1
|
Shin HI, Choi H, Jung JK, Kim CS. The Modulation of Fibrosis in Vocal Fold Repair: A Study on c-Met Agonistic Antibodies and Hepatocyte Growth in Animal Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2033. [PMID: 39768913 PMCID: PMC11727784 DOI: 10.3390/medicina60122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Damage to the vocal folds frequently results in fibrosis, which can degrade vocal quality due to the buildup of collagen and modifications in the extracellular matrix (ECM). Conventional treatments have shown limited success in reversing fibrotic changes. Hepatocyte growth factor (HGF) and c-Met-targeting antibodies are promising due to their potential to inhibit fibrosis and promote regeneration. This research examines the effectiveness of injections containing c-Met agonistic antibodies relative to HGF in reducing fibrosis within a rat model of vocal fold injury. Materials and Methods: Forty-five Sprague Dawley rats were divided into three groups, which were HGF, c-Met agonistic antibody, and the control (PBS). The right vocal folds were injured and treated with HGF or c-Met agonistic antibody injections. RNA isolation and quantitative real-time PCR were performed to assess mRNA levels of fibrosis-related markers at 1 and 2 weeks post-injury. Histopathological analysis was conducted at 3 weeks to evaluate collagen and hyaluronic acid (HA) deposition. Results: Both the HGF and c-Met groups demonstrated reduced type III collagen mRNA expression compared to the PBS group. The c-Met group uniquely maintained fibronectin levels closer to normal. Additionally, the c-Met group showed significantly upregulated expression of hyaluronan synthase (HAS) 1 and HAS 3 at 2 weeks post-injury, indicating enhanced HA synthesis. Histological analysis showed significantly lower collagen deposition and higher HA in the c-Met group than in PBS, confirming superior anti-fibrotic effects and ECM restoration. Conclusions: c-Met agonistic antibody injections outperformed HGF in reducing fibrosis, upregulating HAS expression, and promoting HA deposition in injured vocal folds, highlighting its potential as a superior therapeutic approach for preventing fibrosis and enhancing ECM quality in vocal fold injuries. Further research on functional outcomes in larger models is recommended to validate these findings.
Collapse
Affiliation(s)
- Hyun-Il Shin
- Department of Otolaryngology-Head and Neck Surgery, THANQ Seoul Thyroid-Head and Neck Surgery Center, Seoul 06912, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea
| | - Jae-Kyun Jung
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul 07794, Republic of Korea
| | - Choung-Soo Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Tseng WH, Hsiao TY, Yang TL. Precision-Targeted Injection Laryngoplasty and Longitudinal Biomaterial Effects Evaluation Using High-resolution Ultrasonography in a Rat Model. Otolaryngol Head Neck Surg 2024; 171:1123-1132. [PMID: 39033350 DOI: 10.1002/ohn.906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Current laryngeal injection models rely on the transoral route and are suboptimal due to limited view, narrowed working space, and the need to sacrifice animals for investigation of the injectables. In the present study, a novel surgical model for laryngeal intervention therapy utilizing an ultra-high frequency ultrasound imaging system was proposed. Based on this system, we developed a systemic evaluation approach, from guidance of the injection process, documentation of the injection site of the material, to in vivo longitudinal follow-up on the augmentation and medialization effect by analyzing the ultrasonography data. STUDY DESIGN In vivo animal study. SETTING Academic institution. METHODS Injection laryngoplasty with hyaluronic acid under ultrasonography guidance was performed on Sprague-Dawley rats one week after induced unilateral vocal paralysis. Ultrasonography was performed at preinjection, immediately postinjection, on Day 2, Day 7 and then weekly for 4 weeks to obtain measurements, including the glottic area, angle between bilateral folds, and vocal fold width ratio. Laryngoscopic and histologic studies were also performed. RESULTS Unilateral injections to the paralyzed fold were successfully performed as demonstrated by ultrasonographic, laryngoscopic, and histologic studies. The width ratio was significantly increased after injection for 4 weeks, while the glottic airway area was unchanged. CONCLUSION Here, a novel surgical model for laryngeal injection utilizing ultrasonography in rats was established. In addition to providing visual guidance for precise localization of the injection, robust documentation of the treatment effect was also demonstrated. This methodology could be beneficial for screening therapeutic agents for treatment of glottic insufficiency.
