in the load-bearing sites. The first research work of ZnLiCa alloys to be used as biodegradable metals. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. Porous scaffolds made of Zn0.8Li0.1Ca showed superior bone-defect-treating effects to pure Ti scaffolds in New Zealand rabbits.
Collapse
Affiliation(s)
- Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bo Jia
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Corresponding author. Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding author. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Huang K, Yang MS, Tang YJ, Ling SY, Pan F, Liu XD, Chen J. Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications. J Biomater Appl 2020; 35:823-837. [PMID: 32842853 DOI: 10.1177/0885328220950062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Minimally invasive implantation of a porous scaffold of large volume into bone defect site remains a challenge. Scaffolds based on shape memory polymer (SMP) show potential to be delivered in the compact form via minimally invasive surgery. The present study chooses poly (ε-caprolactone)-diols (PCL-diols) as the SMP to cross-link carboxyl dextran via ester bonds together with particle leaching method to yield a porous SMP scaffold. The inner surfaces of porous SMP scaffold are then mineralized via in situ precipitation to yield mineralized porous SMP-hydroxyapatite (SMP-HA) scaffold. The porous SMP-HA scaffold possesses pore size of 400-500 μm, with HA particles uniformly distributed and orientationally aligned on the inner surfaces of scaffold. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) are carried out to identify the HA deposition. The phase transition temperature of the scaffold is adjusted to 38°C via changing the dosage of PCL (molecule weight: 2800) to endow the scaffold with shape deformation and fixed properties, as well as well-performed shape recovery property under body temperature. Bone marrow mesenchymal stem cells (BMSCs) adhere on the inner surfaces of SMP-HA scaffold, exhibiting larger spreading area when compared to cells adhered on SMP scaffold without HA, promoting its osteogenesis. In vivo degradation showed that the scaffold degrades completely after 6 months post-implantation. At the same time, significant tissue and capillary invasion indicated that the present porous SMP-HA scaffold hold great promise towards bone tissue engineering applications.
Collapse
Affiliation(s)
- Kai Huang
- Shanghai Zhabei District Library, Shanghai, China
| | - Mo-Song Yang
- Shanghai Zhabei District Library, Shanghai, China
| | - Yu-Jun Tang
- Shanghai Zhabei District Library, Shanghai, China
| | | | - Feng Pan
- Shanghai Zhabei District Library, Shanghai, China
| | | | - Jun Chen
- Department of Orthopedic, Zhabei Central Hospital of Jin'an District, Shanghai, China
| |
Collapse
|
31
|
Wang W, Zhao J, Li C, Pang Q. Shape memory materials promoting cell adhesion and tissue invasion towards the applications requiring minimally invasive implantation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1820-1835. [PMID: 32567531 DOI: 10.1080/09205063.2020.1778236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Wang
- The Department of Plastic and Burn Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jia Zhao
- Department of Research and Development, Shanghai Jingchen Biotechnology co, LTD, Shanghai, China
| | - Chunbo Li
- Department of Obstetrics and Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiying Pang
- Department of Anesthesiology, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
32
|
Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Curr Mol Med 2020; 20:675-691. [PMID: 32213158 DOI: 10.2174/1566524020666200326095837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.
Collapse
Affiliation(s)
- Maryam Shahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B 2019; 7:7494-7501. [PMID: 31710328 DOI: 10.1039/c9tb01683j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-based hydrogels have been widely applied for chronic wound therapeutics, due to their well-acclaimed wound exudate management capability. At the same time, there is still an unmet clinical need for simple wound diagnostic tools to assist clinical decision-making at the point of care and deliver on the vision of patient-personalised wound management. To explore this challenge, we present a one-step synthetic strategy to realise a redox-responsive, hyaluronic acid (HA)-based hydrogel that is sensitive to wound environment-related variations in glutathione (GSH) concentration. By selecting aminoethyl disulfide (AED) as a GSH-sensitive crosslinker and considering GSH concentration variations in active and non-self-healing wounds, we investigated the impact of GSH-induced AED cleavage on hydrogel dimensions, aiming to build GSH-size relationships for potential point-of-care wound diagnosis. The hydrogel was also found to be non-cytotoxic and aided L929 fibroblast growth and proliferation over seven days in vitro. Such a material offers a very low-cost tool for the visual detection of a target analyte that varies dependent on the status of the cells and tissues (wound detection), and may be further exploited as an implant for fibroblast growth and tissue regeneration (wound repair).
