1
|
Min T, Zhang Z, Chen L, Li J. Recent Advances in Barnacle-Inspired Biomaterials in the Field of Biomedical Research. MATERIALS (BASEL, SWITZERLAND) 2025; 18:502. [PMID: 39942168 PMCID: PMC11818484 DOI: 10.3390/ma18030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
As a marine fouling organism, barnacles secrete a cement whose proteins self-assemble into stable nanofibers, conferring exceptional underwater adhesion and curing properties. The barnacle cement proteins (BCPs) are of significant interest in biomedicine due to their adhesiveness, water resistance, stability, and biocompatibility, making them ideal for developing novel biomaterials. Additionally, BCPs have wound-healing acceleration and antibacterial properties, offering new insights for antimicrobial biomaterial development. Recently, barnacle-inspired materials have seen extensive research and notable progress in biomedicine. As the understanding of barnacle cement and its adhesion mechanisms deepens, their medical applications are expected to expand. This review summarizes the latest advancements of barnacle biomimetic materials in biomedicine, including their use in adhesives, tissue engineering, drug delivery, and hemostasis, highlighting their characteristics, applications, and potential research directions, and providing a comprehensive reference for the field.
Collapse
Affiliation(s)
| | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| |
Collapse
|
2
|
Duthoo E, Delroisse J, Maldonado B, Sinot F, Mascolo C, Wattiez R, Lopez PJ, Van de Weerdt C, Harrington MJ, Flammang P. Diversity and evolution of tyrosinase enzymes involved in the adhesive systems of mussels and tubeworms. iScience 2024; 27:111443. [PMID: 39720537 PMCID: PMC11667028 DOI: 10.1016/j.isci.2024.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/13/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Mussels and tubeworms have evolved similar adhesive systems to cope with the hydrodynamics of intertidal environments. Both secrete adhesive proteins rich in DOPA, a post-translationally modified amino acid playing essential roles in their permanent adhesion. DOPA is produced by the hydroxylation of tyrosine residues by tyrosinase enzymes, which can also oxidize it further into dopaquinone. We have compiled a catalog of the tyrosinases potentially involved in the adhesive systems of Mytilus edulis and Sabellaria alveolata. Some were shown to be expressed in the adhesive glands, with a high gland specificity in mussels but not in tubeworms. The diversity of tyrosinases identified in the two species suggests the coexistence of different enzymatic activities and substrate specificities. However, the exact role of the different enzymes needs to be further investigated. Phylogenetic analyses support the hypothesis of independent expansions and parallel evolution of tyrosinases involved in DOPA-based adhesion in both lineages.
Collapse
Affiliation(s)
- Emilie Duthoo
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, 11 avenue de l'hôpital, 4000 Liège, Belgium
| | - Barbara Maldonado
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
- Molecular Biomimetic and Protein Engineering Laboratory, GIGA, University of Liège, 11 avenue de l'hôpital, 4000 Liège, Belgium
| | - Fabien Sinot
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Cyril Mascolo
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Pascal Jean Lopez
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, 75005 Paris, France
| | - Cécile Van de Weerdt
- Molecular Biomimetic and Protein Engineering Laboratory, GIGA, University of Liège, 11 avenue de l'hôpital, 4000 Liège, Belgium
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| |
Collapse
|
3
|
Li X, Li S, Cheng J, Zhang Y, Zhan A. Deciphering protein-mediated underwater adhesion in an invasive biofouling ascidian: Discovery, validation, and functional mechanism of an interfacial protein. Acta Biomater 2024; 181:146-160. [PMID: 38679406 DOI: 10.1016/j.actbio.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
4
|
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, Zhao J, Li Y, Guo W, Liu T, Qu W. Recent advances in biomimetic hemostatic materials. Mater Today Bio 2023; 19:100592. [PMID: 36936399 PMCID: PMC10020683 DOI: 10.1016/j.mtbio.2023.100592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.