Collapse
Affiliation(s)
- Wen-Hsuan Tseng
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Yu Hsiao
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Office of Research and Development, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Song W, Choi YH, Moon YG, Lee C, Sundaram MN, Hwang NS. Mussel-inspired sulfated hyaluronan cryogel patch with antioxidant, anti-inflammatory, and drug-loading properties for multifunctional wound adhesives. Bioact Mater 2024; 40:582-596. [PMID: 39239260 PMCID: PMC11375143 DOI: 10.1016/j.bioactmat.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma, manifest in diverse types and locations. Although numerous wound dressings are available for various wound scenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse wound situations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties and capacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantages in wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecular-weight hyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging that could synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy in three distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively, these findings underscore the potential of the sHA-CA patch as a promising candidate for the next-generation wound dressing.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Brown M, Okuyama H, Yamashita M, Tabrizian M, Li-Jessen NYK. Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39212941 DOI: 10.1089/ten.teb.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human vocal folds (VF), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, as well as, in situ crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials.
Collapse
Affiliation(s)
- Mika Brown
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada;
| | - Hideaki Okuyama
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada;
| | - Masaru Yamashita
- Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, Kagoshima, Japan;
| | - Maryam Tabrizian
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada
- McGill University, Faculty of Dentistry, Montreal, Quebec, Canada;
| | - Nicole Y K Li-Jessen
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada
- McGill University, Department of Otolaryngology - Head and Neck Surgery, Montreal, Quebec, Canada
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Research Institute of McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
5
|
Wu J, Li J, Mao S, Li B, Zhu L, Jia P, Huang G, Yang X, Xu L, Qiu D, Wang S, Dong Y. Heparin-Functionalized Bioactive Glass to Harvest Endogenous Growth Factors for Pulp Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30715-30727. [PMID: 38833722 DOI: 10.1021/acsami.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jingyi Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Sicong Mao
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Baokui Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Lin Zhu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Peipei Jia
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Sainan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
6
|
Zou CY, Hu JJ, Lu D, Li QJ, Jiang YL, Wang R, Wang HY, Lei XX, Li-Ling J, Yang H, Xie HQ. A self-fused hydrogel for the treatment of glottic insufficiency through outstanding durability, extracellular matrix-inducing bioactivity and function preservation. Bioact Mater 2023; 24:54-68. [PMID: 36582347 PMCID: PMC9768199 DOI: 10.1016/j.bioactmat.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Injection laryngoplasty with biomaterials is an effective technique to treat glottic insufficiency. However, the inadequate durability, deficient pro-secretion of extracellular matrix (ECM) and poor functional preservation of current biomaterials have yielded an unsatisfactory therapeutic effect. Herein, a self-fusing bioactive hydrogel comprising modified carboxymethyl chitosan and sodium alginate is developed through a dual-crosslinking mechanism (photo-triggered and dynamic covalent bonds). Owing to its characteristic networks, the synergistic effect of the hydrogel for vocal folds (VFs) vibration and phonation is adequately demonstrated. Notably, owing to its inherent bioactivity of polysaccharides, the hydrogel could significantly enhance the secretion of major components (type I/III collagen and elastin) in the lamina propria of the VFs both in vivo and in vitro. In a rabbit model for glottic insufficiency, the optimized hydrogel (C1A1) has demonstrated a durability far superior to that of the commercially made hyaluronic acid (HA) Gel. More importantly, owing to the ECM-inducing bioactivity, the physiological functions of the VFs treated with the C1A1 hydrogel also outperformed that of the HA Gel, and were similar to those of the normal VFs. Taken together, through a simple-yet-effective strategy, the novel hydrogel has demonstrated outstanding durability, ECM-inducing bioactivity and physiological function preservation, therefore has an appealing clinical value for treating glottic insufficiency.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dan Lu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hai-Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
7
|
Zheng A, Waterkotte T, Debele T, Dion G, Park Y. Biodegradable dexamethasone polymer capsule for long-term release. KOREAN J CHEM ENG 2023; 40:452-460. [PMID: 40177070 PMCID: PMC11964604 DOI: 10.1007/s11814-022-1358-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/05/2023]
Abstract
We have developed sustained Dex (dexamethasone) capsule implants for sustained local delivery for inflammatory disease treatment. Four different biodegradable polymers were used as capsule materials: polycaprolactone (PCL), poly(lactic acid) (PLA), 90 : 10 poly(lactic-co-glycolide) (PLGA), and 50 : 50 PLGA. The drug release profiles from the four types of capsule were compared and the profiles were fit to a cylindrical reservoir first-order kinetics model. As a result, 50 : 50 PLGA showed the fastest release with the largest permeability and partition coefficient at 0.4909 nm/s and 1.9519, respectively. On the other hand, PCL showed the slowest release with the smallest permeability and partition coefficient at 0.1915 nm/s and 0.8872, respectively. The results indicate that the drug release kinetics are highly correlated with hydrophobicity of the polymer sheet: the more hydrophobic, the slower the drug release kinetics for the hydrophilic drug. The in vitro therapeutic efficacy of the Dex implant was also explored using TNF- α stimulated human umbilical vein endothelial cells (HUVECs), showing effective suppression of IL-6 levels with the implant compared to free Dex with minimal toxicity. Overall, this study suggests that the release trend of Dex from implants follows the hydrophobicity of each polymer, and the Dex implant inhibits the IL-6 expression effectively.