Collapse
Affiliation(s)
- Ziyu Gao
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Ben Golland
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK. and Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|
35
|
Min S, Ko IK, Yoo JJ. State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vasc Specialist Int 2019; 35:77-89. [PMID: 31297357 PMCID: PMC6609020 DOI: 10.5758/vsi.2019.35.2.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Engineering three-dimensional (3D) implantable tissue constructs is a promising strategy for replacing damaged or diseased tissues and organs with functional replacements. However, the efficient vascularization of new 3D organs is a major scientific and technical challenge since large tissue constructs or organs require a constant blood supply to survive in vivo. Current approaches to solving this problem generally fall into the following three major categories: (a) cell-based, (b) angiogenic factor-based, and (c) scaffold-based. In this review, we summarize state-of-the-art technologies that are used to develop complex, stable, and functional vasculature for engineered 3D tissue constructs and organs; additionally, we have suggested directions for future research.
Collapse
Affiliation(s)
- Sangil Min
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
36
|
Chong C, Wang Y, Fathi A, Parungao R, Maitz PK, Li Z. Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen-elastin-PCL scaffolds as dermal substitutes. Burns 2019; 45:1639-1648. [PMID: 31076208 DOI: 10.1016/j.burns.2019.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023]
Abstract
The gold standard treatment for severe burn injuries is autologous skin grafting and the use of commercial dermal substitutes. However, resulting skin tissue following treatment usually displays abnormal morphology and functionality including scarring, skin contracture due to the poor elasticity and strength of existing dermal substitutes. In this study, we have developed a triple-polymer scaffold made of collagen-elastin-polycaprolactone (CEP) composite, aiming to enhance the mechanical properties of the scaffold while retaining its biological properties in promoting cell attachment, proliferation and tissue regeneration. The inclusion of elastin was revealed to decrease the stiffness of the scaffold, while also decreasing hysteresis and increasing elasticity. In mice, electrospun collagen-elastin-PCL scaffolds promoted keratinocyte and fibroblast proliferation, tissue integration and accelerated early-stage angiogenesis. Only a mild inflammatory response was observed in the first 2 weeks post-subcutaneous implantation. Our data indicates that the electrospun collagen-elastin-PCL scaffolds could potentially serve as a skin substitute to promote skin cell growth and tissue regeneration after severe burn injury.
Collapse
Affiliation(s)
- Cassandra Chong
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW 2139, Australia; Disciplines of Surgery, School of Medicine, University of Sydney, NSW 2006, Australia
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW 2139, Australia
| | - Peter K Maitz
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW 2139, Australia; Disciplines of Surgery, School of Medicine, University of Sydney, NSW 2006, Australia; Burns and Reconstructive Surgery Unit, Concord Hospital, Concord, NSW 2139, Australia
| | - Zhe Li
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord West, NSW 2139, Australia; Disciplines of Surgery, School of Medicine, University of Sydney, NSW 2006, Australia; Burns and Reconstructive Surgery Unit, Concord Hospital, Concord, NSW 2139, Australia.