Collapse
Affiliation(s)
- Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, PR China
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, PR China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| |
Collapse
|
5
|
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot. Comput Struct Biotechnol J 2022; 20:2713-2722. [PMID: 35685371 PMCID: PMC9168380 DOI: 10.1016/j.csbj.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
The first secretome about scallop byssal adhesion is profiled based on a new computational strategy. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives. The EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins are the main components of scallop byssus. A novel “nearby secretion” model of scallop byssus secretion and adhesion is proposed.
Secretome is involved in almost all physiological, developmental, and pathological processes, but to date there is still a lack of highly-efficient research strategy to comprehensively study the secretome of invertebrates. Adhesive secretion is a ubiquitous and essential physiological process in aquatic invertebrates with complicated protein components and unresolved adhesion mechanisms, making it a good subject for secretome profiling studies. Here we proposed a computational pipeline for systematic profiling of byssal secretome based on spatiotemporal transcriptomes of scallop. A total of 186 byssus-related proteins (BRPs) were identified, which represented the first characterized secretome of scallop byssal adhesion. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives, which suggested this secretome-profiling strategy had both high efficiency and accuracy. We revealed the main components of scallop byssus (including EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins) and the related modification enzymes primarily contributing to the rapid byssus assembly and adhesion. Spatiotemporal expression and co-expression network analyses of BRPs suggested a simultaneous secretion pattern of scallop byssal proteins across the entire region of foot and revealed their diverse functions on byssus secretion. In contrast to the previously proposed “root-initiated secretion and extension-based assembly” model, our findings supported a novel “foot-wide simultaneous secretion and in situ assembly” model of scallop byssus secretion and adhesion. Systematic analysis of scallop byssal secretome provides important clues for understanding the aquatic adhesive secretion process, as well as a common framework for studying the secretome of non-model invertebrates.
Collapse
|
6
|
Comparative proteomics for an in-depth understanding of bioadhesion mechanisms and evolution across metazoans. J Proteomics 2022; 256:104506. [PMID: 35123052 DOI: 10.1016/j.jprot.2022.104506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Bioadhesion is a critical process for many marine and freshwater invertebrate animals. Bioadhesives mainly made of proteins have remarkable adhesive ability underwater. Unraveling the molecular composition of bioadhesives is fundamental to understanding their physiological roles as well as their potential for biotechnology applications and antibiofouling strategies. With the development of high-throughput methods such as proteomics, bioadhesive protein data in diverse taxa are rapidly accumulating, but the common mechanism across species is elusive due to the vast variety of bioadhesives. In this review, bioadhesive proteins from various taxa are reviewed, with the aim of facilitating researchers to appreciate the diversity of bioadhesive proteins (mostly 20-40) across species. By comparing proteomes across species, it was found that glycine-rich, epidermal growth factor, peroxidase, and DOPA together with typical extracellular domains are the most commonly used domains. Additionally, permanent and temporary adhesion show obvious differences in terms of domains or proteins. A basic recipe for bioadhesives composed of six components is proposed: structural elements, extracellular domains, modification enzymes, proteinase inhibitors, cytoskeletal proteins, and others. The extracellular domains are mostly related to interactions with other macromolecules (proteins, carbohydrates, and lipids), suggesting that domain shuffling and macromolecule interaction might be fundamental for bioadhesive evolution.