Collapse
Affiliation(s)
- Avery Zheng
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences
| | - Thomas Waterkotte
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences
| | - Tilahun Debele
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences
| | - Gregory Dion
- Department of Otolaryngology, College of Medicine, University of Cincinnati, OH
| | - Yoonjee Park
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences
| |
Collapse
|
8
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
The Regenerative Effects of c-Met Agonistic Antibodies in Vocal Fold Atrophy. Int J Mol Sci 2022; 23:ijms23147818. [PMID: 35887165 PMCID: PMC9318927 DOI: 10.3390/ijms23147818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Atrophy of the vocal folds and the accompanying glottic insufficiency affect the quality of life. Although growth factors have been used to treat muscle atrophy, their effectiveness is limited by their short half-life. Methods: In total, 15 rabbits and 24 rats were used for the study. The right recurrent laryngeal nerves of all animals were transected. One month following nerve transection, PBS (PBS group), rHGF (HGF group), or a c-Met agonistic antibody (c-Met group) was injected into the paralyzed vocal folds. The larynges of the rabbits were harvested from each group for histologic examination and subjected to PCR analysis. Results: Cross-sectional areas (CSAs) of thyroarytenoid muscles were evaluated. The c-Met group had increased CSAs compared to the PBS and HGF groups, but there were no significant differences compared to normal controls. The expression levels of myogenesis-related genes were evaluated three weeks after the injection. The expression levels of myosin heavy chain IIa were significantly increased in the PBS group, while the expression levels of MyoD were increased in the c-Met group. Conclusions: The c-Met agonistic antibody showed promise for promoting muscle regeneration in a vocal fold palsy model.
Collapse
|
10
|
Li X, Hong G, Zhao G, Pei H, Qu J, Chun C, Huang Z, Lu Z. Red Blood Cell Membrane-Camouflaged PLGA Nanoparticles Loaded With Basic Fibroblast Growth Factor for Attenuating Sepsis-Induced Cardiac Injury. Front Pharmacol 2022; 13:881320. [PMID: 35656291 PMCID: PMC9152292 DOI: 10.3389/fphar.2022.881320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac injury is recognized as a major contributor to septic shock and a major component of the multiple organ dysfunction associated with sepsis. Emerging evidence shows that regulation of the intramyocardial oxidative stress and inflammatory response has a promising prospect. Basic fibroblast growth factor (bFGF) exhibits anti-inflammatory and antioxidant properties. In this study, red blood cell membrane-camouflaged poly (lactide-co-glycolide) nanoparticles were synthesized to deliver bFGF (bFGF-RBC/NP) for sepsis-induced cardiac injury. The in vitro experiments revealed that bFGF-RBC/NP could protect cardiomyocytes from oxidative and inflammatory damage. In addition, the antioxidant and anti-inflammatory properties of bFGF-RBC/NP against cardiac injury were validated using data from in vivo experiments. Collectively, our study used bFGF for the treatment of sepsis-induced cardiac injury and confirmed that bFGF-RBC/NP has therapeutic benefits in the treatment of myocardial dysfunction. This study provides a novel strategy for preventing and treating cardiac injury in sepsis.