| |
Collapse
|
37
|
Abdelrady H, Hathout RM, Osman R, Saleem I, Mortada ND. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci 2019; 133:115-126. [DOI: 10.1016/j.ejps.2019.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
|
38
|
Liu J, Chuah YJ, Fu J, Zhu W, Wang DA. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:906-916. [PMID: 31147062 DOI: 10.1016/j.msec.2019.04.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022]
Abstract
Vascular tissue engineering seeks to develop functional blood vessels that comprise of both endothelial cells and pericytes for translational medicine and is often faced with numerous challenges such as nutrients and wastes diffusion problem in the centre of the scaffolds. Various strategies have been adopted to solve the diffusion problem in thick engineered scaffolds. Typically, microchannels or dissolvable microspheres are introduced into three-dimensional (3D) scaffolds as an alternative way to improve the infiltration of scaffolds and endothelial cells are usually incorporated into the biomaterials. While some research groups now focus on finding supporting cells to build further vascularized structures in the scaffolds. In this study, a bioinspired 3D gelatin-methacrylate (Gel-MA) hydrogel with dissolvable microspheres was created to encapsulate human bone marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) which was used to investigate whether HMSCs could play a pericytes-like role and enhance vascularization within the engineered scaffolds. The results showed co-culture of HMSCs and HUVECs demonstrated significantly improved vascularization when compared to either HUVECs or HMSCs monoculture. Angiogenic genes were expressed significantly higher in co-culture group. Moreover, when implanting the pre-vascularized scaffolds in vivo, co-culture system integrated more successfully with host tissue and showed higher host tissue invasion than any other groups. More importantly, both the qPCR and immunofluorescence results indicated MSCs differentiated towards pericytes to enhance vascularization in this study. This paper highlights the enhanced capability of 3D micro-cavitary Gel-MA hydrogel for co-culturing HUVECs and HMSCs to promote vascularization which presents a potential strategy for future tissue repair and regeneration.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jiayin Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
39
|
Rajkovic O, Potjewyd G, Pinteaux E. Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke. Front Neurol 2018; 9:734. [PMID: 30233484 PMCID: PMC6129611 DOI: 10.3389/fneur.2018.00734] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a major pathological event following ischemic stroke that contributes to secondary brain tissue damage leading to poor functional recovery. Following the initial ischemic insult, post-stroke inflammatory damage is driven by initiation of a central and peripheral innate immune response and disruption of the blood-brain barrier (BBB), both of which are triggered by the release of pro-inflammatory cytokines and infiltration of circulating immune cells. Stroke therapies are limited to early cerebral blood flow reperfusion, and whilst current strategies aim at targeting neurodegeneration and/or neuroinflammation, innovative research in the field of regenerative medicine aims at developing effective treatments that target both the acute and chronic phase of inflammation. Anti-inflammatory regenerative strategies include the use of nanoparticles and hydrogels, proposed as therapeutic agents and as a delivery vehicle for encapsulated therapeutic biological factors, anti-inflammatory drugs, stem cells, and gene therapies. Biomaterial strategies-through nanoparticles and hydrogels-enable the administration of treatments that can more effectively cross the BBB when injected systemically, can be injected directly into the brain, and can be 3D-bioprinted to create bespoke implants within the site of ischemic injury. In this review, these emerging regenerative and anti-inflammatory approaches will be discussed in relation to ischemic stroke, with a perspective on the future of stroke therapies.
Collapse
Affiliation(s)
- Olivera Rajkovic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Geoffrey Potjewyd
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol 2018; 36:457-472. [DOI: 10.1016/j.tibtech.2018.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
|
41
|
Zhang W, Zhang K, Li G, Yan S, Cui L, Yin J. Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly(l-glutamic acid)-based shape memory scaffolds. Biomater Sci 2018; 6:2738-2749. [DOI: 10.1039/c8bm00705e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of mechanostructural stimuli on stem cell fate in 3D structures have been investigated in a poly(l-glutamic acid)-based shape memory porous scaffold; the results indicate the scaffold a potential cell carrier.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guifei Li
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lei Cui
- Department of Orthopaedics Surgery
- Shanghai Tongji Hospital
- Tongji University School of Medicine
- Shanghai 200065
- P. R. China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
42
|
Lee Y, Balikov DA, Lee JB, Lee SH, Lee SH, Lee JH, Park KD, Sung HJ. In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells. Int J Mol Sci 2017; 18:E1705. [PMID: 28777301 PMCID: PMC5578095 DOI: 10.3390/ijms18081705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin-hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α₁ and αvβ₃) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
| | - Seung Hwan Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Jong Hun Lee
- Department of Urology, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Ki Dong Park
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi 443-742, Korea.
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nasville, TN 37235, USA.
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|