Collapse
|
7
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
8
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
9
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
10
|
Li X, Li S, Huang X, Chen Y, Cheng J, Zhan A. Protein-mediated bioadhesion in marine organisms: A review. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105409. [PMID: 34271483 DOI: 10.1016/j.marenvres.2021.105409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Protein-mediated bioadhesion is one of the crucial physiological processes in marine organisms, by which they can firmly adhere to underwater substrates. Most marine adhesive organisms are biofoulers, causing negative effects on marine ecosystems and huge economic losses to aquaculture and maritime industries. Furthermore, adhesive proteins in these organisms are promising bionic candidates for high-performance artificial materials with great application value. In-depth understanding of the bioadhesion in marine ecosystems is of dual significance for resolving biofouling issue and developing marine bionic products. Here, we review the research progress of protein-mediated bioadhesion in marine organisms. The adhesion processes such as protein biosynthesis and secretion are similar among organisms, but the detailed features such as compositions, structures, and molecular functions of adhesive proteins are distinct. Hydroxylation, glycosylation, and phosphorylation are important post-translational modifications during the processes of adhesion. The contents of some amino acids such as glycine, tyrosine and cysteine involved in underwater adhesion are significantly higher, which is a sequence feature of barnacle cement and mussel foot proteins. The amyloid structures and conserved domains/motifs such as EGF and vWFA distributed in adhesive proteins are involved in the underwater adhesion. In addition, the oxidative cross-linking also plays an important role in marine bioadhesion. Overall, the unique and common features identified for the protein-mediated bioadhesion in diverse marine organisms here provide background information and essential reference for characterizing marine adhesive proteins and associated functional domains, formulating antifouling strategies, and developing novel biomimetic adhesives.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
11
|
Becker-Kerber B, Horodyski RS, del Mouro L, Sedorko D, Lehn I, Sanchez DF, Fournier J, Mazurier A, El Albani A. Devonian agglutinated polychaete tubes: all in all it's just another grain in the wall. Proc Biol Sci 2021; 288:20211143. [PMID: 34315258 PMCID: PMC8316799 DOI: 10.1098/rspb.2021.1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Biomineralized and organic metazoan tubular skeletons are by far the most common in the fossil record. However, several groups of organisms are also able to agglutinate particles to construct more rigid structures. Here we present a novel type of agglutinated tube from the austral and endemic palaeobiota of the Malvinokaffric realm (Devonian, Brazil). This fossil is characterized by an agglutinated tube made of silt-sized particles forming an unusual flanged morphology that is not known from the fossil record. Besides being able to select specific particles, these organisms probably lived partially buried and were detritus/suspension feeders. Comparisons across different modern groups show that these fossils are strongly similar to tubes made by polychaetes, specifically from the family Maldanidae. If this interpretation is correct, then an early divergence of the Sedentaria clade may have occurred before the Devonian.
Collapse
Affiliation(s)
- Bruno Becker-Kerber
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Carlos (SP), Washington Luiz, 325 km, 13565-905, Brazil
| | - Rodrigo Scalise Horodyski
- Geology Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul 93022-750, Brazil
| | - Lucas del Mouro
- Institute of Geosciences, University of São Paulo, São Paulo, SP 05508-080, Brazil
| | - Daniel Sedorko
- Universidade Federal de Uberlândia, Laboratório de Paleontologia Estratigráfica, campus Monte Carmelo. Av. XV de Novembro, 501, Boa Vista, Monte Carmelo–MG, Brazil
| | - Ilana Lehn
- Geology Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul 93022-750, Brazil
| | | | - Jérôme Fournier
- Muséum national d'Histoire naturelle, Station de Biologie marine, BP225, 29182 Concarneau cedex, France
- Muséum national d'Histoire naturelle/CNRS UMR 7204 CESCO, 43 rue Buffon, 75005 Paris, France
| | - Arnaud Mazurier
- University of Poitiers/CNRS UMR 7285 IC2MP, B27, TSA 51106, 86073 Poitiers cedex, France
| | - Abderrazak El Albani
- University of Poitiers/CNRS UMR 7285 IC2MP, B27, TSA 51106, 86073 Poitiers cedex, France
| |
Collapse
|
12
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
13
|
Muir AP, Dubois SF, Ross RE, Firth LB, Knights AM, Lima FP, Seabra R, Corre E, Le Corguillé G, Nunes FLD. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evol Biol 2020; 20:100. [PMID: 32778052 PMCID: PMC7418442 DOI: 10.1186/s12862-020-01658-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.
