1
|
Hartley A, Williams PM, Mata A. A Comparison of the Mechanical Properties of ECM Components and Synthetic Self-Assembling Peptides. Adv Healthc Mater 2025:e2402385. [PMID: 39972630 DOI: 10.1002/adhm.202402385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/20/2025] [Indexed: 02/21/2025]
Abstract
The field of tissue engineering is increasingly moving away from a one-size-fits-all approach of simple synthetic homogeneous gels, and embracing more tailored designs to optimize cell function and differentiation for the organ of interest. Extracellular matrix (ECM) proteins are still the optimal route for controlling cell function, while a field of great promise is that of synthetic self-assembling peptides (SSAPs), which are fully biocompatible, biodegradable, and offer both the hierarchical structure and dynamic properties displayed by protein networks found in natural tissue. However, the mechanical properties of neither group have been comprehensively reviewed. In this review, rheological data and the Young's modulus of the most prevalent proteins involved in the ECM (collagen I, elastin, and fibronectin) are collated for the first time, and compared against the most widely researched SSAPs: peptide amphiphiles (PAs), β-sheets, β-hairpin peptides, and Fmoc-based gels (with a focus on PA-E3, RADA16, MAX1, and FmocFF, respectively).
Collapse
Affiliation(s)
- Alex Hartley
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Philip Michael Williams
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| |
Collapse
|
2
|
Deng Y, Herrmann J, Wang Y, Nguyen M, Hall JK, Kim JH, Smith ML, Lutchen KR, Bartolák-Suki E, Suki B. Physiological mechanical forces accelerate the degradation of bovine lung collagen fibers by bacterial collagenase. Sci Rep 2024; 14:29008. [PMID: 39578499 PMCID: PMC11584708 DOI: 10.1038/s41598-024-77704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Collagen fibers, one of the key load-bearing components of the extracellular matrix, contribute significantly to tissue integrity through their mechanical properties of strain-dependent stiffening. This study investigated the effects of bacterial collagenase on the mechanical behavior of individual bovine lung collagen fibers in the presence or absence of mechanical forces, with a focus on potential implications for emphysema, a condition associated with collagen degradation and alveolar wall rupture. Tensile tests were conducted on individual collagen fibers isolated from bovine lung tissue. The rate of degradation was characterized by the change in fiber Young's modulus during 60 min of digestion under various mechanical conditions mimicking the mechanical stresses on the fibers during breathing. Compared to digestion without mechanical forces, a significantly larger drop of fiber modulus was observed in the presence of static or intermittent mechanical forces. Fiber yield stress was also reduced after digestion indicating compromised fiber failure. By incorporating fibril waviness obtained by scanning electron microscopic images, an analytic model allowed estimation of fibril modulus. A computational model that incorporated waviness and the results of tensile tests was also developed to simulate and interpret the data. The simulation results provided insights into the mechanical consequences of bacterial collagenase and mechanical forces on collagen fibers, revealing both fibril softening and rupture during digestion. These findings shed light on the microscale changes in collagen fiber structure and mechanics under enzymatic digestion and breathing-like mechanical stresses with implications for diseases that are impacted by collagen degradation such as emphysema.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Yu Wang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Minh Nguyen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Joseph K Hall
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jae Hun Kim
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Elizabeth Bartolák-Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Srbova L, Arasalo O, Lehtonen AJ, Pokki J. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. SOFT MATTER 2024; 20:3483-3498. [PMID: 38587658 DOI: 10.1039/d3sm01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.
Collapse
Affiliation(s)
- Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| |
Collapse
|
4
|
Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol 2024; 326:C1212-C1225. [PMID: 38372136 DOI: 10.1152/ajpcell.00633.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.
Collapse
Affiliation(s)
- Jessica H Longstreth
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Mechanical Stretch Promotes Macrophage Polarization and Inflammation via the RhoA-ROCK/NF-κB Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6871269. [PMID: 35915804 PMCID: PMC9338847 DOI: 10.1155/2022/6871269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Macrophages play an essential role in the pathogenesis of most inflammatory diseases. Recent studies have shown that mechanical load can influence macrophage function, leading to excessive and uncontrolled inflammation and even systemic damage, including cardiovascular disease and knee osteoarthritis. However, the molecular mechanism remains unclear. In this study, murine RAW264.7 cells were treated with mechanical stretch (MS) using the Flexcell-5000T Tension System. The expression of inflammatory factors and cytokine release were measured by RT-qPCR, ELISA, and Western blotting. The protein expression of NF-κB p65, Iκb-α, p-Iκb-α, RhoA, ROCK1, and ROCK2 was also detected by Western blotting. Then, Flow cytometry was used to detect the proportion of macrophage subsets. Meanwhile, Y-27632 dihydrochloride, a ROCK inhibitor, was added to knockdown ROCK signal transduction in cells. Our results demonstrated that MS upregulated mRNA expression and increased the secretion levels of proinflammatory factors iNOS, IL-1β, TNF-α, and IL-6. Additionally, MS significantly increased the proportion of CD11b+CD86+ and CD11b+CD206+ subsets in RAW264.7 macrophages. Furthermore, the protein expression of RhoA, ROCK1, ROCK2, NF-κB p65, and IκB-α increased in MS-treated RAW264.7 cells, as well as the IL-6 and iNOS. In contrast, ROCK inhibitor significantly blocked the activation of RhoA-ROCK and NF-κB pathway, decreased the protein expression of IL-6 and iNOS, reduced the proportion of CD11b+CD86+ cells subpopulation, and increased the proportion of CD11b+CD206+ cell subpopulation after MS. These data indicate that mechanical stretch can regulate the RAW264.7 macrophage polarization and enhance inflammatory responses in vitro, which may contribute to activation the RhoA-ROCK/NF-κB pathway.