Collapse
Affiliation(s)
- Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hui Pei
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Jie Qu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Zhiwei Huang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| |
Collapse
|
11
|
Lee DY, Choi YH, Choi JS, Eom MR, Kwon SK. Injection laryngoplasty of human adipose-derived stem cell spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Biomater Res 2022; 26:13. [PMID: 35382871 PMCID: PMC8981753 DOI: 10.1186/s40824-022-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim As the geriatric population increased, the need of treatment for laryngeal atrophy and dysfunction increased. This study was performed to evaluate the effects of injection of human adipose-derived stem cell (hASC) spheroid-loaded catechol-conjugated hyaluronic acid (HA-CA) hydrogel on therapeutic rejuvenation of the geriatric larynx. Methods Stem cell spheroids with hyaluronic acid-based hydrogel were injected into the laryngeal muscles of 18-month-old Sprague–Dawley rats. The effects of hASC spheroids were examined in the following four groups: SHAM, injected with PBS; GEL, injected with HA-CA hydrogel; MONO, injected with single hASCs in HA-CA hydrogel; and SP, injected with hASCs spheroids in HA-CA hydrogel. The rejuvenation efficacy in geriatric laryngeal muscle tissues at 12 weeks postinjection was evaluated and compared by histology, immunofluorescence staining, and functionality analysis. Results Total myofiber cross-sectional area and myofiber number/density, evaluated by detection of myosin heavy chain with antibodies against laminin and fast myosin heavy chain, were significantly higher in the SP group than in the other groups. The lamina propria of the larynx was evaluated by alcian blue staining, which showed that the HA was increased significantly in the SP group compared to the other groups. In functional analysis, the glottal gap area was significantly reduced in the SP group compared to the other groups. The phase difference in the vocal fold during vibration was also smaller in the SP group than in the other groups, but the difference did not reach statistical significance. Conclusion Injection of hASC spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00261-x.
Collapse
|
12
|
Injection Laryngoplasty and Novel Injectable Materials. CURRENT OTORHINOLARYNGOLOGY REPORTS 2021. [DOI: 10.1007/s40136-021-00331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lu QY, Zhang B, Jin KX, Jiang WL, Li X, Gao CY. Rehabilitation Therapy for Vocal Fold Paralysis Caused by Lung Cancer: A Case Report. Phys Ther 2020; 100:2198-2204. [PMID: 33245362 DOI: 10.1093/ptj/pzaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Unilateral vocal fold paralysis (UVFP) can be caused by iatrogenic injury or tumor-induced damage to the recurrent laryngeal nerve. Studies of comprehensive rehabilitation therapies for patients suffering from severe UVFP are limited. The purpose of this case report is to describe an improvement in complete aphonia after comprehensive rehabilitation therapies in a patient with severe UVFP due to a lung tumor. METHODS An 81-year-old woman with a history of bronchial adenoma had complete aphonia due to compression of the left recurrent laryngeal nerve by the tumor. Dynamic fibrolaryngoscope revealed paralysis of the left vocal fold. The patient was treated with interferential current therapy, vocal training, and kinesiology taping. Indicators of voice recovery were scored according to the grade, roughness, breathiness, asthenia, strain scale, and the voice handicap index. RESULTS After 10 days of comprehensive rehabilitation treatment, the patient recovered from complete aphonia to normal communication. The hoarseness and breathiness of patient were significantly improved. In addition, the grade, roughness, breathiness, asthenia, strain, and the voice handicap index scores changed from severe to mild or absent. CONCLUSION This case provided a novel comprehensive treatment for a patient with UVFP, which was safe, cost-effective, and easy to implement in clinic.
Collapse
Affiliation(s)
- Qing Yi Lu
- Rehabilitation Department, Daping Hospital, Army Medical University, People's Liberation Army (PLA), Chongqing, China
| | - Bin Zhang
- Rehabilitation Department, Xingcheng Sanatorium of PLA Strategic Support Force, Xingcheng, China
| | - Ke Xin Jin
- Rehabilitation Department, Daping Hospital, Army Medical University, PLA
| | - Wan Ling Jiang
- Rehabilitation Department, Daping Hospital, Army Medical University, PLA
| | - Xiang Li
- Rehabilitation Department, Daping Hospital, Army Medical University, PLA
| | - Chang Yue Gao
- Rehabilitation Department, Daping Hospital, Army Medical University, Chongqing 400042 China
| |
Collapse
|
14
|
Kim IG, Park MR, Choi YH, Choi JS, Ahn HJ, Kwon SK, Lee JH. Regeneration of Paralyzed Vocal Fold by the Injection of Plasmid DNA Complex-Loaded Hydrogel Bulking Agent. ACS Biomater Sci Eng 2019; 5:1497-1508. [DOI: 10.1021/acsbiomaterials.8b01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology—Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Mi Ri Park
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - Young Hwan Choi
- Department of Otorhinolaryngology—Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Suk Choi
- Department of Otorhinolaryngology—Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Hee-Jin Ahn
- Department of Otorhinolaryngology—Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology—Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|