Collapse
Affiliation(s)
- Anna P Muir
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK.
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
| | - Stanislas F Dubois
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Rebecca E Ross
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- Institute of Marine Research, 1870 Nordnes, 5817, Bergen, Norway
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Fernando P Lima
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Seabra
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| |
Collapse
|
14
|
Yan G, Sun J, Wang Z, Qian PY, He L. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Mar Drugs 2020; 18:E186. [PMID: 32244485 PMCID: PMC7230167 DOI: 10.3390/md18040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Barnacles represent one of the model organisms used for antifouling research, however, knowledge regarding the molecular mechanisms underlying barnacle cyprid cementation is relatively scarce. Here, RNA-seq was used to obtain the transcriptomes of the cement glands where adhesive is generated and the remaining carcasses of Megabalanus volcano cyprids. Comparative transcriptomic analysis identified 9060 differentially expressed genes, with 4383 upregulated in the cement glands. Four cement proteins, named Mvcp113k, Mvcp130k, Mvcp52k and Mvlcp1-122k, were detected in the cement glands. The salivary secretion pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes, implying that the secretion of cyprid adhesive might be analogous to that of saliva. Lysyl oxidase had a higher expression level in the cement glands and was speculated to function in the curing of cyprid adhesive. Furthermore, the KEGG enrichment analysis of the 352 proteins identified in the cement gland proteome partially confirmed the comparative transcriptomic results. These results present insights into the molecular mechanisms underlying the synthesis, secretion and curing of barnacle cyprid adhesive and provide potential molecular targets for the development of environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Zishuai Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China;
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| |
Collapse
|
15
|
Almeida M, Reis RL, Silva TH. Marine invertebrates are a source of bioadhesives with biomimetic interest. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110467. [PMID: 31924038 DOI: 10.1016/j.msec.2019.110467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Protein-based bioadhesives are found in diverse marine invertebrates that developed attachment devices to adhere to various substrates. These adhesives are of interest to materials science to create bioinspired-adhesives that can perform in water or wet conditions and can be applied in a broad variety of biotechnological and industrial fields. Due to the high variety of invertebrates that inhabit the marine environment, an enormous diversity of structures and principles used in biological adhesives remains unexplored and a very limited number of model systems have inspired novel biomimetic adhesives, the most notable being the mussel byssus adhesive. In this review we give an overview of other marine invertebrates studied for their bioadhesive properties in view of their interest for the development of new biomimetic adhesives for application in the biomedical field but also for antifouling coatings. The molecular features are described, highlighting relevant structures, and examples of biomimetic materials are discussed and explored, opening an avenue for a new set of medical products.
Collapse
Affiliation(s)
- Mariana Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
16
|
Sanfilippo R, Rosso A, Mastandrea A, Viola A, Deias C, Guido A. Sabellaria alveolata sandcastle worm from the Mediterranean Sea: new insights on tube architecture and biocement. J Morphol 2019; 280:1839-1849. [PMID: 31680307 DOI: 10.1002/jmor.21069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/07/2019] [Accepted: 10/04/2019] [Indexed: 11/07/2022]
Abstract
The Atlantic-Mediterranean polychaete Sabellaria alveolata lives in agglutinated tubes adjoined to each other to form discrete reef-like bioconstructions in shallow-water settings characterised by high hydrodynamic energy where sediment particles are constantly resuspended. Tubes are built with sand grains glued by proteinaceous secretions. Analyses of a reef fragment collected near Sampieri (SE Sicily, Sicily Strait) allowed the first detailed description of the tube architecture and biocement of this worms from the Mediterranean. The tube consists of an inner thin organic membrane and three agglutinated layers including: (a) a thin inner layer of flat grains arranged side by side; (b) a thick mid layer with a frame of relatively large sub-rounded grains with cavities partly filled by small grains; and (c) a thin outer layer of large, flat to curved, usually biogenic clasts diverging towards the opening. This particular architecture is distinctive of the family. Morphological and epifluorescence observations revealed that biocement consists of drops at the contact between sub-spherical grains and strips along edges of flat grains. Biocement is a solid foam-like material characterised by high abundance of carbon; the presence of phosphorous and nitrogen confirms its proteinaceous composition. Due to the electrostatic interaction with the proteins, calcium and magnesium are most likely complexed to the cement rather than being trapped in the cells. These elements contribute to the solidification of the glue and stabilisation of the tube structure. However, the organic nature of cement and the high energy of their habitat, make sabellariid reefs dynamic and ephemeral, and the preservation as fossils unlikely, with a confident record only extending back to the Miocene.