Collapse
|
6
|
Acuna A, Jimenez JM, Deneke N, Rothenberger SM, Libring S, Solorio L, Rayz VL, Davis CS, Calve S. Design and validation of a modular micro-robotic system for the mechanical characterization of soft tissues. Acta Biomater 2021; 134:466-476. [PMID: 34303012 PMCID: PMC8542608 DOI: 10.1016/j.actbio.2021.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The mechanical properties of tissues are critical design parameters for biomaterials and regenerative therapies seeking to restore functionality after disease or injury. Characterizing the mechanical properties of native tissues and extracellular matrix throughout embryonic development helps us understand the microenvironments that promote growth and remodeling, activities critical for biomaterials to support. The mechanical characterization of small, soft materials like the embryonic tissues of the mouse, an established mammalian model for development, is challenging due to difficulties in handling minute geometries and resolving forces of low magnitude. While uniaxial tensile testing is the physiologically relevant modality to characterize tissues that are loaded in tension in vivo, there are no commercially available instruments that can simultaneously measure sufficiently low tensile force magnitudes, directly measure sample deformation, keep samples hydrated throughout testing, and effectively grip minute geometries to test small tissues. To address this gap, we developed a micromanipulator and spring system that can mechanically characterize small, soft materials under tension. We demonstrate the capability of this system to measure the force contribution of soft materials, silicone, fibronectin sheets, and fibrin gels with a 5 nN - 50 µN force resolution and perform a variety of mechanical tests. Additionally, we investigated murine embryonic tendon mechanics, demonstrating the instrument can measure differences in mechanics of small, soft tissues as a function of developmental stage. This system can be further utilized to mechanically characterize soft biomaterials and small tissues and provide physiologically relevant parameters for designing scaffolds that seek to emulate native tissue mechanics. STATEMENT OF SIGNIFICANCE: The mechanical properties of cellular microenvironments are critical parameters that contribute to the modulation of tissue growth and remodeling. The field of tissue engineering endeavors to recapitulate these microenvironments in order to construct tissues de novo. Therefore, it is crucial to uncover the mechanical properties of the cellular microenvironment during tissue formation. Here, we present a system capable of acquiring microscale forces and optically measuring sample deformation to calculate the stress-strain response of soft, embryonic tissues under tension, and easily adaptable to accommodate biomaterials of various sizes and stiffnesses. Altogether, this modular system enables researchers to probe the unknown mechanical properties of soft tissues throughout development to inform the engineering of physiologically relevant microenvironments.
Collapse
Affiliation(s)
- Andrea Acuna
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Naomi Deneke
- School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Sean M Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, 201 South Street, West Lafayette, IN 47906, United States
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
7
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
8
|
Vishwanath N, Monis WJ, Hoffmann GA, Ramachandran B, DiGiacomo V, Wong JY, Smith ML, Layne MD. Mechanisms of aortic carboxypeptidase-like protein secretion and identification of an intracellularly retained variant associated with Ehlers-Danlos syndrome. J Biol Chem 2020; 295:9725-9735. [PMID: 32482891 DOI: 10.1074/jbc.ra120.013902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of post-translational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to extracellular matrix mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum stress identified with an XBP1-based endoplasmic reticulum stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.
Collapse
Affiliation(s)
- Neya Vishwanath
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William J Monis
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gwendolyn A Hoffmann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bhavana Ramachandran
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Hoffmann GA, Wong JY, Smith ML. On Force and Form: Mechano-Biochemical Regulation of Extracellular Matrix. Biochemistry 2019; 58:4710-4720. [PMID: 31144496 DOI: 10.1021/acs.biochem.9b00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extracellular matrix is well-known for its structural role in supporting cells and tissues, and its important biochemical role in providing signals to cells has increasingly become apparent. These structural and biochemical roles are closely coupled through mechanical forces: the biochemistry of the extracellular matrix determines its mechanical properties, mechanical forces control release or display of biochemical signals from the extracellular matrix, and the mechanical properties of the matrix in turn influence the mechanical set point at which signals are sent. In this Perspective, we explain how the extracellular matrix is regulated by strain and mechanical forces. We show the impact of biochemistry and mechanical forces on in vivo assembly of extracellular matrix and illustrate how matrix can be generated in vitro using a variety of methods. We cover how the matrix can be characterized in terms of mechanics, composition, and conformation to determine its properties and to predict interactions. Finally, we explore how extracellular matrix remodeling, ligand binding, and hemostasis are regulated by mechanical forces. These recently discovered mechano-biochemical interactions have important functions in wound healing and disease progression. It is likely that mechanically altered extracellular matrix interactions are a commonly recurring theme, but due to limited tools to generate extracellular matrix fibers in vitro and lack of high-throughput methods to detect these interactions, it is hypothesized that many of these interactions have yet to be discovered.
Collapse
Affiliation(s)
- Gwendolyn A Hoffmann
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| | - Joyce Y Wong
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| | - Michael L Smith
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| |
Collapse
|