Collapse
Affiliation(s)
- Rossana Sanfilippo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Antonietta Rosso
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Adelaide Mastandrea
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Alfio Viola
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Claudia Deias
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Adriano Guido
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| |
Collapse
|
17
|
Nelson HM, Coffing GC, Chilson S, Hester K, Carrillo C, Ostreicher S, Tomamichel W, Hanlon S, Burns AR, Lafontant PJ. Structure, development, and functional morphology of the cement gland of the giant danio, Devario malabaricus. Dev Dyn 2019; 248:1155-1174. [PMID: 31310039 DOI: 10.1002/dvdy.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aquatic species in several clades possess cement glands producing adhesive secretions of various strengths. In vertebrates, transient adhesive organs have been extensively studied in Xenopus laevis, other anurans, and in several fish species. However, the development of these structures is not fully understood. RESULTS Here, we report on the development and functional morphology of the adhesive gland of a giant danio species, Devario malabaricus. We found that the gland is localized on the larval head, is composed of goblet-like secretory cells framed by basal, bordering, and intercalated apical epithelial cells, and is innervated by the trigeminal ganglion. The gland allows nonswimming larvae to adhere to various substrates. Its secretory cells differentiate by 12 hours postfertilization and begin to disappear in the second week of life. Exogenous retinoic acid disrupts the gland's patterning. More importantly, the single mature gland emerges from fusion of two differentiated secretory cells fields; this fusion is dependent on nonmuscle myosin II function. CONCLUSIONS Taken together, our studies provide the first documentation of the embryonic development, structure, and function of the adhesive apparatus of a danioninae. To our knowledge, this is also the first report of a cement gland arising from convergence of two bilateral fields.
Collapse
Affiliation(s)
- Hannah M Nelson
- Department of Biology, DePauw University, Greencastle, Indiana
| | | | - Sarah Chilson
- Department of Biology, DePauw University, Greencastle, Indiana
| | - Kamil Hester
- Department of Biology, DePauw University, Greencastle, Indiana
| | | | | | | | - Samuel Hanlon
- University of Houston College of Optometry, Houston, Texas
| | - Alan R Burns
- University of Houston College of Optometry, Houston, Texas
| | | |
Collapse
|
18
|
Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genomics 2019; 20:581. [PMID: 31299887 PMCID: PMC6626399 DOI: 10.1186/s12864-019-5917-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. RESULTS Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. CONCLUSION The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. pallida pedal disc. When defence, immunity and development-related genes were identified, those remaining corresponded most closely to formation of the extracellular matrix (ECM), implicating ECM in the adhesion of anemones to surfaces. This study therefore provides a valuable high-throughput resource for the bioadhesion community and lays a foundation for further targeted research to elucidate bioadhesion in the Cnidaria.
Collapse
|
19
|
Rees DJ, Hanifi A, Obille A, Alexander R, Sone ED. Fingerprinting of Proteins that Mediate Quagga Mussel Adhesion using a De Novo Assembled Foot Transcriptome. Sci Rep 2019; 9:6305. [PMID: 31004089 PMCID: PMC6474901 DOI: 10.1038/s41598-019-41976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The European freshwater mollusk Dreissena bugensis (quagga mussel), an invasive species to North America, adheres to surfaces underwater via the byssus: a non-living protein 'anchor'. In spite of its importance as a biofouling species, the sequence of the majority of byssal proteins responsible for adhesion are not known, and little genomic data is available. To determine protein sequence information, we utilized next-generation RNA sequencing and de novo assembly to construct a cDNA library of the quagga mussel foot transcriptome, which contains over 200,000 transcripts. Quagga mussel byssal proteins were extracted from freshly induced secretions and analyzed using LC-MS/MS; peptide spectra were matched to the transcriptome to fingerprint the entire protein primary sequences. We present the full sequences of fourteen novel quagga mussel byssal proteins, named Dreissena bugensis foot proteins 4 to 17 (Dbfp4-Dbfp17), and new sequence data for two previously observed byssal proteins Dbfp1 and Dbfp2. Theoretical masses of the newly discovered proteins range from 4.3 kDa to 21.6 kDa. These protein sequences are unique but contain features similar to glue proteins from other species, including a high degree of polymorphism, proteins with repeated peptide motifs, disordered protein structure, and block structures.
Collapse
Affiliation(s)
- David J Rees
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Arash Hanifi
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Angelico Obille
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Robert Alexander
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Eli D Sone
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C. In Silico Analysis of Pacific Oyster ( Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int J Mol Sci 2019; 20:E197. [PMID: 30625986 PMCID: PMC6337334 DOI: 10.3390/ijms20010197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Following their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae.
Collapse
Affiliation(s)
- Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Pierre Boudry
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Fabienne Guérard
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
21
|
Álvarez-Campos P, Kenny NJ, Verdes A, Fernández R, Novo M, Giribet G, Riesgo A. Delegating Sex: Differential Gene Expression in Stolonizing Syllids Uncovers the Hormonal Control of Reproduction. Genome Biol Evol 2019; 11:295-318. [PMID: 30535381 PMCID: PMC6350857 DOI: 10.1093/gbe/evy265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Stolonization in syllid annelids is a unique mode of reproduction among animals. During the breeding season, a structure resembling the adult but containing only gametes, called stolon, is formed generally at the posterior end of the animal. When stolons mature, they detach from the adult and gametes are released into the water column. The process is synchronized within each species, and it has been reported to be under environmental and endogenous control, probably via endocrine regulation. To further understand reproduction in syllids and to elucidate the molecular toolkit underlying stolonization, we generated Illumina RNA-seq data from different tissues of reproductive and nonreproductive individuals of Syllis magdalena and characterized gene expression during the stolonization process. Several genes involved in gametogenesis (ovochymase, vitellogenin, testis-specific serine/threonine-kinase), immune response (complement receptor 2), neuronal development (tyrosine-protein kinase Src42A), cell proliferation (alpha-1D adrenergic receptor), and steroid metabolism (hydroxysteroid dehydrogenase 2) were found differentially expressed in the different tissues and conditions analyzed. In addition, our findings suggest that several neurohormones, such as methyl farnesoate, dopamine, and serotonin, might trigger stolon formation, the correct maturation of gametes and the detachment of stolons when gametogenesis ends. The process seems to be under circadian control, as indicated by the expression patterns of r-opsins. Overall, our results shed light into the genes that orchestrate the onset of gamete formation and improve our understanding of how some hormones, previously reported to be involved in reproduction and metamorphosis processes in other invertebrates, seem to also regulate reproduction via stolonization.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Department of Biological & Medical Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, United Kingdom
| | - Nathan J Kenny
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Aida Verdes
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Department of Biology, The Graduate Center, City University of New York
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Rosa Fernández
- Bioinformatics & Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Marta Novo
- Facultad de Biología, Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Ana Riesgo
- Department of Biology, The Graduate Center, City University of New York
| |
Collapse
|